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Abstract. Given a finite acyclic quiver Q with path algebra Λ, Ingalls and

Thomas have exhibited a bijection between the set of Morita equivalence

classes of support-tilting modules and the set of thick subcategories of mod Λ

with covers, and they have collected further bijections with these sets. We add

some additional bijections and show that all these bijections hold for arbitrary

hereditary artin algebras. The proofs presented here seem to be of interest

also in the special case of the path algebra of a quiver.
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1. Introduction

1.1. Let Λ be a hereditary artin algebra (we recall that an artin algebra Λ is

a k-algebra which is of finite length when considered as a k-module, where k is

a commutative artinian ring; also, a ring is hereditary provided submodules of

projective modules are projective). Since this means that the functors ExtiΛ vanish

for i ≥ 2, we write Ext(M,M ′) instead of Ext1
Λ(M,M ′). A typical example of a

hereditary artin algebra is the path algebra of a finite acyclic quiver. If k is an

algebraically closed field, any hereditary artin k-algebra is Morita-equivalent to the

path algebra of a finite acyclic quiver, but otherwise there are many other hereditary

artin k-algebras.

We will consider left Λ-modules of finite length and call them just modules. The

category of all modules will be denoted by mod Λ. As a general reference for the

representation theory of artin algebras, we refer to [6].

Given a module M , we denote by Λ(M) the support algebra of M ; this is the

factor algebra of Λ modulo the ideal generated by all idempotents e with eM = 0.

The support algebra Λ(M) is again a hereditary artin algebra (but usually not
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connected, even if Λ is connected). If M is a module, the set of simple modules

S which occur as composition factors of M will be called the support of M. The

module M is said to be sincere provided any simple module belongs to the support

of M (thus provided the only idempotent e ∈ Λ with eM = 0 is e = 0).

1.2. The subcategories of mod Λ which we will consider are full subcategories

which are closed under finite direct sums and direct summands. Given a class X
of modules, we denote by addX the class of modules which are direct summands

of finite direct sums of modules in X . If X = {X} for a single module X, we write

addX instead of add{X}. The modules X,X ′ are said to be Morita equivalent

provided addX = addX ′. A module is said to be multiplicity-free provided it is a

direct sum of pairwise non-isomorphic indecomposable modules. Multiplicity-free

modules which are Morita equivalent are actually isomorphic. On the other hand,

every module is Morita equivalent to a multiplicity-free module.

1.3. Support-tilting modules. Following earlier considerations of Brenner and

Butler, tilting modules have been defined in [9]. We say that a module M has

no self-extensions, provided Ext(M,M) = 0. In the present setting, a module

T without self-extensions is said to be a tilting module provided the number of

isomorphism classes of indecomposable direct summands of T is equal to the number

of isomorphism classes of simple Λ-modules, or, equivalently, provided ΛΛ is the

kernel of a surjective map in addT (or, again equivalently, provided an injective

cogenerator of mod Λ is the cokernel of an injective map in addT ). A module M

is said to be support-tilting provided M considered as a Λ(M)-module is a tilting

module.

Here is one of the sets we are interested in: the set of Morita equivalence classes

of support-tilting modules.

1.4. Thick subcategories with a cover. A subcategory A of mod Λ is called

a thick (or wide) subcategory provided it is closed under kernels, cokernels and

extensions. Note that a thick subcategory is an abelian category, and the inclusion

functor A → mod Λ is exact.

A module X is said to generate a module Y provided Y is a factor module of a

direct sum of copies of X. Dually, a module X cogenerates a module Y provided Y

is a submodule of a direct sum of copies of X (since the modules considered here

are of finite length, it is sufficient to look at direct sums of copies of X; for general

modules one would have to use products). Given a class X of modules, let G(X )

be the subcategory of all modules which are generated by modules in addX , and
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let H(X ) be the subcategory of all modules which are cogenerated by modules in

addX . If C is a subcategory and C ∈ C, then C is said to be a cover of C provided

C ⊆ G(C), and C is said to be a cocover of C provided C ⊆ H(C).

This is the second set of interest: the set of thick subcategories of mod Λ with

covers.

1.5. If Λ is the path algebra of a finite acyclic quiver, Ingalls and Thomas have

exhibited a bijection between the set of Morita equivalence classes of support-tilting

modules and the set of thick subcategories of mod Λ with covers. The aim of this

paper is to provide a proof of the Ingalls-Thomas bijection for arbitrary hereditary

artin algebras. Our proof draws attention to three additional sets which are in

bijection with the set of Morita equivalence classes of support-tilting modules: the

set of isomorphism classes of exceptional antichains in mod Λ, as well as the set

of isomorphism classes of normal or of conormal modules without self-extensions.

Here are the definitions.

1.6. Exceptional antichains. Given an additive category C, a brick in C is an ob-

ject whose endomorphism ring is a division ring. Bricks A1, A2 are said to be orthog-

onal, provided Hom(A1, A2) = 0 = Hom(A2, A1). An antichain A = {A1, . . . , At}
in C is a set of pairwise orthogonal bricks (antichains are called discrete subsets in [8]

and Hom-free subsets in [10], see also the remark 7.3). Antichains A = {A1, . . . , At}
and A′ = {A′

1, . . . , A
′
t′} are said to be isomorphic, provided the objects

⊕
iAi and⊕

j A
′
j are isomorphic.

Given an antichain A = {A1, . . . , At} in mod Λ, its Ext-quiver QA has as vertices

the elements Ai and there is an arrow Ai → Aj provided Ext(Ai, Aj) 6= 0 (one may

endow this quiver with a valuation, taking into account the size of the Ext-groups,

but this is not needed in the main parts of the paper). We say that an antichain A

is exceptional, provided its Ext-quiver QA is acyclic, thus provided we may index

the elements of A in such a way that Ext(Ai, Aj) = 0 for all pairs i ≥ j.

1.7. Normal (or conormal) modules without self-extensions. A module M

is said to be normal provided given a direct decomposition M = M ′⊕M ′′ such that

M ′ generates M ′′, we have M ′′ = 0. And M is conormal provided given a direct

decomposition M = M ′ ⊕M ′′ such that M ′ cogenerates M ′′, we have M ′′ = 0.

There is the following well-known fact (see, for example [19]): A sincere module

without self-extensions is faithful, thus any module M without self-extensions is a

faithful Λ(M)-module.
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1.8. Since its introduction, tilting theory concerns the study of suitable torsion

pairs in mod Λ. It seems worthwhile to include this aspect in our considerations.

Recall that a torsion class in mod Λ is a class of modules which is closed under

factor modules and extensions. A torsionfree class in mod Λ is a class of modules

which is closed under submodules and extensions.

It was the decisive idea of Ingalls and Thomas [11] to relate the support-tilting

modules to thick subcategories and to exhibit in this way a number of bijections.

They were dealing with path algebras of finite acyclic quivers, here we consider the

case of an arbitrary hereditary artin algebra.

Theorem 1.1. Let Λ be a hereditary artin algebra. There are bijections between

the following data:

(1) Isomorphism classes of exceptional antichains.

(2) Thick subcategories with a cover.

(3) Isomorphism classes of normal modules without self-extensions.

(4) Morita equivalence classes of support-tilting modules.

(5) Torsion classes with a cover.

If Λ is in addition representation-finite, then

(1′) All antichains are exceptional.

(2′) All thick subcategories have a cover.

(5′) All torsion classes have a cover.

We have separated the five sets in Theorem 1.1 into two groups, since there is a

great affinity between (1), (2) and (3) on the one hand, and (4) and (5) on the other

hand. The essential bijection concerns the sets (2) and (4). As we have mentioned,

such a bijection was exhibited by Ingalls-Thomas [11] in case Λ is the path algebra

of a finite acyclic quiver. A bijection between (4) and (5) has been known for a

long time. A bijection between (1) and (2) was exhibited already in 1976, see [18].

For a bijection between (1) and (3), one may refer to [7], as we will see below.

Whereas the sets of the form (1), (2) and (4) are preserved under duality, this is

not the case for the sets (3) and (5), thus, using duality, we obtain bijections with

two further sets: the set (6) of isomorphism classes of conormal modules without

self-extensions, and the set (7) of the torsionfree classes with a cocover.

As a supplement to the theorem, we have mentioned that for Λ representation-

finite, certain conditions are always satisfied. First of all, if Λ is representation-

finite, then any subcategory of mod Λ has both a cover and a cocover. And second,
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it is well-known that for an antichain A which is not exceptional, the class F(A) of

all modules with a filtration with factors in A contains infinitely many isomorphism

classes of indecomposable Λ-modules, thus Λ cannot be representation-finite.

1.9. Outline of the paper. In Sections 2 to 4, we consider the Ingalls-Thomas

bijections in detail, and provide the corresponding proofs. Section 5 is devoted

to duality. In Section 6, we deal with the support of the various modules and

subcategories. In Section 7, we discuss some possible generalizations and explain

in which way antichains in additive categories correspond to antichains in posets.

There is an appendix which concerns abelian categories with covers.

1.10. The case of Λ being representation-finite is studied in more detail in our

paper [15]. Such an artin algebra Λ is called a Dynkin algebra, since the underlying

graph of its valuated quiver is the disjoint union of Dynkin diagrams (and called

the type of Λ). There, we discuss the number of tilting and support-tilting modules

for these algebras. For the Dynkin cases A, we obtain the Catalan triangle, for the

cases B and C we obtain the increasing part of the Pascal triangle, and finally for

the cases D we obtain an expansion of the increasing part of the Lucas triangle.

For a further study of the Ingalls-Thomas bijections in general, we also may refer

to the forthcoming survey [21].

2. The bijections between (1), (2) and (3)

From (1) to (2): If A is an antichain, take F(A), this is the set of all Λ-modules

with a filtration with factors in A. The full subcategory F(A) is an abelian category

with exact embedding functor and obviously closed under extensions, thus it is a

thick subcategory of mod Λ. The simple objects in F(A) are just the elements

of A. The process of considering the elements of A as objects in F(A) is called

simplification in [18].

If the antichain A is exceptional, the category F(A) is known to be equivalent to

the module category of an artin algebra. For a proof, we may refer to [7]. Namely,

an exceptional antichain A is a standardizable set as considered in [7] and the proof

of Theorem 2 in [7] asserts that there is a quasi-hereditary artin algebra B such

that the subcategory F(A) is equivalent to the category of ∆-filtered B-modules.

Since the standardizable set A consists of pairwise orthogonal modules, the same

is true for the ∆-modules of B, and consequently the ∆-modules of B are just

the simple B-modules. This shows that the category of ∆-filtered B-modules is

the whole category modB. Thus we see that F(A) is equivalent to modB. The
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category modB has a progenerator, thus also F(A) has a progenerator, and every

progenerator of F(A) is a cover for F(A).

From (2) to (1): If A is a thick subcategory with a cover, let S(A) be the set of

simple objects in A, one from each isomorphism class. Then S(A) is an exceptional

antichain in mod Λ.

Namely, for Λ a hereditary artin algebra, a thick subcategory of mod Λ with a

cover is equivalent, as a category, to the module category mod Λ′ of a hereditary

artin algebra Λ′. This is well-known, but somewhat hidden in the literature. We

include an appendix in order to outline a proof, see Proposition 8.5. Such an

equivalence identifies the quiver QS(A) with the quiver of the artin algebra Λ′ (the

quiver of an artin algebra is just the Ext-quiver of the simple Λ′-modules). It is

well-known (and easy to see) that the quiver of a hereditary artin algebra is acyclic.

From (2) to (3): If A is a thick subcategory with a cover, let P be a minimal

projective generator of A. Then P is a normal module without self-extensions.

If we start with (1), say with an exceptional antichain A, and use [7] in order to

find an equivalence η : F(A)→ modB, the proof of Theorem 2 in [7] first constructs

indecomposable objects in F(A) which correspond under η to the indecomposable

projective B-modules. In this way, one constructs a minimal projective generator

for the abelian category F(A).

From (3) to (1). Let N be a normal module without self-extensions. Write

N =
⊕

iNi with indecomposable modules Ni. For any i, let ui : Ui → Ni be a

minimal right Ni-approximation of Ni, where Ni = add({Nj | j 6= i}. Since N

is normal, the map ui cannot be surjective. Since Λ is hereditary, it follows that

ui is injective and we denote by pi : Ni → ∆(i) the cokernel of ui. Since ui is

not surjective, we see that ∆(i) 6= 0. We claim that the modules ∆(i) are pairwise

orthogonal bricks. Let h : Nj → ∆(i) be a map, and form the induced exact

sequence

0 0

0 0

Ui M Nj

Ui Ni ∆(i)

..................................................................... ............ ..................................................................... ............ ..................................................................... ............ ..................................................................... ............

..................................................................... ............ ..................................................................... ............ ..................................................................... ............ ..................................................................... ............

.....................................

.....................................

............................................
.....
.......
.....

............................................
.....
.......
.....
h

Since Ui belongs to Ni and N has no self-extensions, we have Ext(Nj , Ui) = 0, thus

the upper sequence splits. It follows that there is a map h′ : Nj → Ni such that

h = pih
′. This has two consequences.

First of all, consider the case j = i. Let g be any endomorphism of ∆(i) and look

at the map h = gpi : Ni → ∆(i). We see that there is an endomorphism g′ : Ni → Ni
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with gpi = pig
′. Since all non-zero endomorphisms of Ni are invertible, the same

is true for ∆(i). In this way, we see that ∆(i) is a brick.

Second, let g : ∆(j) → ∆(i) be a homomorphism with j 6= i and consider

h = gpj : Nj → ∆(i). There is g′ : Nj → Ni such that gpj = pig
′. Since ui is a

left Ni-approximation, it follows that g′ = uig
′′ for some g′′ : Nj → Ui. But then

gpj = pig
′ = piuig

′′ = 0 and therefore g = 0.

In this way, we have shown that ∆ = {∆(i) | i} is an antichain. Using induction

on the length |Ni| of Ni, we see that Ni belongs to F(∆). Namely, if Ni is of length

1, then Ui = 0 since ∆(i) 6= 0. If |Ni| ≥ 2, then Ui is a direct sum of modules of

the form Nj with |Nj | < |Ni|, thus by induction Ui belongs to F(∆) and therefore

also Ni belongs to F(∆).

The surjective map pi : Ni → ∆(i) yields a surjective map Ext(N,Ni) →
Ext(N,∆(i)), thus Ext(N,∆(i)) = 0 for all i, and therefore Ext(N,M) = 0 for

all M ∈ F(∆). This shows that the objects Ni are indecomposable projective ob-

jects in F(∆); actually, Ni is the projective cover of ∆(i) in F(∆). As usual, one

sees now that Ext(∆(i),∆(j)) 6= 0 if and only if Nj is a direct summand of Ui. If

Nj is a direct summand of Ui, then, in particular, |Nj | < |Ni|. This shows that the

Ext-quiver of ∆ is acyclic.

Starting with an exceptional antichain A in (1), and going via (2) to (3), we

obtain a minimal projective generator P of F(A). Going from (3) to (1), we attach

to P the antichain ∆ whose elements are just the simple objects in F(A), but these

are just the elements of A. Conversely, starting in (3) say with a normal module N

without self-extensions, then going to (1), we attach to it the antichain ∆. Going

via (2) to (3), we form a minimal projective generator in F(∆). But N is up to

isomorphism the only minimal projective generator in F(∆).

3. The bijection between (3) and (4)

From (4) to (3): If T is a support-tilting module, let ν(T ) be its normalization.

This clearly is a normal module without self-extensions. Here we use that any

module M can be written in the form M = M ′ ⊕M ′′ where M ′ is normal and

generates M ′′ (this of course is trivial), and that such a decomposition is unique up

to isomorphism (this is not so obvious); the module M ′ is called a normalization

of the module M . The uniqueness was first shown by Roiter [22] and then also

by Auslander-Smalø [5], see also [20]. The uniqueness shows that the map ν going

from (4) to (3) is well-defined.
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Let us show that ν is injective when we are dealing with support-tilting modules.

We claim the following: if T, T ′ are support-tilting modules with ν(T ) = ν(T ′), then

T and T ′ are Morita equivalent. For the proof, we may replace Λ by the support

algebra Λ(T ) = Λ(T ′), thus we may assume that T, T ′ are tilting modules. Now,

T ′ is generated by ν(T ′) = ν(T ), thus by T . Since T generates T ′, it follows

from Ext(T, T ) = 0 that Ext(T, T ′) = 0. Similarly, T ′ generates T and therefore

Ext(T ′, T ) = 0. Altogether we see that Ext(T ⊕ T ′, T ⊕ T ′) = 0. Since T is a

tilting module, this implies that T ′ belongs to addT . Similarly, since T ′ is a tilting

module, we see that T belongs to addT ′.

In order to see that ν is also surjective, we need to find for any normal module

N without self-extensions a support-tilting module T with ν(T ) = N. This we will

show next.

From (3) to (4): If N is a module without self-extensions, there is a module Y ,

with the following properties: first, Y is generated by N , and second, N ⊕ Y is a

support-tilting module; we call Y a factor complement for N (this is the dual version

of forming a Bongartz complement for a sincere module without self-extensions, see

for example [19]).

Here is the construction of a factor complement Y of a module without self-

extensions (we follow [19]). Let Λ(N) be the support algebra for N and Z an

injective cogenerator for mod Λ(N). We claim that there exists an epimorphism

Y → Z with kernel in addN such that Ext(Y,N) = 0. Such an epimorphism may

be called s universal foundation of Z by N (or a universal extension of Z by N from

below): take exact sequences 0 → N → Yi → Z → 0 such that the corresponding

elements in Ext(Z,N) generate Ext(Z,N) as a k-module, and form the direct sum

of these sequences. Consider the induced sequence with respect to the diagonal

inclusion u : Z →
⊕

i Z, thus there is the following commutative diagram with

exact rows:

0 0

0 0

⊕
iN

⊕
i Yi

⊕
i Z

⊕
iN Y Z

..................................................................... ............ ..................................................................... ............ ..................................................................... ............ ..................................................................... ............

..................................................................... ............ ..................................................................... ............ ..................................................................... ............ ..................................................................... ............

.....................................

..................................... .......
.......
.......
.......
.......
..............
............

.......

.......

.......

.......

.......

..............

............

u
g

We obtain in this way an epimorphism g : Y → Z with kernel in addN . If we apply

Hom(−, N) to the lower exact sequence, we get a long exact sequence. Here is the

part which is essential for us:

Hom(
⊕

iN,N) Ext(Z,N) Ext(Y,N) Ext(
⊕

iN,N)
δ

....................................................... ............ ....................................................... ............ ....................................................... ............
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with connecting homomorphism δ. By construction, δ is surjective. Since N has

no self-extensions, the last term of the displayed sequence is zero. It follows that

Ext(Y,N) = 0. This shows that g : Y → Z is a universal foundation of Z by N .

In general, given a universal foundation g : Y → Z of Z by N , say with kernel

N ′, the module Y is generated by N . Namely, since N has no self-extensions, it is

a faithful Λ(N)-module, thus Z is generated by N . An epimorphism h : N t → Z

yields a commutative diagram with exact rows

0 0

0 0

N ′ Y Z

N ′ N ′′ N t

..................................................................... ............ ..................................................................... ............ ..................................................................... ............ ..................................................................... ............

..................................................................... ............ ..................................................................... ............ ..................................................................... ............ ..................................................................... ............

.....................................

..................................... .......
.......
.......
.......
.......
..............
............

.......

.......

.......

.......

.......

..............

............

h′ h

Since Ext(N,N) = 0, the lower sequence splits, thus N ′′ belongs to addN . Since

h is surjective, also h′ is surjective, thus Y is generated by N .

It remains to be seen that N ⊕ Y is support-tilting. Since N generates Y , it

follows from Ext(N ⊕ Y,N) = 0 that Ext(N ⊕ Y, Y ) = 0. In this way, we see that

N ⊕ Y has no self-extensions. The exact sequence 0 →
⊕

iN → Y → Z → 0

shows that Z is the cokernel of an injective map in add(N ⊕ Y ), thus N ⊕ Y is a

support-tilting module. This completes the proof that Y is a factor complement

for N .

If we choose a minimal direct summand φ(N) of Y such that N ⊕ φ(N) is a

support-tilting module, then φ(N) is uniquely determined by N and may be called

a minimal factor complement for N . Thus, going from (3) to (4), we may attach

to a normal module N without self-extension the multiplicity-free support-tilting

module N ⊕ φ(N).

Of course, if N is normal, then N is the normalization of N ⊕ Y . Thus starting

with a normal module N without self-extensions, then going from (3) to (4) and

back to (3), we obtain N . On the other hand, let T be support-tilting. From (4)

to (3) we take ν(T ). From (3) to (4), we add to ν(T ) a factor complement, say N ′.

But T and T ′ = ν(T ) ⊕ N ′ both are support-tilting modules with ν(T ) = ν(T ′)

and generated by this module ν(T ), thus they are Morita equivalent.

4. The bijection between (4) and (5)

First, we show the following: If T is a support-tilting module and G = G(T ),

then addT is the class of the Ext-projective modules in G. Tilting theory asserts

that G is the class of Λ(T )-modules M such that Ext(T,M) = 0. Let M be in G
and g : T ′ → M be a right T -approximation of M . Then g is surjective and the

kernel M ′ of g satisfies Ext(T,M ′) = 0, thus belongs to G. If M is Ext-projective,
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then the exact sequence 0 → M ′ → T ′ → M → 0 splits, thus M is in addT. This

shows that the Ext-projective modules in G are just the modules in addT.

From (4) to (5): If T is a module without self-extensions, let G(T ) be the class

of modules generated by T . Then it is well-known (and easy to see) that T is a

torsion class. Of course, T is a cover for G(T ).

From (5) to (4): If C is a torsion class with a cover C, then we attach to it a

module T such that addT is the class of Ext-projective modules in G. In order to

do so, we need to know that the class E of Ext-projective modules in C is finite, say

E = addT for some module T . We also have to show that T is support-tilting.

Along with C, its normalization ν(C) is also a cover. A normal cover of a torsion

class has no self-extension (see Proposition 1 of [20]). Let B be a factor complement

for ν(C). As we have seen, T = ν(C) ⊕ B is a support-tilting module. Since B is

generated by ν(C), we have G(T ) = G(ν(C)) = G(C) = C. But we have shown

already that addT is the class of Ext-projective modules in G(T ).

From (4) to (5) to (4): Let us start with a support-tilting module T and attach to

it G = G(T ). As we have seen, the class of Ext-projectives in G is addT . We choose

T ′ with addT ′ = addT . But this just means that T, T ′ are Morita equivalent.

From (5) to (4) to (5). We start with a torsion class C with a cover, we choose

a support-tilting module T with C = G(T ), thus we are back at C.

5. Duality

By definition, given an artin algebra Λ, there is a commutative artinian ring k

such that Λ is a k-algebra and is of finite length when considered as a k-module. If Λ

is an artin algebra, also the opposite algebra Λop is an artin algebra. If we denote by

E a minimal injective cogenerator for mod k, the functor D = Homk(−, E) provides

an equivalence between mod Λ and (mod Λop)op. We can use this duality in order

to exhibit further bijections.

Using duality, the sets (1), (2) and (4) are preserved. Of course, the dual concept

of a thick subcategory with a cover is a thick subcategory with a cocover. An abelian

k-category with finitely many simple objects and such that the Hom and Ext-groups

are k-modules of finite length, has a cover if and only if it has a cocover.

Dualizing (3) we get:

(6) The isomorphism classes of conormal modules without self-extensions.

Dualizing (5) we get:

(7) The torsionfree classes with a cocover.
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The sets defined in (6) and (7) correspond bijectively to the sets (1),. . . ,(5).

Remark. The bijections between the set (2) of thick subcategories A and the

sets (1), (3) and (6) of isomorphism classes of suitable modules can be reformulated

as follows: In an abelian category we may look at the semi-simple, the projective

and the injective objects: the set of simple objects in A is an antichain in mod Λ,

a minimal projective generator in A is a normal module without self-extensions, a

minimal injective cogenerator is a conormal module without self-extensions. These

are the procedures to obtain from a thick subcategory the corresponding antichain,

as well as a normal or conormal module without self-extensions.

Conversely, let us start with (1), (3) or (6). It has been mentioned already

that starting with an antichain A, we take the full subcategory F(A) of all modules

with a filtration with factors in A. Starting with a normal module P without self-

extensions, the corresponding thick subcategory A consists of all modules which arise

as the cokernel of a map in addP (in this way, we specify projective presentations of

the objects in A). Dually, starting with a conormal module I without self-extensions,

the corresponding thick subcategory A consists of all modules which arise as the

kernel of a map in add I (in this way, we specify injective copresentations of the

objects in A).

6. The support of a module, sincere modules and subcategories

Proposition 6.1. The bijections which we have constructed preserve the support.

Proof. This follows directly from the constrcutions. �

Specializing the Ingalls-Thomas bijections to sincere modules, it follows from the

proposition that we get bijections between:

(1) Isomorphism classes of exceptional sincere antichains.

(2) Thick subcategories with a sincere generator.

(3) Isomorphism classes of normal sincere modules without self-extensions.

(4) Morita equivalence classes of tilting modules.

(5) Torsion classes with a sincere generator.

(6) Isomorphism classes of conormal sincere modules without self-extensions.

(7) Torsionfree classes with a sincere cogenerator.

Of course, conversely this special case implies the general case.
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7. Final remarks

7.1. The aim of our discussion was to extend results of Ingalls and Thomas which

were established for path algebras of finite acyclic quivers to arbitrary hereditary

artin algebras. Experts may not be surprised that results concerning path algebras

of finite acyclic quivers can be extended in this way: after all, there is a general

feeling that such generalizations are always possible. But the paper [17] may serve

as a warning. The paper provides a description of the cofinite quotient-closed

subcategories of mod Λ, where Λ is the path algebra of a finite acyclic quiver. In

Section 9 of [17], the author discuss the problem of extending the result to finite-

dimensional hereditary k-algebras, but they are able to provide a solution only in

the case of k being a finite field.

On the other hand, one may ask whether the setting may be further enlarged to

deal with hereditary artinian or even hereditary semi-primary rings, and not just

with hereditary artin algebras. Note that our considerations use duality arguments

and finiteness conditions which rely on the artin algebra assumption.

7.2. A further possible generalization has been stressed by the referee: to drop the

condition on Λ to be hereditary, thus to deal with an arbitrary artin algebra. For

any finite-dimensional k-algebra Λ, with k an algebraically closed field, the paper [2]

by Adachi, Iyama and Reiten provides a bijection between support τ -tilting modules

in mod Λ and torsion classes with covers, extending in this way the corresponding

Ingalls-Thomas bijection (for a hereditary artin algebra, the τ -tilting modules are

just the tilting modules). Also, let us remark that the relationship between torsion

classes and thick subcategories in mod Λ has been discussed by Marks and Stovicek

[12].

7.3. Our presentation of the Ingalls-Thomas bijections is centered around the

notion of antichains in additive categories. Let us motivate the definition. Given

a poset P , a chain in P is a subset of pairwise comparable elements, whereas an

antichain in P is a subset of pairwise incomparable elements. Now consider the

linearization kP of P , where k is a field: this is an additive k-category whose

indecomposable objects are the elements of P such that HomkP (x, y) = k provided

x ≤ y in P and HomkP (x, y) = 0 otherwise, such that the composition of maps

in kP is given by the multiplication in k, and, finally, such that any object in kP

is a finite direct sum of indecomposable objects. Of course, a subset A of P is an

antichain in P if and only if A (considered as a set of objects in kP ) consists of

pairwise orthogonal bricks (thus, is an antichain in the additive category kP ). As we
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see, antichains in additive categories have to be considered as a direct generalization

of antichains in posets.

The reader should be aware that starting with a Dynkin diagram ∆ and its set

Φ+(∆) of positive roots, several kinds of (different, but related) antichains have to

be distinguished: First of all, Φ+(∆) is in an intrinsic way a poset, called the root

poset of type ∆, and we may consider the set A(∆) of antichains in this root poset

Φ+(∆). Second, choosing an orientation Ω of the Dynkin diagram (or, equivalently,

a Coxeter element in the corresponding Weyl group), we may identify the elements

of Φ+(∆) with the indecomposable Λ-modules, where Λ is a hereditary artin algebra

of type ∆, thus with the indecomposable objects in the additive category mod Λ.

The set of antichains in mod Λ only depends on ∆ and Ω (and not on the choice of

Λ), thus we may denote it by A(∆,Ω). It is known for a long time that the set A(∆)

of antichains in the root poset Φ+(∆) and the set A(∆,Ω) of antichains in mod Λ

have the same enumeration (for a uniform proof, see [4]), but a fully satisfactory

explanation is still missing. In the case of the quiver An with linear orientation,

this concerns the quite obvious bijection between non-nesting and non-crossing

partitions. Note that if Ω and Ω′ are orientations of ∆, it is easy to construct a

natural bijection between A(∆,Ω) and A(∆,Ω′). For a detailed discussion of the

sets A(∆) and A(∆,Ω), we may refer to [21].

8. Appendix. Abelian categories with projective covers.

We have used in Section 2 that given a hereditary artin algebra Λ, a thick

subcategory A of mod Λ with a cover is equivalent to mod Λ′ for some hereditary

artin algebra Λ′. This is a well-known fact, however the proof seems to be somewhat

hidden in the literature. Here we outline the main ingredients for a proof.

We start with a more general setting and require some additional definitions. If

R is a ring, let us denote by fp(R) the category of all finitely presented R-modules

(recall that an R-module M is finitely presented provided it is the cokernel of a

map RR
s → RR

t for some natural numbers s, t).

Let B be an arbitrary abelian category. Given objects A,B in B, we say that B

is A-static provided there is an exact sequence of the form

As → At → B → 0

which remains exact when we apply Hom(A,−). (It is easy to see that this condition

is equivalent to the existence of an exact sequence A′′ → A′ → B → 0 with

A′, A′′ ∈ addA such that the sequence remains exact when we apply Hom(A,−);

thus this concept corresponds to the usual concept of A-static modules as considered
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in [1,3,13,14,23], see also [16].) As an example, given a ring R, an R-module M is

RR-static if and only if it is finitely presented, thus fp(R) = stat(RR).

Proposition 8.1. Let B be an abelian category. Let A be an object in B and let

R = End(A)op. Then stat(A) is equivalent, as a category, to fp(R).

Proof. See Lemma 2 of [3] or Lemma 3.1, Lemma 3.2 and Theorem 3.3 of [1]. �

An object C in B will be said to be a cover provided every object B of B is

a factor object of some finite direct sum of copies of C (since now we consider

arbitrary abelian categories, we should stress that we ask for a finite direct sum).

Proposition 8.2. Let C be an object in the abelian category B and assume that C

is projective and a cover. Let R = End(C)op. Then B is equivalent, as a category,

to fp(R).

Proof. This is an immediate consequence of 8.1, since for C a projective cover,

any object of B is C-static, thus stat(C) = B. Namely, if C is a cover, and B is an

object in B, there is an exact sequence of the form

Cs → Ct → B → 0.

If C is projective, then this sequence stays exact when we apply Hom(C,−). �

Proposition 8.3. Let Λ be an artin algebra. A thick subcategory of mod Λ with a

cover D has a cover C which is, in addition, projective, namely the normalization

C of D.

Proof. Let C be a normalization of D (see Section 3). Since D is a cover of mod Λ,

also C is a cover for mod Λ.

Let X be an indecomposable direct summand of C, say C = X ⊕X ′. In order

to show that X is projective, we show that any epimorphism ε : B → X in mod Λ

splits. We will use that the endomorphism ring of X is a local ring with nilpotent

radical.

Since C is a cover of mod Λ, there is an epimorphism Ct → B for some natural

number t, thus there is an epimorphism (φ1, . . . , φt, ψ) : Xt ⊕ Y → B with Y =

(X ′)t. We compose it with ε and obtain an epimorphism

(εφ1, . . . , εφt, εψ) : Xt ⊕ Y → X.

According to Lemma 1 (b) of [20], either one of the maps εφi is an automorphism

of X or else εψ : Y → X is an epimorphism. But if εψ is an epimorphism, then X ′

generates X, in contrast to the fact that C is normal. Thus we see that there is an
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index i such that εφi is an automorphism of X, and this implies that ε is a split

epimorphism. �

Proposition 8.4. If Λ is an artin algebra, a thick subcategory of mod Λ with a cover

is equivalent to the module category mod Λ′, where Λ′ is again an artin algebra.

Proof. Let A be a thick subcategory of mod Λ with a cover D. Let C be the nor-

malization of D. According to Proposition 8.3, C is also a cover and, in addition,

projective. Let Λ′ = End(C)op, this is again an artin algebra. According to Propo-

sition 8.2, A is equivalent to fp(Λ′). But for an artin algebra R, fp(R) = modR. �

Proposition 8.5. If Λ is a hereditary artin algebra, a thick subcategory of mod Λ

with a cover is equivalent to the module category mod Λ′, where Λ′ is again a hered-

itary artin algebra.

Proof. Let us say that an abelian category B is hereditary provided Ext2
B vanishes,

thus provided Ext1
B(B,−) is a right exact functor for all objects B in B. Clearly,

the category mod Λ for an artin algebra Λ is hereditary as a category if and only if

Λ is hereditary as a ring. For a thick subcategory A of an abelian category B, one

has Ext1
A(A,A′) = Ext1

B(A,A′) for all objects A,A′ in A. Thus, if B is hereditary,

also A is hereditary.

Altogether we see: If Λ is a hereditary artin algebra, mod Λ is hereditary as a

category, thus any thick subcategory A of mod Λ is hereditary. But if A has a

cover, then it is equivalent to mod Λ′ for some hereditary artin algebra Λ′. Since

mod Λ′ is a hereditary category, Λ′ is a hereditary ring. �

Remark. If Λ,Λ′ are artin algebras such that mod Λ′ is equivalent to a thick

subcategory of mod Λ, and Λ has global dimension at least 2, then Λ′ may have

arbitrary large global dimension. Here is an example. Consider the following quiver

Q (with three vertices and three arrows) and let Λ be the path algebra of Q modulo

the ideal generated by αβ.

1

2

3

α β

γ

.........................................................................................................
...

............ ..............
..............

..............
..............

..............
..............

....................................

............................................................................................................................................................................................................................................................

. . . .
. . . . . . . . .

The algebra Λ has global dimension equal to 2. Let A be the smallest thick sub-

category of mod Λ containing the simple representation S(2) and the 2-dimensional

indecomposable representation with composition factors S(1) and S(3). Then A
is equivalent to the module category mod Λ′ of an artin algebra of infinite global

dimension.
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