MAPPINGS BETWEEN LATTICES OF RADICAL SUBMODULES

Hosein Fazaeli Moghimi and Javad Bagheri Harehdashti
Received: 29 March 2015; Revised: 12 December 2015
Communicated by A. Çiğdem Özcan

Abstract

Let R be a ring and $\mathcal{R}(M)$ be the lattice of radical submodules of an R-module M. Although the mapping $\rho: \mathcal{R}(R) \rightarrow \mathcal{R}(M)$ defined by $\rho(I)=\operatorname{rad}(I M)$ is a lattice homomorphism, the mapping $\sigma: \mathcal{R}(M) \rightarrow \mathcal{R}(R)$ defined by $\sigma(N)=(N: M)$ is not necessarily so. In this paper, we examine the properties of σ, in particular considering when it is a homomorphism. We prove that a finitely generated R-module M is a multiplication module if and only if σ is a homomorphism. In particular, a finitely generated module M over a domain R is a faithful multiplication module if and only if σ is an isomorphism.

Mathematics Subject Classification (2010): 13C13, 13C99, 06B99
Keywords: σ-modules, multiplication modules, primeful modules

1. Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. Let R be a ring. For a submodule N of an R-module $M,(N: M)$ is the ideal $\{r \in R \mid r M \subseteq N\}$ of R. As usual, M is called faithful when $(0: M)=0$.

Let M be an R-module and $\mathcal{L}_{R}(M)$ denote the lattice of submodules of M with respect to the following definitions:

$$
N \vee L=N+L \text { and } N \wedge L=N \cap L,
$$

for all submodules N and L of M. In particular, we shall denote the lattice $\mathcal{L}_{R}(R)$ by $\mathcal{L}(R)$. Now consider the mapping $\lambda: \mathcal{L}(R) \rightarrow \mathcal{L}_{R}(M)$ given by $\lambda(I)=I M$, and the mapping $\mu: \mathcal{L}_{R}(M) \rightarrow \mathcal{L}(R)$ given by $\mu(N)=(N: M)$. It is easily seen that $\lambda(I \vee J)=\lambda(I) \vee \lambda(J)$ and $\mu(N \wedge L)=\mu(N) \wedge \mu(L)$. An R-module M is called a λ module (resp. μ-module) if $\lambda(I \wedge J)=\lambda(I) \wedge \lambda(J)($ resp. $\mu(N+L)=\mu(N)+\mu(L))$. In other words, λ (resp. μ) is a lattice homomorphism. These notions have been introduced by P. F. Smith in [16]; he studied conditions under which λ and μ are homomorphisms and, in particular, isomorphisms. By [16, Lemmas 1.3 and 1.4], λ is an isomorphism if and only if μ is an isomorphism and in this case λ and μ are inverses of each other. The module M is called multiplication whenever λ is
a surjection, i.e., for every submodule N of M there exists an ideal I of R such that $N=I M$. In this case, we can take $I=(N: M)$ (see for example [2,4]). It is shown that if M is a faithful multiplication R-module, then the mapping λ is a homomorphism [16, Theorem 2.12]. In particular, λ is an isomorphism if and only if M is a finitely generated faithful multiplication module.

A proper submodule N of M is called a prime submodule if for $r \in R, m \in M$, $r m \in N$ implies that $r \in(N: M)$ or $m \in N$. Prime submodules have been introduced by J. Dauns in [3], and then this class of submodules has been extensively studied by several authors (see, for example, [4,7,13]). For a proper submodule N of an R-module M the radical of N, denoted by $\operatorname{rad} N$, is the intersection of all prime submodules of M containing N or, in case there are no such prime submodules, $\operatorname{rad} N$ is M (see, for example, $[5,8,9,10,11,14]$). A submodule N of M is called a radical submodule if $\operatorname{rad} N=N$. For an ideal I of a ring R, we assume throughout that \sqrt{I} denotes the radical of I. It is easily seen that the set of radical submodules of M with the following operations

$$
N \vee L=\operatorname{rad}(N+L) \text { and } N \wedge L=N \cap L
$$

forms a lattice. We denote this lattice by $\mathcal{R}(M)$. In general $\mathcal{R}(M)$ is not a sublattice of $\mathcal{L}_{R}(M)$. For example, let K be a field and $R=K[X, Y]$ the polynomial ring in indeterminates X, Y. Moreover, let $I=(X)$ and $J=\left(X-Y^{2}\right)$. It is easily seen that $I, J \in \mathcal{R}(R)$, but $I+J \notin \mathcal{R}(R)$ since $\sqrt{I+J}=\sqrt{\left(X, Y^{2}\right)}=(X, Y)$.

Now consider the mappings $\rho: \mathcal{R}(R) \rightarrow \mathcal{R}(M)$ defined by $\rho(I)=\operatorname{rad}(\lambda(I))=$ $\operatorname{rad}(I M)$ and $\sigma: \mathcal{R}(M) \rightarrow \mathcal{R}(R)$ defined by $\sigma(N)=\mu(N)=(N: M)$. It is shown that ρ is always a homomorphism, but σ is not so (see Example 2.3). We say that an R-module M is a σ-module if σ is a homomorphism. In this article, we show that several properties of λ and μ remain valid for ρ and σ. In Theorem 2.11, it is proved that a finitely generated R-module M is a σ-module if and only if M is a multiplication module and so if and only if M is a μ-module. It is also proved that the property of being a σ-module is a local property for finitely generated modules (Corollary 2.19).

An R-module M is said to be primeful if $M=(0)$ or $M \neq(0)$ and for each prime ideal P of R containing ($0: M$), there exists a prime submodule N of M such that $(N: M)=P$. For example, finitely generated modules and projective modules over integral domains are primeful (see [10, Theorem 2.2 and Corollary 4.3]). If M is a primeful faithful R-module, then ρ is an injection and hence σ is a surjection (Corollary 3.6). If M is a primeful module over a domain R, then ρ is an isomorphism if and only if σ is an isomorphism if and only if λ is an isomorphism if
and only if μ is an isomorphism if and only if M is a faithful multiplication module (Theorem 3.8).

2. The mapping σ

We begin with some properties of radical of submodules which are frequently used in the rest of paper.

Lemma 2.1. (See [8, Proposition 2]) Let N and L be submodules of an R-module M. Then
(1) $N \subseteq \operatorname{rad} N$,
(2) $\operatorname{rad}(\operatorname{rad} N)=\operatorname{rad} N$,
(3) $\operatorname{rad}(N \cap L) \subseteq \operatorname{rad} N \cap \operatorname{rad} L$,
(4) $\operatorname{rad}(N+L)=\operatorname{rad}(\operatorname{rad} N+\operatorname{rad} L)$,
(5) $\operatorname{rad}(I M)=\operatorname{rad}(\sqrt{I} M)$,
(6) $\sqrt{(N: M)} \subseteq(\operatorname{rad} N: M)$.

In [16], it is seen that λ is not a homomorphism in general. In contrast, ρ is a homomorphism because of the following:

$$
\begin{aligned}
\rho(I \vee J) & =\rho(\sqrt{I+J})=\operatorname{rad}(\sqrt{I+J} M)=\operatorname{rad}((I+J) M) \\
& =\operatorname{rad}(I M+J M)=\operatorname{rad}(\operatorname{rad}(I M)+\operatorname{rad}(J M)) \\
& =\operatorname{rad}(I M) \vee \operatorname{rad}(J M)=\rho(I) \vee \rho(J) .
\end{aligned}
$$

Using [9, Corollary 2 to Proposition 1], we have

$$
\operatorname{rad}((I \cap J) M) \subseteq \operatorname{rad}(I M) \cap \operatorname{rad}(J M)=\operatorname{rad}(I J M) \subseteq \operatorname{rad}((I \cap J) M)
$$

Therefore,

$$
\rho(I \wedge J)=\rho(I \cap J)=\operatorname{rad}((I \cap J) M)=\operatorname{rad}(I M) \cap \operatorname{rad}(J M)=\rho(I) \wedge \rho(J)
$$

Here, it is worth noting that σ is well-defined. In fact, $\sqrt{(\operatorname{rad} N: M)} \subseteq(\operatorname{rad}(\operatorname{rad} N)$: $M)=(\operatorname{rad} N: M)$. Also clearly $(\operatorname{rad} N: M) \subseteq \sqrt{(\operatorname{rad} N: M)}$. Thus $\sqrt{(\operatorname{rad} N: M)}=$ $(\operatorname{rad} N: M)$. Therefore if N is a radical submodule, then $\sqrt{(N: M)}=(N: M)$. This means that $(N: M)$ is a radical ideal and so σ is well-defined.

Recall that M is a σ-module in case the mapping σ is a homomorphism.
Lemma 2.2. Let R be a ring and M an R-module. Then M is a σ-module if and only if $(\operatorname{rad}(N+L): M)=\sqrt{(N: M)+(L: M)}$ for all radical submodules N and L of M.

Proof. It is clear that $\sigma(N \wedge L)=(N \cap L: M)=(N: M) \cap(L: M)=\sigma(N) \wedge \sigma(L)$ for all radical submodules N and L of M. Thus σ is a homomorphism if and only if $\sigma(N \vee L)=\sigma(N) \vee \sigma(L)$ if and only if $(\operatorname{rad}(N+L): M)=\sqrt{(N: M)+(L: M)}$ for all radical submodules N and L of M.

Let M be an R-module and N a proper submodule of M. Let

$$
E_{M}(N)=\left\{r x: r \in R \text { and } x \in M \text { such that } r^{n} x \in N \text { for some } n \in \mathbb{N}\right\} .
$$

The envelop submodule of N in M is defined to be the submodule of M generated by $E_{M}(N)$. An R-module M is said to satisfy the radical formula if $\operatorname{rad} N=R E_{M}(N)$, for each submodule N of M. Now by using the above lemma, we give an example which shows σ need not be a homomorphism.

Example 2.3. Let $R=\mathbb{Z}$ and $M=\mathbb{Z} \oplus \mathbb{Z}$. Let $N=\mathbb{Z}(2,0)$ and $L=\mathbb{Z}(0,2)$. It is easily seen that $E_{M}(\mathbb{Z}(2,0))=\mathbb{Z}(2,0)$ and $E_{M}(\mathbb{Z}(0,2))=\mathbb{Z}(0,2)$. Since, by $[5$, Corollary 12], M satisfies the radical formula, we have $\operatorname{rad} \mathbb{Z}(2,0)=\mathbb{Z}(2,0)$ and $\operatorname{rad} \mathbb{Z}(0,2)=\mathbb{Z}(0,2)$. Thus N and L are radical submodules of M. Also clearly $(N: M)=(L: M)=0$. Hence $\sqrt{(N: M)+(L: M)}=0$. On the other hand, let $r \in(N+L: M)$. Then $r(1,0) \in N+L=\mathbb{Z}(2,0)+\mathbb{Z}(0,2)$ and hence there exist $r_{1}, r_{2} \in R$ such that $r(1,0)=(r, 0)=r_{1}(2,0)+r_{2}(0,2)=\left(2 r_{1}, 2 r_{2}\right)$. Thus $r=2 r_{1}$. This shows that $(N+L: M) \subseteq 2 \mathbb{Z}$. The reverse inclusion is obvious, and thus $(N+L: M)=2 \mathbb{Z}$. Hence, by [7, Proposition 2], $N+L$ is a prime submodule of M and so $\operatorname{rad}(N+L)=N+L$. Thus we have $(\operatorname{rad}(N+L): M)=2 \mathbb{Z} \neq(0)=$ $\sqrt{(N: M)+(L: M)}$.

Corollary 2.4. Every finitely generated μ-module is a σ-module.
Proof. Let M be a finitely generated μ-module over a ring R. By $[12$, Theorem 4.4],

$$
(\operatorname{rad}(N+L): M)=\sqrt{(N+L: M)}=\sqrt{(N: M)+(L: M)},
$$

for all radical submodules N and L of M. Thus M is a σ-module by Lemma 2.2.
In Theorem 2.11, we will show that a finitely generated module is a σ-module if and only if M is a μ-module. Note that this fact is not true in general. See the following example.

Example 2.5. Let $M=\mathbb{Z}\left(p^{\infty}\right)$, the Prüfer p-group. Since M is a primeless \mathbb{Z} module, by [13, Proposition 1.7] $M^{\prime}=M \oplus M$ is a primeless \mathbb{Z}-module. Hence M^{\prime} is a σ-module, whereas it is not a μ-module by [16, Corollary 3.3].

Theorem 2.6. Let M be a σ-module over a ring R and let L, N be submodules of M.
(1) If $M=\operatorname{rad}(N+L)$ (or in particular $M=N+L$), then there exists $a \in R$ such that $a M \subseteq \operatorname{rad} N$ and $(1-a) M \subseteq \operatorname{rad} L$.
(2) If M is a finitely generated module such that $M=N+L$, then there exists $a \in R$ such that $a M \subseteq N$ and $(1-a) M \subseteq L$.

Proof. (1) By Lemma 2.2, $R=(M: M)=(\operatorname{rad}(N+L): M)=(\operatorname{rad}(\operatorname{rad} N+$ $\operatorname{rad} L): M)=\sqrt{(\operatorname{rad} N: M)+(\operatorname{rad} L: M)}$. Thus $R=(\operatorname{rad} N: M)+(\operatorname{rad} L: M)$. Now the desired result is clear.
(2) Since $M=N+L=\operatorname{rad}(N+L)$, by (1) we have $R=(\operatorname{rad} N: M)+(\operatorname{rad} L$: $M)$. Since M is finitely generated, by [12, Theorem 4.4], $R=\sqrt{(N: M)}+\sqrt{(L: M)}$ and hence $R=(N: M)+(L: M)$. Now, clearly the result follows.

Using the previous theorem we are able to show that there is no integral domain, say R, such that any R-module is a σ-module. We will show that this statement is also true for each arbitrary ring (see Corollary 2.13).

Corollary 2.7. Let R be an integral domain and P a non-zero prime ideal. Then the R-module $M=P \oplus P$ is not a σ-module.

Proof. Suppose that $M=P \oplus P$ is a σ-module. By Theorem 2.6 (1), there exists $a \in R$ such that $a(P \oplus P) \subseteq \operatorname{rad}(P \oplus 0)=\operatorname{rad} P \oplus \operatorname{rad} 0=P \oplus 0$ and $(1-a)(P \oplus P) \subseteq \operatorname{rad}(0 \oplus P)=\operatorname{rad} 0 \oplus \operatorname{rad} P=0 \oplus P$, so that $a P=0$ and $(1-a) P=0$ giving $P=0$, a contradiction.

Corollary 2.8. Let M be a σ-module over a ring R. Then
(1) For each maximal ideal P of R either $M=P M$ or there exist $m \in M$ and $p \in P$ such that $(1-p) M \subseteq \operatorname{rad}(R m)$.
(2) If M is a finitely generated module, then for each maximal ideal P of R there exist $m \in M$ and $p \in P$ such that $(1-p) M \subseteq R m$.

Proof. Let P be a maximal ideal of R such that $M \neq P M$. We know that $M / P M$ is a non-zero semisimple module and hence contains a maximal submodule. Assume that L be a maximal submodule of M such that $P M \subseteq L$ and $m \in M \backslash L$.
(1) By Theorem 2.6 (1), there exists an element $p \in R$ such that $p M \subseteq L$ and $(1-p) M \subseteq \operatorname{rad}(R m)$. If $p \notin P$, then $R=P+R p$ and hence $M=P M+p M \subseteq L$, a contradiction. Thus $p \in P$, as required.
(2) By [16, Corollary 3.4].

Lemma 2.9. (See [4, Theorem 1.2]) Let R be a ring. Then an R-module M is a multiplication module if and only if for each maximal ideal P of R either
(1) for each $m \in M$ there exists $p \in P$ such that $(1-p) m=0$, or
(2) there exist $x \in M$ and $q \in P$ such that $(1-q) M \subseteq R x$.

Lemma 2.10. (See [16, Corollary 2.11]) Let R be any ring. Then an R-module M is a finitely generated multiplication module if and only if for each maximal ideal P of R there exist $m \in M, p \in P$ such that $(1-p) M \subseteq R m$.

Theorem 2.11. Let R be any ring and M a finitely generated R-module. Then the following are equivalent.
(1) M is a σ-module.
(2) M is a multiplication module.
(3) M is a μ-module.

Proof. $(1) \Rightarrow(2)$ Let M be a σ-module. Then by Corollary 2.8 and Lemma 2.10, M is a multiplication module.
$(2) \Rightarrow(1)$ Let M be a multiplication R-module. Since M is finitely generated, by [15, Exercise 9.23], $\sqrt{(I M: M)}=\sqrt{I+(0: M)}(*)$ for all ideals I of R. Now, let N and L be submodules of M. Consider the finitely generated R-module M / L and the ideal $(N: M)$ instead of M and I, in (*), respectively. Then

$$
\begin{aligned}
\sqrt{(N: M)+(L: M)} & =\sqrt{(N: M)+(0: M / L)} \\
& =\sqrt{((N: M)(M / L): M / L)} \\
& =\sqrt{(((N: M) M+L) / L: M / L)} \\
& =\sqrt{((N: M) M+L: M)} \\
& =\sqrt{(N+L: M)}=(\operatorname{rad}(N+L): M) .
\end{aligned}
$$

Thus M is a σ-module.
$(2) \Leftrightarrow(3)$ follows from [16, Theorem 3.8].
Corollary 2.12. Let M be a finitely generated R-module. Then the following statements are equivalent.
(1) $(N+L: M)=(N: M)+(L: M)$ for all submodules N and L of M.
(2) $(\operatorname{rad}(N+L): M)=\sqrt{(N: M)+(L: M)}$ for all radical submodules N and L of M.

Proof. It is clear, by Theorem 2.11 and definitions of a σ-module and a μ-module.

Corollary 2.13. Let R be any (non-zero) ring and let M be a non-zero finitely generated R-module. Then the R-module $M \oplus M$ is not a σ-module.

Proof. Use Theorem 2.11 and [16, Corollary 3.3].
Corollary 2.14. Let M be an R-module. Then the following statements are equivalent.
(1) Every finitely generated submodule of M is a σ-module.
(2) Every finitely generated submodule of M is a μ-module.
(3) $R=(R x: R y)+(R y: R x)$ for all elements $x, y \in M$.

Proof. (1) \Rightarrow (3) Let $x, y \in M$. Then

$$
\begin{aligned}
R=(\operatorname{rad}(R x+R y): R x+R y) & =\sqrt{(R x: R x+R y)+(R y: R x+R y)} \\
& =\sqrt{(R x: R y)+(R y: R x)}
\end{aligned}
$$

Thus $R=(R x: R y)+(R y: R x)$.
$(3) \Rightarrow(2)$ is obtained from [16, Corollary 3.9].
$(2) \Rightarrow(1)$ Clear by Theorem 2.11 .
A ring R is called arithmetical if $I \cap(J+K)=(I \cap J)+(I \cap K)$ for any ideals I, J and K of R.

Corollary 2.15. Let R be a ring. Then the following statements are equivalent.
(1) R is an arithmetical ring.
(2) Every finitely generated ideal of R is a σ-module.

Proof. By Corollary 2.14 and [6, Exercise 18, p. 150].
Remark 2.16. Let R be a domain with the field of fractions K. A non-zero ideal I of R is called invertible provided $I^{-1} I=R$ where $I^{-1}=\{k \in K: k I \subseteq R\}$. The domain R is called Prüfer when every non-zero finitely generated ideal of R is invertible. By [6, Theorem 6.6 and Exercise 18, p 150], a domain R is Prüfer if and only if R is arithmetical. Thus, by Corollary 2.15, a domain R is Prüfer if and only if every finitely generated ideal of R is a σ-module. Using this fact, we conclude that a submodule of a σ-module need not be a σ-module.

Corollary 2.17. Let M be a module over a local ring R. Then the following are equivalent.
(1) M is a chain module.
(2) Every finitely generated submodule of M is a σ-module.
(3) Every finitely generated submodule of M is cyclic.

In particular, if R is a local domain, then R is a valuation domain if and only if every finitely generated ideal of R is a σ-module.

Proof. The result follows by combining [16, Proposition 3.15] and Theorem 2.11.

In the following R_{S} and M_{S} denote the ring of fractions and the module of fractions, respectively.

Lemma 2.18. Let R be a ring and M be a finitely generated μ-module (σ-module) over R. Also, let S be a multiplicatively closed subset of R. Then M_{S} is a μ-module (σ-module) over R_{S}.

Proof. Let M be a μ-module over R. Let N_{S} and L_{S} be submodules of M_{S}. Then

$$
\begin{aligned}
\left(N_{S}+L_{S}: M_{S}\right) & \left.=\left((N+L)_{S}: M_{S}\right)=((N+L): M)\right)_{S} \\
& =((N: M)+(L: M))_{S}=(N: M)_{S}+(L: M)_{S} \\
& =\left(N_{S}: M_{S}\right)+\left(L_{S}: M_{S}\right)
\end{aligned}
$$

Thus M_{S} is a μ-module. Also, if M is a finitely generated σ-module, then by Theorem 2.11, M_{S} is a σ-module.

Now we prove that the property of being σ-module is a local property for finitely generated modules. Let M be an R-module and P a prime ideal of R. We write M_{P} instead of M_{S} when $S=R \backslash P$.

Theorem 2.19. Let R be a ring and M be a finitely generated R-module. Then the following are equivalent.
(1) M is a σ-module.
(2) M_{P} is a σ-module for all prime ideals P of R.
(3) $M_{\mathfrak{m}}$ is a σ-module for all maximal ideals \mathfrak{m} of R.

Proof. (1) \Rightarrow (2) follows from Lemma 2.18.
$(2) \Rightarrow(3)$ Clear.
(3) \Rightarrow (1) Let N and L be submodules of M. Since $M_{\mathfrak{m}}$ is a finitely generated σ-module over R_{m}, by Theorem 2.11, M_{m} is a μ-module. Thus for any maximal ideal \mathfrak{m} of $R,\left(N_{\mathfrak{m}}+L_{\mathfrak{m}}: M_{\mathfrak{m}}\right)=\left(N_{\mathfrak{m}}: M_{\mathfrak{m}}\right)+\left(L_{\mathfrak{m}}: M_{\mathfrak{m}}\right)$ and hence $(N+L:$ $M)_{\mathfrak{m}}=((N: M)+(L: M))_{\mathfrak{m}}$. Now since " = " is a local property, we have $(N+L: M)=(N: M)+(L: M)$. Thus M is a finitely generated μ-module and is a σ-module by Theorem 2.11.

Proposition 2.20. Every homomorphic image of a σ-module is a σ-module.
Proof. Let M and M^{\prime} be R-modules and M a σ-module. Suppose that $\varphi: M \rightarrow$ M^{\prime} be an epimorphism. Then, $\operatorname{Im} \varphi=M / K$ for some submodule K of M. Now it is enough to show that $\bar{M}=M / K$ is a σ-module. For any submodule \bar{H} of \bar{M}, we have $\bar{H}=H / K$ for some submodule H of M with $H \supseteq K$. Clearly $(\bar{H}: \bar{M})=(H: M)$. Now let $\bar{N}=N / K$ and $\bar{L}=L / K$ be submodules of \bar{M}. Using [11, Corollary 1.3],

$$
\begin{aligned}
(\operatorname{rad}(\bar{N}+\bar{L}): \bar{M}) & =(\overline{\operatorname{rad}(N+L)}: \bar{M})=(\operatorname{rad}(N+L): M) \\
& =\sqrt{(N: M)+(L: M)}=\sqrt{(\bar{N}: \bar{M})+(\bar{L}: \bar{M})}
\end{aligned}
$$

Thus \bar{M} is a σ-module.
Corollary 2.21. Let R be a ring. Then every cyclic R-module M is a σ-module. The converse is true when M is finitely generated and R is local.

Proof. Since R is a σ-module over R, it is clear that every cyclic R-module is also a σ-module by Proposition 2.20 . For the converse let R be a local ring with the maximal ideal P, and M a non-zero finitely generated σ-module over R. Then by [1, Corollary 2.5], $M \neq P M$. Now by Corollary 2.8, there exist $p \in P$ and $m \in M$ such that $(1-p) M \subseteq R m$. Hence $M=R m$.

3. Surjectivity and injectivity of ρ and σ

Let R be a ring and let M be an R-module. Recall that $\rho: \mathcal{R}(R) \rightarrow \mathcal{R}(M)$ is a mapping defined by $\rho(I)=\operatorname{rad}(\lambda(I))=\operatorname{rad}(I M)$ for all radical ideals I of R and $\sigma: \mathcal{R}(R) \rightarrow \mathcal{R}(M)$ is a mapping defined by $\sigma(N)=\mu(N)=(N: M)$ for all radical submodules N of M. Thus the surjectivity of λ implies the surjectivity of ρ and the injectivity of μ implies the injectivity of σ. In this section, we will investigate the conditions under which ρ and σ are injective or surjective. The following lemma plays an important role in this way.

Lemma 3.1. The following holds for the mappings ρ and σ.
(1) $\sigma \rho \sigma=\sigma$.
(2) $\rho \sigma \rho=\rho$.

Proof. (1) Let N be a radical submodule of M. Then

$$
\sigma \rho \sigma(N)=\sigma \rho((N: M))=\sigma(\operatorname{rad}((N: M) M))=(\operatorname{rad}((N: M) M): M)
$$

We show that $(\operatorname{rad}((N: M) M): M)=(N: M)$. Since N is a radical submodule, $(N: M) M \subseteq N$ implies that $\operatorname{rad}((N: M) M) \subseteq N$. Thus $(\operatorname{rad}((N: M) M): M) \subseteq$
$(N: M)$. On the other hand $(N: M) \subseteq((N: M) M: M) \subseteq(\operatorname{rad}((N: M) M): M)$ which implies the desired equality. That is, $\sigma \rho \sigma(N)=\sigma(N)$.
(2) Let I be a radical ideal of R. Then

$$
\rho \sigma \rho(I)=\rho \sigma(\operatorname{rad}(I M))=\rho((\operatorname{rad}(I M): M))=\operatorname{rad}((\operatorname{rad}(I M): M) M)
$$

Thus $\rho \sigma \rho(I)=\operatorname{rad}((\operatorname{rad}(I M): M) M)$. Now, $(\operatorname{rad}(I M): M) M \subseteq \operatorname{rad}(I M)$, implies that $\operatorname{rad}((\operatorname{rad}(I M): M) M) \subseteq \operatorname{rad}(I M)$. On the other hand $I M \subseteq \operatorname{rad}(I M)$ implies that $I \subseteq(\operatorname{rad}(I M): M)$ and hence $I M \subseteq(\operatorname{rad}(I M): M) M$ which gives $\operatorname{rad}(I M) \subseteq \operatorname{rad}((\operatorname{rad}(I M): M) M)$. Thus $\operatorname{rad}((\operatorname{rad}(I M): M) M)=\operatorname{rad}(I M)$, that is $\rho \sigma \rho(I)=\rho(I)$.

Theorem 3.2. With the above notation, the following statements are equivalent.
(1) ρ is a surjection.
(2) $\rho \sigma=1$.
(3) $N=\operatorname{rad}((N: M) M)$ for every radical submodule N of M.
(4) σ is an injection.

Proof. (1) \Rightarrow (2) Let $N \in \mathcal{R}(M)$. Since ρ is a surjection, then there exists an ideal I of R such that $\rho(I)=N$. Thus $\rho \sigma(N)=\rho \sigma \rho(I)=\rho(I)=N$.
(4) $\Rightarrow(2)$ Since $\sigma \rho \sigma=\sigma$, we have $\sigma \rho \sigma(N)=\sigma(N)$ for $N \in \mathcal{R}(M)$. Since σ is injective, we get $\rho \sigma(N)=N$. Thus $\rho \sigma=1$.
$(2) \Leftrightarrow(3),(2) \Rightarrow(4)$ and $(2) \Rightarrow(1)$ are clear.
Theorem 3.3. Let M be an R-module. Then the following statements are equivalent.
(1) ρ is an injection.
(2) $\sigma \rho=1$.
(3) $I=(\operatorname{rad}(I M): M)$ for every radical ideal I of R.
(4) σ is a surjection.

Proof. Similar to the proof of the previous theorem.

Corollary 3.4. Let M be an R-module. Then the mapping ρ is a bijection if and only if σ is a bijection. In this case ρ and σ are inverses of each other.

Corollary 3.5. If ρ is an injection, then $\sqrt{(0: M)}=(\operatorname{rad} 0: M)$.
Proof. By (3) of Theorem 3.3 and (5) of Lemma 2.1, $\sqrt{(0: M)}=(\operatorname{rad}(\sqrt{(0: M)} M)$: $M)=(\operatorname{rad}((0: M) M): M)=(\operatorname{rad} 0: M)$.

Let M be a nonzero finitely generated R-module and I a radical ideal of R. Then, by [10, Proposition 5.3], $(\operatorname{rad}(I M): M)=\sqrt{I M: M}$. Also $(I M: M)=I$ if and only if $(0: M) \subseteq I$, by [10, Proposition 3.1]. Thus, using Theorem 3.3, $(1) \Leftrightarrow(3)$, we have the following result.

Corollary 3.6. Let R be a ring and M be a primeful faithful R-module. Then ρ is an injection and hence σ is a surjection.

In the following example, we show that the mapping ρ may be a monomorphism (resp. an epimorphism) but not an epimorphism (resp. a monomorphism).

Example 3.7. (1) Every free R-module F is a primeful module. Indeed, for every prime ideal p of $R,(p F: F)=p$. Thus, by Corollary 3.6, ρ is a monomorphism. Now, let $0 \in \mathcal{R}(R), F=R \oplus R$, and I be a non-zero radical ideal of R. Then $0 \oplus I$ is a non-zero radical submodule of F by [14, Lemma 2.1]. Hence, $\rho(J)=J \oplus J \neq 0 \oplus I$ for each radical ideal J of R, i.e., ρ is not an epimorphism.
(2) We know that an R-module M is a multiplication module if and only if the mapping λ is an epimorphism. However for every multiplication module, ρ is an epimorphism but the converse is not true in general. Primeless modules are the simplest examples for this case. Let M be a primeless R-module. Then $\mathcal{R}(M)=\{M\}$ and we have $\rho(I)=\operatorname{rad}(I M)=M$ for all (radical) ideals I of R. Hence ρ is an epimorphism but M need not be a multiplication module. For example, let $R=\mathbb{Z}$, p be a prime integer and let M be the primeless \mathbb{Z}-module $\mathbb{Z}\left(p^{\infty}\right) \oplus \mathbb{Z}_{p}$, where \mathbb{Z}_{p} denotes the cyclic group of order p. Thus ρ is an epimorphism while, by [13, Example 3.7], M is not a multiplication R-module. Also it is clear that in this case ρ is not a monomorphism.

Theorem 3.8. Let R be a ring and M an R-module. Consider the following statements:
(1) The mapping $\rho: \mathcal{R}(R) \rightarrow \mathcal{R}(M)$ is an isomorphism.
(2) The mapping $\sigma: \mathcal{R}(M) \rightarrow \mathcal{R}(R)$ is an isomorphism.
(3) The mapping $\lambda: \mathcal{L}(R) \rightarrow \mathcal{L}_{R}(M)$ is an isomorphism.
(4) The mapping $\mu: \mathcal{L}_{R}(M) \rightarrow \mathcal{L}(R)$ is an isomorphism.
(5) M is a multiplication module such that $I=(I M: M)$ for every ideal I of R.
(6) M is a faithful multiplication module.

Then (1) and (2) are equivalent. In particular, if R is an integral domain and M a primeful R-module, then all the above statements are equivalent.

Proof. (1) $\Leftrightarrow(2)$ By Theorem 3.2 and Theorem 3.3, ρ is a bijection if and only if σ is a bijection. Using [16, Lemma 1.2], we conclude that ρ is an isomorphism if and only if σ is an isomorphism.
$(2) \Rightarrow(6)$ Let σ be an isomorphism. Then M is a σ-module and hence a multiplication module by Theorem 2.11. Also by Theorem 3.3 (4) \Rightarrow (3), we have $\sqrt{(0: M)}=(\operatorname{rad}(\sqrt{(0: M)} M): M)=(\operatorname{rad}((0: M) M): M)=(\operatorname{rad} 0: M)=$ $(\operatorname{rad}(0 M): M)=0$. Hence $\sqrt{(0: M)}=0$ which implies that $(0: M)=0$, i.e., M is faithful.
(6) $\Rightarrow(1)$ Let M be a faithful multiplication R-module. Let N be a radical submodule of M. Then $N=I M$ for some ideal I of R and we have $\rho(\sqrt{I})=$ $\operatorname{rad}(\sqrt{I} M)=\operatorname{rad}(I M)=\operatorname{rad} N=N$. Also, let I and J be radical ideals of R and $\rho(I)=\rho(J)$. Then, by [4, Theorem 2.12], $I M=\sqrt{I} M=\operatorname{rad}(I M)=\operatorname{rad}(J M)=$ $\sqrt{J} M=J M$. Since M is a multiplication primeful module, by [10, Proposition 3.8], it is finitely generated and hence by [4, Theorem 3.1], $I=J$. Therefore ρ is an isomorphism.
(3) - (6) are equivalent by [16, Theorem 4.3 and Corollary 4.5].

Lemma 3.9. Let M be a simple R-module. Then
(1) $r \in(0: M)$ if and only if $r^{2} \in(0: M)$.
(2) 0 is a prime submodule of M and hence $\operatorname{rad} 0=0$.

Proof. Straightforward.

Proposition 3.10. Let R be a ring and let M be a semisimple R-module. If ρ is a monomorphism, then R is von Neumann regular.

Proof. Let $M=\underset{i \in I}{\oplus} M_{i}$ for some non-empty family of simple R-modules $M_{i}(i \in I)$ and $0 \neq r \in R$. For each $i \in I$ let $P_{i}=\left(0: M_{i}\right)$. Then, using Lemma 3.9, $\rho(R r)=\operatorname{rad}\left(\operatorname{Rr}\left(\underset{j \in J}{\oplus} M_{j}\right)\right)=\operatorname{rad}\left(\underset{j \in J}{\oplus} M_{j}\right)=\operatorname{rad}\left(\operatorname{Rr}^{2}\left(\underset{j \in J}{\oplus} M_{j}\right)\right)=\rho\left(R r^{2}\right)$, where $J \subseteq I$ such that $r \notin \underset{j \in J}{\cup} P_{j}$. Hence $R r=R r^{2}$ and therefore R is von Neumann regular.

The semisimplicity of M in Proposition 3.10 is necessary. For example, if F is a free R-module, then ρ is a monomorphism, but R need not be a von Neumann regular ring.

An R-module M is said to be local if it has the largest proper submodule. Note that an R module M can have a unique maximal submodule without being local. For example, let p be a prime integer. Then the \mathbb{Z}-module $\mathbb{Q} \oplus \mathbb{Z} / p \mathbb{Z}$ have the
unique maximal submodule $\mathbb{Q} \oplus 0$, but it is not local because of $0 \oplus \mathbb{Z} / p \mathbb{Z} \nsubseteq \mathbb{Q} \oplus 0$. The following proposition may be compared with [16, Proposition 3.12].

Proposition 3.11. Let R be a domain which is not a field, and M a non-zero injective local R-module. Then
(1) The homomorphism ρ is neither a monomorphism nor an epimorphism.
(2) The mapping σ is a homomorphism which is neither a monomorphism nor an epimorphism.

Proof. Since R is a domain and M is injective, M is divisible. Thus $I M=M$, for all non-zero ideal I of R and $(N: M)=0$ for all proper submodule N of M.
(1) Let $0 \neq r \in R$ be a non-unit. Then $\rho(\sqrt{R r})=\operatorname{rad}(\sqrt{R r} M)=\operatorname{rad} M=$ $M=\rho(R)$. Hence ρ is not a monomorphism. Clearly every maximal ideal of R is non-zero and hence divisibility of M implies that $M=P M$ for all maximal ideals P of R. Thus M is not finitely generated and therefore it is not simple. Now let Q be a non-zero proper submodule of M. Then, $\operatorname{rad} Q$ is non-zero and contained in M properly. Hence, we have $\operatorname{rad} Q \neq \rho(q)=M$ for any ideal q of R, and thus ρ is not an epimorphism.
(2) Let M be a local R-module and N, L be proper submodules of M. Then $\operatorname{rad}(N+L) \neq M$ and hence $(\operatorname{rad}(N+L): M)=0=\sqrt{(N: M)+(L: M)}$. Thus σ is a homomorphism. The last part follows from (1) and Theorem 3.2 and Theorem 3.3.

Acknowledgment. We would like to thank the referee for a careful reading of our article and valuable comments.

References

[1] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, 1969.
[2] A. Barnard, Multiplication modules, J. Algebra, 71(1) (1981), 174-178.
[3] J. Dauns, Prime submodules, J. Reine Angew. Math., 298 (1978), 156-181.
[4] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16(4) (1988), 755-779.
[5] J. Jenkins and P. F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra, 20(12) (1992), 3593-3602.
[6] M. D. Larsen and P. J. McCarthy, Multiplicative Theory of Ideals, Pure and Applied Mathematics, 43, Academic Press, New York-London, 1971.
[7] C.-P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul., 33(1) (1984), 61-69.
[8] C.-P. Lu, M-Radicals of submodules in modules, Math. Japon., 34(2) (1989), 211-219.
[9] C.-P. Lu, M-Radicals of submodules in modules, II, Math. Japon., 35(5) (1990), 991-1001.
[10] C.-P. Lu, A module whose prime spectrum has the surjective natural map, Houston J. Math., 33(1) (2007), 125-143.
[11] R. L. McCasland and M. E. Moore, On radicals of submodules, Comm. Algebra, 19(5) (1991), 1327-1341.
[12] R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra, 20(6) (1992), 1803-1817.
[13] R. L. McCasland, M. E. Moore and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra, 25(1) (1997), 79-103.
[14] D. Pusat-Yılmaz and P. F. Smith, Radicals of submodules of free modules, Comm. Algebra, 27(5) (1999), 2253-2266.
[15] R. Y. Sharp, Steps in Commutative Algebra, Second edition, London Math. Soc. Student Texts, 51, Cambridge Univ. Press, Cambridge, 2000.
[16] P. F. Smith, Mappings between module lattices, Int. Electron. J. Algebra, 15 (2014), 173-195.

Hosein Fazaeli Moghimi and Javad Bagheri Harehdashti

Department of Mathematics
University of Birjand
Birjand, Iran
e-mails: hfazaeli@birjand.ac.ir (H. F. Moghimi)
J_bagheri@birjand.ac.ir (J. B. Harehdashti)

