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1. Introduction

Recall that an R-module M is Gorenstein projective (for short G-projective; see

[6]) if there is an exact sequence

P = · · · → P1 → P0 → P 0 → P 1 → · · ·

of projective modules with M = Ker(P 0 → P 1) such that Hom(P, Q) is exact for

each projective R-module Q. Such exact sequence is called a complete projective

resolution. The class of all Gorenstein projective R-modules is denoted by GP(R).

Enochs and Jenda in [6] defined a homological dimension, namely the Gorenstein

projective dimension, GpdR(−), for any R-module. We say that M has Gorenstein

projective dimension at most n, denoted GpdR(M) ≤ n, if there is a Gorenstein

projective resolution, i.e., there is an exact sequence 0→ Gn → · · · → G0 →M →
0, where all Gi are G-projective R-modules, and say GpdR(M) = n if there is not

a shorter Gorenstein projective resolution. Dually, one can consider G-injectives;

see [6]. Analogously, one can consider G-flats; see [8]. The class of all Gorenstein

injective (flat) R-modules is denoted by GI(R) (GF(R)); for any R-module M ,

the Gorenstein injective (flat) dimension is denoted by GidR(M) (GfdR(M)). The

reader can refer to [4,7,12,11] for more details about Gorenstein projective, injective

and flat modules.

Gillespie in [10] defined three classes of R-modules which are called Ding injec-

tive, Ding projective and Ding flat, respectively and developed their standard model

The second author is partially supported by the NSFC (No. 11271250).



2 CHAOLING HUANG AND TONGSUO WU

structures on RM. Yang and his coauthors in [24,22] researched the homological

properties of Ding injective, Ding projective R-modules. Ding projective modules

were first introduced by Ding, Li and Mao in [5] where they were called strongly

Gorenstein flat modules. Ding injective modules were first introduced by Ding and

Mao in [16] as Gorenstein FP -injective modules.

In this paper, we consider Ding projective and Ding injective modules and di-

mensions. It is organized as follows: In Section 2 we collect some fundamental

definitions and facts for using later. Section 3 is first devoted to the study of the

Ding projective and Ding injective modules and dimensions under change of rings.

Recall that if C and G are classes of objects of an abelian category A, then we

say Hom(−, −) is right C × G balanced if for objects X and Y of A there exist

complexes

· · · → C1 → C0 → X → 0

and

0→ Y → G0 → G1 → · · ·

such that Ci ∈ C and Gi ∈ G for all i ≥ 0 and such that Hom(−, G) makes the

first complex exact and Hom(C, −) makes the second complex exact. The author

in [22, Theorem 3.6] proved that Hom(−, −) is right balance by DP(R)×DI(R)

for any Ding-Chen ring R. Then we give the result a new proof. At last in Section

3, we give the new characterizations to finite D-projective dimension of R-modules

as follows.

Theorem. (Theorem 3.13 and 3.15) Let M be an R-module and n be a non-

negative integer. Then the following are equivalent.

(1) DpdR(M) ≤ n.

(2) For some integer k with 1 ≤ k ≤ n, there is an exact sequence 0 → Pn →
· · · → P1 → P0 →M → 0 such that Pi is D-projective if 0 ≤ i < k and Pj

is projective if j ≥ k.

(3) For any integer k with 1 ≤ k ≤ n, there is an exact sequence 0 → Pn →
· · · → P1 → P0 →M → 0 such that Pi is D-projective if 0 ≤ i < k and Pj

is projective if j ≥ k.

(2′) For some integer k with 0 ≤ k ≤ n, there is an exact sequence 0 → An →
· · · → A1 → A0 → M → 0 such that Ak is D-projective and other Ai

projective.

(3′) For any integer k with 0 ≤ k ≤ n, there is an exact sequence 0 → An →
· · · → A1 → A0 → M → 0 such that Ak is D-projective and other Ai

projective.

Recall that the second change of rings theorem for the projective and injective

dimensions as follows (see, [19, Theorem 4.3.5 and Exercise 4.3.3]): Let x be a
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central nonzerodivisor in a ring R. If A is an R-module and x is a nonzerodivisor

on A, then pdR(A) ≥ pdR/x(A/xA) and idR(A) ≥ 1 + idR/x(A/xA) if A is not

injective. Bennis and Mahdou in [2] proved the second change of rings theorem

for the Gorenstein projective and injective dimensions. In Section 4 we investigate

the strongly D-projective and D-injective modules and the second change of rings

theorem for D-projective and D-injective dimensions.

Setup and notation. Throughout this paper, R and S are associative rings

with identity and all modules are unitary. RM denotes the category of left R-

modules, and P(R), I(R) and F(R) denotes the class of projective, injective and

flat modules, respectively. We denote by RM a left R-module, pd(M), id(M) and

fd(M) stand for the projective, injective and flat dimensions of M , respectively.

We write lD(R) (wD(R)) for the left (weak) global dimension of R.

2. Preliminaries

In this section, we recall some definitions and collect some fundamental results.

Definition 2.1. Let S be a ring and let R be a subring of S (with the same 1). S

is called a finite normalizing extension of R if there exist elements a1, . . . , an ∈ S
such that a1 = 1, S = Ra1 + · · · + Ran and Rai = aiR for all i = 1, · · · , n. S is

called a free normalizing extension of R if a1 = 1, S = Ra1 + · · ·+ Ran is a finite

normalizing extension and S is free with basis {a1, . . . , an} as an R-module. S is

said to be an excellent extension of R in case S is a free normalizing extension of R

and S has R-projectivity (that is, if SM is an S-module and SN is a submodule of

SM , then RN |R M implies SN |S M , where N |M means N is a direct summand

of M).

Lemma 2.2. [21, Lemma 1.1] Let S ≥ R be a ring extension such that S has R-

projectivity. If M is a left S-module, then SM is isomorphic to a direct summand

of S(S ⊗R M) and SHomR(S, M).

Recall that a left R-module M is called FP -injective if Ext1R(N, M) = 0 for all

finitely presented left R-module N .

Definition 2.3. (1) ([10, Definition 3.6]) We call a leftR-moduleM Ding projective

(for short, D-projective) if there is an exact sequence

P = · · · → P1 → P0 → P 0 → P 1 → · · ·

of projective modules with M = Ker(P 0 → P 1) such that Hom(P, Q) is exact for

each flat R-module Q. The class of all D-projective modules is denoted by DP(R).
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(2) ([10, Definition 3.2]) We call a left R-module M Ding injective (for short,

D-injective) if there is an exact sequence

I = · · · → I1 → I0 → I0 → I1 → · · ·

of injective modules with M = Ker(I0 → I1) such that Hom(E, I) is exact for

each FP -injective R-module E. The class of all D-injective modules is denoted by

DI(R).

From Definition 2.3 one can obtain the following characterization of D-projective

and injective R-modules.

Proposition 2.4. (1) M is D-projective if and only if Extn≥1R (M, Q) = 0 and

there exists an exact sequence of the form:

X = 0→M → P 0 → P 1 → · · ·

such that HomR(X, Q) is exact for any flat R-module Q.

(2) M is D-injective if and only if Extn≥1R (J, M) = 0 and there exists an exact

sequence of the form:

Y = · · · → I1 → I0 →M → 0

such that HomR(J, Y ) is exact for any FP -injective R-module J .

Definition 2.5. For any R-module M , the D-projective dimension of M , denoted

by DpdR(M) is defined as the infimum of the set of n such that there exists an

exact sequence 0→ Gn → · · · → G0 →M → 0 of left R-modules, where all Gi are

D-projective R-modules. If no such n exists, set DpdR(M) =∞.

Similarly, we can define the D-injective dimension of R-module M , denoted by

DidR(M).

Recall that in [11] a class X of modules is projectively resolving if P(R) ⊆ X , and

for every short exact sequence 0→ X ′ → X → X ′′ → 0 with X ′′ ∈ X the conditions

X ′ ∈ X and X ∈ X are equivalent; X is injectively resolving if I(R) ⊆ X , and for

every short exact sequence 0 → X ′ → X → X ′′ → 0 with X ′ ∈ X the conditions

X ∈ X and X ′′ ∈ X are equivalent.

Proposition 2.6. (1) [24, Theorem 2.6 and Corollary 2.7] The class of D-projective

R-modules is projectively resolving and closed under direct summands.

(2) [24, Theorem 2.8 and Corollary 2.9] The class of D-injective R-modules is

injectively resolving and closed under direct summands.
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3. D-projective modules and D-injective modules

In this section, we first develop properties of D-projective (D-injective) modules

and dimensions under change of rings.

Proposition 3.1. Let θ : R→ S be a ring homomorphism with RS flat. If M is a

D-projective R-module, then S ⊗R M is a D-projective S-module.

Proof. Since M is a D-projective R-module, there is an exact sequence of projec-

tive R-modules:

P = · · · → P1 → P0 → P 0 → P 1 → · · · .

Since S is flat,

S ⊗R P = · · · → S ⊗R P1 → S ⊗R P0 → S ⊗R P
0 → S ⊗R P

1 → · · ·

is exact and S ⊗RM ∼= Ker(S ⊗R P1 → S ⊗R P0). On the other hand, for any flat

S-module Q, it is also a flat R-module.

HomS(S ⊗R P, Q) ∼= HomR(P, HomS(S, Q))

∼= HomR(P, Q).

Thus HomS(S⊗RP, Q) is exact, therefore, S⊗RM is a D-projective S-module. �

Corollary 3.2. Let θ : R→ S be a ring homomorphism with RS flat and let M be

an R-module. Then DpdS(S ⊗R M) ≤ DpdR(M).

Corollary 3.3. Let R[x] be a polynomial ring in one variable over R. For any

R-module M , denote R[x]-module R[x] ⊗R M by M [x]. Then DpdR[x](M [x]) ≤
DpdR(M).

Proof. Since R[x] is a flat R-module, it is true by Corollary 3.2. �

Theorem 3.4. Let S ≥ R be an excellent extension of R and let M be an R-

module. M is a D-projective R-module if and only if S ⊗R M is a D-projective

S-module.

Proof. ⇒ By Proposition 3.1.

⇐ For any flat R-module Q, S ⊗R Q is a flat S-module. Since S is an excellent

extension of R, S ∼= Rn as R-modules for some integer n.

Extj≥1R (Mn, Q) ∼= Extj≥1R (M, S ⊗R Q)

∼= Extj≥1R (M, HomS(S, S ⊗R Q)

∼= Extj≥1S (S ⊗R M, S ⊗R Q) = 0,

since S⊗RM is a D-projective S-module. On the other hand, there exists an exact

sequence of the form:

SX = 0→ S ⊗R M → P 0 → P 1 → · · ·
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such that HomS(SX, A) is exact for any flat S-module A, where all P i are pro-

jective S-modules. So

RX = 0→Mn → P 0 → P 1 → · · ·

is exact, where all P i are projective R-modules.

S ⊗R HomR(RX, Q) ∼= ⊕n
i=1HomR(RX, Q)

∼= HomR(RX, Q
n)

∼= HomR(RX, S ⊗R Q)

∼= HomR(S ⊗S X, S ⊗R Q)

∼= HomS(SX, HomR(S, S ⊗R Q))

∼= ⊕n
i=1HomS(SX, S ⊗R Q)

is exact. Since S is faithfully flat, we get that HomR(RX, Q) is exact. By Propo-

sition 2.6 (1), Mn is a D-projective R-module, and then M is a D-projective R-

module. �

Corollary 3.5. Let S ≥ R be an excellent extension of R. For each R-module M ,

we have DpdR(M) = DpdS(S ⊗R M).

Proof. By Corollary 3.2, DpdR(M) ≥ DpdS(S ⊗R M). Now, we assume that

DpdS(S ⊗R M) = m <∞. There is an exact sequence

0→ G→ Gm−1 → · · · → G1 → G0 →M → 0,

where Gi are all D-projective R-modules. Since S is a free R-module, applying

S ⊗R − to the above exact sequence, we obtain the exact sequence of S-modules:

0→ S ⊗R G→ S ⊗R Gm−1 → · · · → S ⊗R G1 → S ⊗R G0 → S ⊗R M → 0,

where each S ⊗R Gi is a D-projective S-module by Proposition 3.1. Thus S ⊗R G

is also D-projective by [13, Theorem 2.4]. From Theorem 3.4, G is a D-projective

R-module. So DpdR(M) ≤ DpdS(S ⊗R M). �

Proposition 3.6. Let S ≥ R be an excellent extension of R, and let M be an

S-module. Then M is a D-projective R-module if and only if M is a D-projective

S-module.

Proof. ⇒ From Proposition 3.1, S ⊗R M is a D-projective S-module. By Propo-

sition 2.6 (1), M is a D-projective S-module, since SM is a direct summand of

S(S ⊗R M) following from Lemma 2.2.

⇐ Assume that M is a D-projective S-module, there is an exact sequence of

projective S-modules:

SY = · · · → P1 → P0 → P 0 → P 1 → · · · .
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Moreover,

RY = · · · → P1 → P0 → P 0 → P 1 → · · ·

is exact with all P i projective R-modules, since every S-module is an R-module

and every projective S-module is a projective R-module. Now we claim that

HomR(RY, Q) is exact for any flat R-module Q. In fact,

HomR(RY, Q) ∼= HomR(S ⊗S Y, Q)

∼= HomS(Y, HomR(S, Q))

∼= HomS(Y, S ⊗R Q)

is exact, since S⊗RQ is a projective S-module. So M is a D-projective R-module.

�

Corollary 3.7. Let S ≥ R be an excellent extension of R. For each S-module M ,

we have DpdR(M) = DpdS(M) = DpdS(S ⊗R M).

Proof. We first claim that DpdR(M) ≤ DpdS(M). If DpdS(M) =∞, it is trivial.

Now we assume that DpdS(M) = n <∞. There is an exact sequence

0→ An → · · · → A1 → A0 →M → 0,

where all Ai are D-projective S-modules. By Proposition 3.6, all Ai are D-

projective R-modules. Therefore, DpdR(M) ≤ DpdS(M). On the other hand,

we have DpdS(M) ≤ DpdS(S ⊗RM) since SM is isomorphic to a direct summand

of S(S ⊗R M). Finally, DpdS(S ⊗R M) ≤ DpdR(M) by Corollary 3.2. �

The left global Ding projective dimension of R, denoted by lglDpd(R) is defined

as the supremum of the D-projective dimension of R-modules, i.e., lglDpd(R) =

sup{DpdR(M)|∀M ∈RM}. Now we prove the first main result of this section.

Theorem 3.8. Let S ≥ R be an excellent extension of R. lglDpd(S) = lglDpd(R).

Proof. By Corollary 3.5, lglDpd(S) ≥ lglDpd(R), and by Corollary 3.7, lglDpd(S) ≤
lglDpd(R). �

Remark 3.9. We have the similar properties on the D-injective dimensions under

change of rings. For instance, let θ : R → S be a ring homomorphism with RS

projective. Then DidS(HomR(S, M)) ≤ DidR(M). Let S ≥ R be an excellent

extension of R and lglDid(R) = sup{DidR(M)|∀M ∈R M}. Then lglDid(S) =

lglDid(R).

Let F be a class of R-modules. F⊥ will denote the right orthogonal class

of F , that is, F⊥ = {M | Ext1R(F,M) = 0,∀F ∈ F}. Analogously, ⊥F =

{M | Ext1R(M,F ) = 0,∀F ∈ F}. Following [7], a pair of classes of R-modules
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(A,B) is said to be a cotorsion pair if A =⊥ B and B = A⊥. A cotorsion pair

(A,B) is said to be hereditary if A is resolving or, equivalently, B is coresolving.

A cotorsion pair (A,B) is said to be have enough injective if for any R-module M

there is an exact sequence 0→M → B → A→ 0 with B ∈ B and A ∈ A. Dually,

a cotorsion pair (A,B) is said to be have enough projective if for any R-module

M there is an exact sequence 0 → B → A → M → 0 with B ∈ B and A ∈ A.

Recall that a ring R is called a Ding-Chen ring if it is left and right coherent, and

FP -idR(RR) = FP -idR(RR) = n for some positive integer n. The author in [22,

Theorem 3.6] proved that Hom(−, −) is right balance by DP(R)×DI(R) for any

Ding-Chen ring R. Now we give the new proof for this.

Theorem 3.10. Let R be a Ding-Chen ring. Hom(−, −) is right balance by

DP(R)×DI(R).

Proof. We first denote the class of all R-modules of finite flat dimension by W.

By [14, Theorem 3.8] and [10, Corollary 4.6], (DP(R), W) is a cotorsion pair with

enough injective and projective. By [15, Theorem 3.4] and [10, Corollary 4.5],

(W, DP(R)) is a cotorsion pair with enough injective and projective. By [22,

Lemma 3.2], (DP(R), W) and (W, DP(R)) are hereditary. Then the assertion is

true by [9, Theorem 2.2.1]. �

In the classical homological theory, it is well-known that for any ring R, the left

projective global dimension is equal to the left injective global dimension, that is,

lglpd(R) = lglid(R). Such result was generalized by Bennis and Mahdou in [3] for

Gorenstein homological theory as lglGpd(R) = lglGid(R). Similarly, we have

Corollary 3.11. lglDpd(R) = lglDid(R) for any Ding-Chen ring.

Proof. It is clear by the above theorem and [9, Corollary 2.2.2]. �

Now we characterize finite D-projective dimension of R-modules. For doing this,

we first give the following lemma which plays a crucial role.

Lemma 3.12. Let 0→ A→ G1 → G0 →M → 0 be an exact sequence with G0 and

G1 D-projective. Then there are two exact sequences 0 → A → P → G → M → 0

with P projective and G D-projective and 0 → A → H → Q → M → 0 with Q

projective and H D-projective.

Proof. Set K = Im(G1 → G0). Since G1 is D-projective, there is a short exact

sequence 0→ G1 → P → G′1 → 0 with P projective and G′1 D-projective. Consider
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the following pushout diagram:

0

��

0

��
0 // A // G1

��

// K

��

// 0

0 //// A // P

��

// B

��

// 0

G′1

��

G′1

��
0 0

Then consider the following pushout diagram:

0

��

0

��
0 // K

��

// G0

��

// M // 0

0 // B

��

// G

��

// M // 0

G′1

��

G′1

��
0 0

By Proposition 2.6, G is D-projective, since G0 and G′1 are D-projective. Therefore,

we can obtain exact sequence 0 → A → P → G → M → 0. Similarly, we use

pullbacks and can obtain the other exact sequence. �

Theorem 3.13. Let M be an R-module and n be a non-negative integer. Then the

following are equivalent.

(1) DpdR(M) ≤ n;

(2) For some integer k with 1 ≤ k ≤ n, there is an exact sequence 0 → Pn →
· · · → P1 → P0 →M → 0 such that Pi is D-projective if 0 ≤ i < k and Pj

is projective if j ≥ k.

(3) For any integer k with 1 ≤ k ≤ n, there is an exact sequence 0 → Pn →
· · · → P1 → P0 →M → 0 such that Pi is D-projective if 0 ≤ i < k and Pj

is projective if j ≥ k.

Proof. (3)⇒ (2) and (2)⇒ (1) are clear.

(1) ⇒ (3) Let 0 → Gn → · · · → G1 → G0 → M → 0 be an exact sequence

with all Gi D-projective. We prove (3) by induction on n. Let n = 1. Since G1

is D-projective, there is a short exact sequence 0 → G1 → P1 → N → 0 with P1



10 CHAOLING HUANG AND TONGSUO WU

projective and N D-projective. Consider the following pushout diagram:

0

��

0

��
0 // G1

��

// G0

��

// M // 0

0 // P1

��

// D0

��

// M // 0

N

��

N

��
0 0

By Proposition 2.6, D0 is D-projective, since G0 and N are D-projective. Now

assume that n > 1. Set A = Ker(G0 → M), then DpdR(A) ≤ n − 1. By the

induction hypothesis, for any integer k with 2 ≤ k ≤ n, there is an exact sequence

0 → Pn → · · · → P1 → A → 0 such that Pi is D-projective if 1 ≤ i < k and Pj is

projective if j ≥ k. Therefore, there is an exact sequence 0 → Pn → · · · → P1 →
G0 → M → 0. Set B = Ker(P1 → G0). For the exact sequence 0 → B → P1 →
G0 → M → 0, by Lemma 3.12, there is an exact sequence 0 → B → P ′1 → G′0 →
M → 0 with P ′1 projective and G′0 D-projective. Therefore, we get the wanted

exact sequence 0→ Pn → · · · → P2 → P ′1 → G′0 →M → 0. �

Remark 3.14. (1) In [20, Definition 3.1], the author called a bounded GC-projective

resolution of R-module M a strict GC-projective resolution if there is an exact

sequence

0→ Gn → Gn−1 → · · · → G1 → G0 →M → 0

with all Gi projective for i ≥ 1 and G0 GC-projective. And it is proved that every

R-module M of finite GC-projective dimension always admits a strict GC-projective

resolution [20, Thereom 3.6]. Using the different method (Theorem 3.20), we can

prove that the R-module M of finite D-projective dimension has the similar prop-

erty.

(2) Let F be a class of R-modules. A morphism ϕ : F → M of A is called an

F-precover of M if F ∈ F and Hom(F ′, F ) → Hom(F ′, M) → 0 is exact for

all F ′ ∈ F . ϕ is called an epic F-precover of M if it is an F-precover and is an

epimorphism. If every R-module admits an (epic) F-precover, then we say F is an

(epic) precovering class. M is said to have a special F-precover if there is an exact

sequence

0 // C // F //// M // 0

with F ∈ F and Ext1(F , C) = 0. It is clear that M has an epic F-precover if

it has a special F-precover. For more details about precovers, readers can refer
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to [7,9,18]. The authors in [13, Theorem 2.2] proved the following result: If M is

an R-module with DpdR(M) < ∞, then M admits a special D-projective precover

ϕ : G�M where pdR(Kerϕ) = n-1 if n > 0 and Kerϕ = 0 if n = 0. We can use

the above theorem to give it a new proof.

Theorem 3.15. Let M be an R-module and n be a non-negative integer. Then the

following are equivalent.

(1) DpdR(M) ≤ n;

(2) For some integer k with 0 ≤ k ≤ n, there is an exact sequence 0 → An →
· · · → A1 → A0 → M → 0 such that Ak is D-projective and other Ai

projective.

(3) For any integer k with 0 ≤ k ≤ n, there is an exact sequence 0 → An →
· · · → A1 → A0 → M → 0 such that Ak is D-projective and other Ai

projective.

Proof. (3)⇒ (2) and (2)⇒ (1) are clear.

(1)⇒ (3) Let 0→ Gn → · · · → G1 → G0 → M → 0 be an exact sequence with

all Gi D-projective. We prove (3) by induction on n. If n = 1, by Lemma 3.12, the

assertion is true. Now we assume that n ≥ 2. Set K = Ker(G1 → G0). For the

exact sequence 0 → K → G1 → G0 → M → 0, by Lemma 3.12, we get two exact

sequences 0 → K → G′1 → P0 → M → 0 with G′1 D-projective and P0 projective

and 0 → Gn → · · · → G2 → G′1 → P0 → M → 0. Set N = Ker(P0 → M),

then DpdR(N) ≤ n − 1. By the induction hypothesis, for any integer k with

1 ≤ k ≤ n, there is an exact sequence 0 → An → · · · → A1 → N → 0 such

that Ak is D-projective and other Ai projective. Therefore, we get the wanted

exact sequence 0 → An → · · · → A1 → P0 → M → 0. Now we prove the case

k = 0. Set A = Ker(G0 → M), then DpdR(A) ≤ n − 1. By the induction

hypothesis, there is an exact sequence 0 → Bn → · · · → B1 → A → 0 such

that B1 is D-projective and other Bi projective. So we have an exact sequence

0 → Bn → · · · → B1 → G0 → M → 0. Set B = Ker(B1 → G0). For the exact

sequence 0→ B → B1 → G0 →M → 0, by Lemma 3.12, we get an exact sequence

0 → B → P ′′ → G → M → 0 with G D-projective and P ′′ projective. Hence the

exact sequence 0→ Bn → · · · → B2 → P ′′ → G→M → 0 is as desired. �

Remark 3.16. Using the dual arguments, one can obtain the dual versions of

Theorem 3.13 and 3.15 on D-injective R-modules.
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4. Strongly D-projective modules and strongly D-injective modules

Bennis and Mahdou in [1] introduced three new classes of modules named strongly

Gorenstein projective, injective and flat modules which are the special classes of

Gorenstein projective, injective and flat modules, respectively. Recall that an R-

module M is called strongly Gorenstein projective if there exists an exact complex

of the form

· · ·
f // P

f // P
f // P

f // · · ·

with P projective and such that M = Ker(f) and the complex HomR(P, Q) is

exact for every projective R-module Q. The strongly Gorenstein injective modules

are defined dually. It was proved that a module is Gorenstein projective (respec-

tively, injective) if and only if it is a direct summand of a strongly Gorenstein

projective (respectively, injective) module. Recall that the second change of rings

theorem [19] as follows: Let x ∈ R be a central nonzerodivisor in a ring. If M is

an R-module and x is a nonzerodivisor on M , then (1) pdR/x(M/xM) ≤ pdR(M);

(2) idR/x(M/xM) ≤ idR(M)− 1 if idR(M) ≥ 1. Bennis and Mahdou in [2] inves-

tigate the change of rings theorems for the Gorenstein dimensions. In this section,

like the strongly Gorenstein projective and injective modules, we first introduce

the strongly Ding projective and injective modules and research their properties.

Finally, we consider the second change of rings theorem for Ding projective and

injective modules.

Definition 4.1. (1) A left R-module M is called strongly D-projective if there

exists an exact complex of the form

P = · · ·
f // P

f // P
f // P

f // · · ·

with P projective and such that M = Ker(f) and the complex HomR(P, Q) is

exact for every flat R-module Q.

(2) A left R-module M is called strongly D-injective if there exists an exact

complex of the form

I = · · ·
f // I

f // I
f // I

f // · · ·

with P projective and such that M = Ker(f) and the complex HomR(E, I) is

exact for every FP -injective R-module E.

We use SDP(R) (SDI(R), respectively) to denote the class of all strongly D-

projective (D-injective, respectively) R-modules. Like the strongly G-projective

and G-injective modules, we have
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Proposition 4.2. (1) SDP(R) is closed under direct sums. Every projective mod-

ule is strongly D-projective module.

(2) SDI(R) is closed under direct products. Every injective module is strongly

D-injective module.

Theorem 4.3. (1) An R-module is D-projective if and only if it is a direct sum-

mand of some strongly D-projective R-module.

(2) An R-module is D-injective if and only if it is a direct summand of some

strongly D-injective R-module.

Proof. (1) Since strongly D-projective R-modules are contained by D-projective

R-modules, and the class of D-projective R-modules is closed under direct sum-

mands [24, Corollary 2.7], the assertion can be proved by modifying the proof of

[1, Theorem 2.7].

(2) The D-injective case is analogous. �

Remark 4.4. (1) Since any quasi-frobenius ring is perfect and any G-projective R-

module over a perfect ring is D-projective, by [1, Example 2.5], strongly D-projective

modules are not necessarily projective. It is clear that strongly D-projective modules

are strongly G-projective, and if R is perfect, they coincide with each other. If

G-projective modules are not necessarily D-projective, by Theorem 4.3, strongly

G-projective modules are not necessarily strongly D-projective. Therefore,

SDP(R)

⊆
��

⊆ // SGP(R)

$
��

DP(R)
⊆ // GP(R).

(2) Since any quasi-frobenius ring is noetherian and any G-injective over a noe-

therian ring is D-injective, by [1, Example 2.5], strongly D-injective modules are

not necessarily injective. It is clear that strongly D-injective modules are strongly

G-injective, and if R is noetherian, they coincide with each other. If G-injective

modules are not necessarily D-injective, by Theorem 4.3, strongly G-injective mod-

ules are not necessarily strongly D-injective. Therefore,

SDI(R)

⊆
��

⊆ // SGI(R)

$
��

DI(R)
⊆ // GI(R).

(3) We don’t know whether there exists D-projective (D-injective, respectively)

module which is not strongly D-projective (D-injective, respectively) module and
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whether there exists G-projective (G-injective, respectively) module which is not

D-projective (D-injective, respectively) module.

Theorem 4.5. For any R-module M , the following are equivalent.

(1) M is strongly D-projective;

(2) There is a short exact sequence

0→M → P →M → 0

with P projective and Exti≥1R (M, Q) = 0 for any flat R-module Q;

(3) There is a short sequence

0→M → P →M → 0

with P projective and Exti≥1R (M, Q) = 0 for any R-module Q with finite

flat dimension.

Proof. It is easy to prove this from the definition of strongly G-projective modules.

�

We point out that by Theorem 4.5 and [1, Proposition 2.12] the class of finitely

generated strongly D-projective and the class of finitely generated strongly G-

projective are the same.

Proposition 4.6. The following are equivalent.

(1) The (strongly) D-projective R-module M is flat (projective);

(2) The strongly G-projective R-module M is flat;

(3) fdR(M) <∞.

Proof. (2) and (3) are equivalent by [1, Corollary 2.11]. Let M be a (strongly)

D-projective R-module. By [5, Lemma 2.4], (3) implies that M is projective. �

Proposition 4.7. Let R be a Ding-Chen ring. For any positive integer n, the

following are equivalent.

(1) wD(R) ≤ n;

(2) Every strongly D-projective R-module is flat;

(3) Every strongly D-projective R-module is projective.

Proof. By [5, Lemma 2.4], it is clear that (2) and (3) are equivalent. By [5,

Proposition 2.14], it just needs to check that every D-projective R-module is flat

when every strongly D-projective R-module is flat. Since every D-projective R-

module is a direct summand of some strongly D-projective R-module, it is clear. �
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Lemma 4.8. (1) Let

0→ N →M → Q→ 0

be a short exact sequence with Q projective. N is strongly D-projective if and only

if M is strongly D-projective.

(2) Let

0→ I → U → V → 0

be a short exact sequence with I injective. U is strongly D-injective if and only if

V is strongly D-injective.

Proof. (1) First note that since Q is projective, 0 → N → M → Q → 0 is split,

hence M ∼= N ⊕Q. If N is strongly D-projective, by Proposition 4.2, M is strongly

D-projective. Conversely, If M is strongly D-projective, there is an exact sequence

0→M → P →M → 0,

where P is projective R-module and ExtR(M, Q) = 0 for any flat R-module Q.

Consider the following pushout diagram:

0

��

0

��
0 // Q // M

��

// N

��

// 0

0 //// Q // P

��

// A

��

// 0

M

��

M

��
0 0

Since M and N are D-projective, by Proposition 2.6, A is D-projective, and

Ext1R(A, Q) = 0. So 0 → Q → P → A → 0 is split, therefore, A is projective.

Consider the following pullback diagram:

0

��

0

��
N

��

N

��
0 // B

��

// A

��

// Q // 0

0 // N

��

// M

��

// Q // 0

0 0
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So there is a short exact sequence of the form

0→ N → B → N → 0

with B projective. Meanwhile, ExtR(N, F ) = 0 for any flat R-module F since N

is D-projective. So N is strongly D-projective.

Dually, we can prove (2). �

It is well-known that the class of all G-projective (D-projective, respectively) R-

modules is projectively resolving [11, Theorem 2.5] ([24, Theorem 2.6], respectively).

But for the class of strongly Gorenstein projective R-modules it is not true, see [23,

P2660]. Like the class of strongly G-projective R-modules, the class of strongly

D-projective R-modules isn’t projectively resolving. For any ring R, we have the

following result.

Theorem 4.9. The following conditions are equivalent.

(1) The class of the strongly D-projective R-modules is closed under extensions;

(2) The class of the strongly D-projective R-modules is projectively resolving;

(3) For any short exact sequence of left R-modules 0 → G1 → G0 → M → 0,

where G1 and G0 are strongly D-projective, if Ext1R(M, P ) = 0 for any

flat R-module P , then M is strongly D-projective;

(4) DP(R) = SDP(R).

Proof. (1) ⇒ (2) Let 0 → A → B → C → 0 be an exact sequence of left R-

modules, where B and C are strongly D-projective, it is sufficient to prove that A

is strongly D-projective. Since C is strongly D-projective, by Theorem 4.5 there is

an exact sequence of left R-modules 0→ C → P → C → 0, where P is projective.

Consider the following pullback diagram:

0

��

0

��
C

��

C

��
0 // A // D

��

// P

��

// 0

0 // A // B

��

// C

��

// 0

0 0

Since C and B are strongly D-projective, by (1), D is strongly D-projective. By

Lemma 4.8, A is strongly D-projective, since P is projective.

(2)⇒ (1) Clear.
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(1) ⇒ (3) Since G1 is strongly D-projective, there is an exact sequence of left

R-modules 0→ G1 → P → G1 → 0, where P is projective. Consider the following

pushout diagram:

0

��

0

��
0 // G1

��

// G0

��

// M // 0

0 // P

��

// D

��

// M // 0

G1

��

G1

��
0 0

Since G1 and G0 are strongly Gorenstein projective, so is D by (1). By hypothesis,

Ext1R(M, P ) = 0, thus 0 → P → D → M → 0 is split, i.e., D ∼= P ⊕M , which is

strongly D-projective. By Lemma 4.8, M is strongly D-projective.

(3) ⇒ (1) Let 0 → A → B → C → 0 be an exact sequence of left R-modules,

where A and C are strongly D-projective, we prove that B is strongly D-projective.

Since C is strongly D-projective, there is an exact sequence 0→ C → P → C → 0,

where P is projective. Consider the following pullback diagram:

0

��

0

��
C

��

C

��
0 // A // D

��

// P

��

// 0

0 // A // B

��

// C

��

// 0

0 0

Since the sequence 0 → A → D → P → 0 is exact, where P is projective and A

is strongly D-projective, by Lemma 4.8, D is strongly D-projective. On the other

hand, for the exact sequence 0→ A→ B → C → 0, we have the exact sequence

ExtiR(C, Q)→ ExtiR(B, Q)→ ExtiR(A, Q)

for any positive integer i and any flat R-module Q. Since A and C are strongly

D-projective, we have that ExtiR(C, Q) = ExtiR(A, Q) = 0 by Theorem 4.5. Thus

ExtiR(B, Q) = 0. By (3), B is strongly D-projective.

(4)⇒ (2) It is trivial.
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(2) ⇒ (4) First note that by (2) and [11, proposition 1.4] SDP(R) is closed

under direct summands. Since every D-projective R-module is a direct summand

of some strongly D-projective R-module, DP(R) = SDP(R). �

Dually, we have the following.

Theorem 4.10. The following conditions are equivalent.

(1) The class of the strongly D-injective R-modules is closed under extensions;

(2) The class of the strongly D-injective R-modules is injectively resolving;

(3) For any short exact sequence of left R-modules 0 → M → G0 → G1 → 0,

where G1 and G0 are strongly D-injective, if Ext1R(E, M) = 0 for any

FP -injective R-module E, then M is strongly D-injective;

(4) DI(R) = SDI(R).

We are now in a position to consider the second change of rings theorem for

D-projective and D-injective dimensions.

Theorem 4.11. For any R-module M , let x ∈ R be a nonzerodivisor on both M

and R and be both R-regular and M -regular. Then

(1) DpdR/x(M/xM) ≤ DpdR(M);

(2) DidR/x(M/xM) ≤ DidR(M)− 1 if DidR(M) ≥ 1.

Proof. We just prove the first inequality. If DpdR(M) =∞, it is trivial. Now we

assume DpdR(M) = n <∞ and prove it by induction on n. If DpdR(M) = 0, that

is, M is D-projective, we need to show M/xM is a D-projective R/x-module. By

Proposition 2.6 and Theorem 4.3, we only assume that M is a strongly D-projective

R-module. By Theorem 4.5, there is a short exact sequence

0→M → P →M → 0

with P projective and Exti≥1R (M, Q) = 0 for any flat R-module Q. Tensoring the

above short exact sequence with R/x yields the exact sequence

0→ TorR1 (R/x, M)→M/xM → P/xP →M/xM → 0.

[19, Example 3.1.7], TorR1 (R/x, M) = 0. By [17, Theorem 11.65], Exti≥1R/x(R/x⊗R

M, Q) = Exti≥1R (M, Q) = 0. Therefore, M/xM is a strongly D-projective R/x-

module from Theorem 4.5. If DpdR(M) = n > 0, there is a short exact sequence

0→ K → F →M → 0

with DpdR(K) = n − 1 and F free. By induction, DpdR/x(K/xK) ≤ n − 1.

Tensoring the short exact sequence 0 → K → F → M → 0 with R/x yields the

exact sequence

0→ TorR1 (R/x, M)→ K/xK → F/xF →M/xM → 0.
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Since TorR1 (R/x, M) = 0 and F/xF is a projectiveR/x-module, DpdR/x(M/xM) ≤
1 + (n− 1) = DpdR(M). �

Corollary 4.12. DpdR[x](M [x]) = DpdR(M).

Proof. It is true by Corollary 3.3 and Theorem 4.11. �
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