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Abstract. Let R be a commutative ring with identity, and let τ be a relation

on the nonzero, non-unit elements of R. In this paper we generalize the defi-
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1. Introduction

Throughout, R will denote a commutative ring with identity, and D will denote a

domain. Let U(R) denote the set of all units in R. For any ring R, let R∗ = R\{0}
with R# = R∗\U(R), and let Z(R) denote the set of all zero-divisors of R. As in

[7], x ∈ R\U(R) is said to be irreducible if whenever x = ab, we have that (x) = (a)

or (x) = (b); i.e., x is an associate of either a or b, which we will denote as x ∼ a

or x ∼ b. We will say a and b are strong associates, denoted a ≈ b, if there exists

λ ∈ U(R) such that a = λb. Similarly, a and b are said to be very strong associates,

denoted a ∼= b, if (1) a ∼ b and (2) either a = b = 0, or if a = rb for some r ∈ R, then

r ∈ U(R). It is straightforward to show that ∼ and ≈ form equivalence relations in

a commutative ring with zero-divisors, but ∼= need not satisfy reflexivity, and thus

is not always an equivalence relation. A ring R is said to be a strongly associate

ring (resp. very strongly associate ring) if for any a, b ∈ R, a ∼ b implies a ≈ b

(resp. a ∼= b). A nonzero, non-unit a ∈ R is said to be prime if whenever a|bc, then

a|b or a|c, where we take x | y to mean that there exists a nonzero z ∈ R such that

xz = y.

Let Irr(R) = {x | x is irreducible}. Note that this allows 0 ∈ Irr (R) if and only

if R is a domain. We can then define Irr(R) to be a (pre-chosen) set of associate

class representatives, one representative from each class of associates of a given
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nonzero irreducible. We call a ring atomic if each nonzero, nonunit element can be

factored into a product of irreducible elements.

The study of factorizations have a long and rich history in several fields. We

take a factorization of a ∈ R\U(R) to be any representation of a as a product

of elements from R. D.D. Anderson and A. Frazier introduced the concept of τ -

factorization that generalized much of the research done in factorization theory in

integral domains. Much of this research was summarized in [4]. This τ -factorization

has since been studied by several authors, in particular J. Juett in [15] and D.D.

Anderson and R.M. Ortiz-Albino in [6]. Recently in [16,17], this work was extended

to commutative rings with zero-divisors. We summarize the essential definitions and

concepts here.

Let τ be a relation on R#, that is, τ ⊆ R#×R#. We will always assume further

that τ is symmetric, unless otherwise stated.

Definition 1.1. Let a be a non-unit, ai ∈ R#, and λ ∈ U(R). Then a = λa1 · · · am
is said to be a τ -factorization if aiτaj for all i 6= j. If m = 1, then this is said to

be a trivial τ -factorization. Each ai is said to be a τ -factor, or that ai τ -divides a,

written ai |τ a.

We say that τ is multiplicative (resp. divisive) if for a, b, c ∈ R#, aτb and aτc

imply aτbc (resp. aτb and c | b imply aτc). We say τ is associate (resp. strongly

associate, very strongly associate) preserving if for a, b, b′ ∈ R# with b ∼ b′ (resp.

b ≈ b′, b ∼= b′) aτb implies aτb′. We define a τ -refinement of a τ -factorization

λa1 · · · an to be a factorization of the form

(λλ1 · · ·λn) · b11 · · · b1m1 · b21 · · · b2m2 · · · bn1 · · · bnmn

where ai = λibi1 · · · bimi is a τ -factorization for each i. This is slightly different

from the original definition in [4] where no unit factor was allowed in front of the

refinement of the τ -factorization. This modification means it is not necessary for

the relation to be both associate preserving and refinable to refine τ -factorizations

in the above fashion. When τ is associate preserving, both definitions are equiv-

alent. Allowing unit factors permits τ -factoring to be preserved by strong asso-

ciates. We then say that τ is refinable if every τ -refinement of a τ -factorization is a

τ -factorization. We say τ is combinable if whenever λa1 · · · an is a τ -factorization,

then so is each λa1 · · · ai−1(aiai+1)ai+2 · · · an.

Example 1.2. Consider R = Z6 × Z8 with aτb if and only if a, b ∈ Z(R)∗. Then,

(3, 0) = (3, 4)(0, 2) is a τ -factorization with τ -refinement (3, 0) = (3, 2)(3, 2)(0, 2).
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Observe that τ is refinable. On the other hand, (0, 0) = (3, 1)(3, 4)(0, 2) is not

combinable since (3, 4)(0, 2) = (0, 0) which cannot be a factor in any nontrivial

τ -factorization.

2. Factorizations

In this paper, we will study how a relation τ interacts with a form of factorization

called a U-factorization. U-factorizations were created to factor elements up to

associates in some minimal fashion. They were introduced in [14] and discussed in

[1], [8], [10], and [19].

Definition 2.1. Let r ∈ R a nonunit. If r = a1a2 · · · anb1b2 · · · bm, where ai, bj ∈ R
are nonunits, then r = a1a2 · · · andb1b2 · · · bme is a U-factorization of r if

(1) ai(b1b2 · · · bm) = (b1b2 · · · bm) for 1 ≤ i ≤ n, and

(2) bj(b1 · · · b̂j · · · bm) 6= (b1b2 · · · b̂j · · · bm) for 1 ≤ j ≤ m, where b̂j means the

omission of this element from the product.

We call the bj ’s the essential divisors of this particular U-factorization of r, and

the ai’s are the inessential divisors of this particular U-factorization of r.

If a U-factorization of a ∈ R has no inessential divisors, then we write the U-

factorization as r = db1b2 · · · bme.

Example 2.2. Consider the ring R = Z6. Observe that 3 = 3n is a factorization

for all n ∈ N with n > 0. As a U-factorization, 3 = 3n = 3n−1 d3e. Thus, the

U-factorization has exactly one essential divisor, all other copies of the idempotent

factor become inessential.

We now blend the concept of τ relations with U-factorizations in a variety of

natural ways. In the following, τ represents a subset of R# ×R#.

Definition 2.3. Let a be a non-unit, ai, bj ∈ R# and λ ∈ U(R). Then a1a2 · · · am
db1b2 · · · bne is said to be a τ -U-factorization if a1a2 · · · amdb1b2 · · · bne is a U-

factorization and λa1 · · · amb1 · · · bn is a τ -factorization. If n = 1, then this is

said to be a trivial τ -U-factorization. The unit λ is included in this definition for

consistency with τ -factorization definitions and to emphasize that a unit is always

inessential to a factorization.

The lack of significance played by inessential divisors in much of the work done

on U-factorizations inspired the following new definition.
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Definition 2.4. Let a be a non-unit, ai, bj ∈ R# and λ ∈ U(R). Then λa1a2 · · · am
db1b2 · · · bne is said to be a τ -U-factorization if a1a2 · · · amdb1b2 · · · bne is a U-

factorization and biτbj for all i 6= j. If n = 1, then this is said to be a trivial

τ -U-factorization.

It is clear from the definitions that a τ -U-factorization is also a τ -factorization;

however, a τ -U-factorization need not be a τ -U-factorization.

Example 2.5. Let R = Z6 with for a, b ∈ R#, let aτb if and only if ab = 0. Then

0 = 4d2 · 3e is a τ -U-factorization, but not a τ -U-factorization.

A common theme of factorization is the goal to factor an element ‘as far as

possible’; i.e., into irreducibles, or atoms. Given the different definitions of factoring

being considered in this paper, it is natural to expect different forms of irreducibles.

Definition 2.6. An element a ∈ R\U(R) is said to be τ -irreducible if whenever

a = λa1 · · · am is a τ -factorization, a ∼ ai for some i. An element a ∈ R\U(R)

is said to be τ -U-irreducible if whenever a = λa1a2 · · · am db1b2 · · · bne is a τ -U-

factorization, a ∼ bi for some i. An element a ∈ R\U(R) is said to be τ -U-

irreducible if whenever a = λa1a2 · · · am db1b2 · · · bne is a τ -U-factorization, a ∼ bi

for some i.

We pause to give an alternative characterization of τ -U-irreducible and τ -U-

irreducible.

Proposition 2.7. Let R be a commutative ring with identity and let τ be a sym-

metric relation on R#. Then we have the following.

(1) a ∈ R is τ -U-irreducible if and only if there are no non-trivial τ -U-factori-

zations of a.

(2) a ∈ R is τ -U-irreducible if and only if there are no non-trivial τ -U-factori-

zations of a.

Proof. (⇒) Let a be τ -U-irreducible (resp. τ -U-irreducible). Suppose that there

was a τ -U-factorization (resp. τ -U-factorization) a = λa1a2 · · · am db1b2 · · · bne
with n ≥ 2. Since a is τ -U-irreducible (resp. τ -U-irreducible), a ∼ bi for some

1 ≤ i ≤ n. Then this contradicts the fact that bj for j 6= i are essential factors since

a = a1 · · · amb1 · · · bi−1b̂ibi+1 · · · bndbie is a U-factorization.

(⇐) Suppose a ∈ R such that there are only trivial τ -U-factorizations (resp. τ -

U-factorizations) of a, i.e. of the form a = a1 · · · bmdbe. Then (a) = (b) by definition

of U-factorization. Thus a is τ -U-irreducible (resp. τ -U-irreducible) as desired. �
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We state in the following proposition that all of these types of irreducibles are

preserved under the strong associate relation.

Proposition 2.8. Let a ∈ R be a non-unit and let a′ ≈ a, i.e. a = µa′ for some

µ ∈ U(R). Then we have the following.

(1) a is τ -irreducible if and only if a′ is τ -irreducible.

(2) a is τ -U-irreducible if and only if a′ is τ -U-irreducible.

Proof. (1) Let a be τ -irreducible, and let a′ = λa1 · · · am be a τ -factorization of

a′. Then a = (µλ)a1 · · · am is a τ -factorization of a, so a ∼ ai for some 1 ≤ i ≤ m.

Since a ≈ a′, we have a′ ∼ a ∼ ai, so a′ ∼ ai as desired since ∼ is an equivalence

relation.

(2) Let a be τ -U-irreducible, and let a′ = λa1a2 · · · am db1b2 · · · bne be a τ -U-

factorization of a′. Then a = (µλ)a1 · · · amdb1 · · · bne is a τ -U-factorization of a,

so a ∼ bi for some 1 ≤ i ≤ n. Since a ≈ a′, we have a′ ∼ a ∼ ai and ∼ is an

equivalence relation, so a′ ∼ ai as desired.

The argument is symmetric for the converses. �

We now present a major benefit of working with τ -U-irreducible elements over

τ -irreducible and τ -U-irreducible elements. This property is preserved by associates

rather than only strong associates.

Proposition 2.9. Let a ∈ R be a non-unit and let a′ ∼ a. Then a be τ -U-

irreducible if and only if a′ is τ -U-irreducible.

Proof. Assume that a is τ -U-irreducible. Let a′ = λa1a2 · · · am db1b2 · · · bne be a

τ -U-factorization. Since a′ ∼ a, we see that (b1b2 · · · bn) = (a′) = (a). Further,

since (b1b2 · · · b̂j · · · bn) 6= (a′) for 1 ≤ j ≤ n, we have that (b1b2 · · · b̂j · · · bn) 6= (a)

for 1 ≤ j ≤ n. Thus, suppose a = ra′. Then a = ra′ = rλa1a2 · · · am db1b2 · · · bne is

a factorization and, by the previous statement, we see this is still a U-factorization.

Moreover, biτbj for each i 6= j implies this yields a τ -U-factorization of a, a τ -U-

irreducible element. Hence a ∼ bi for some 1 ≤ i ≤ n, yielding (a′) = (a) = (bi)

and a′ ∼ bi as desired. The argument is symmetric for the converse. �

Using the alternative characterization of τ -U-irreducible in Proposition 2.7, we see

that we immediately get the following corollary.

Corollary 2.10. Let R be a commutative ring with identity and τ be a symmetric

relation on R#. Then we have the following.

(1) Let a and a′ be associates. Then a has a non-trivial τ -U-factorization if

and only if a′ has a non-trivial τ -U-factorization.
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(2) An element a ∈ R\U(R) has a non-trivial τ -U-factorization if and only if

there exists an element b ∈ R\U(R) with a ∼ b such that b has a non-trivial

τ -U-factorization.

Lemma 2.11. Let R be a commutative ring with identity and τ be a symmetric

relation on R#.

(1) Any τ -U-factorization is a τ -U-factorization. Any τ -U-factorization is a

τ -factorization. Further, if R is strongly associate, then any non-trivial

τ -U-factorization can be transformed into a non-trivial τ -U-factorization

with identical essential component.

(2) Any τ -factorization can be rearranged into both a τ -U-factorization and a

τ -U-factorization.

(3) All τ -factorizations, τ -U-factorizations, and τ -U-factorizations are factor-

izations.

Proof. The first part of (1) and all of (3) are immediate from definitions. For

the second part of (1), assume R is strongly associate and let a ∈ R\U(R). Let

a = λa1a2 · · · am db1b2 · · · bne be a τ -U-factorization and let y = b1 · · · bn. Thus we

have a ∼ y. Since R is a strongly associate ring, there exists γ ∈ U(R) such that

a = γy. Thus a = γdb1 · · · bne is a τ -U-factorization.

(2) In [1, Proposition 4.1], it was shown that any factorization can be rearranged

into a U-factorization. As in [16, Corollary 3.3], with τ a symmetric relation, any

τ -factorization can be rearranged to form a τ -U-factorization. By (1), this is a

τ -U-factorization as desired. �

Proposition 2.12. Let R be a commutative ring with identity, let τ be a symmetric

relation on R#, and let a ∈ R\U(R). Then we consider the following statements.

(1) a is τ -U-irreducible.

(2) a is τ -U-irreducible.

(3) a is τ -irreducible.

(4) a is irreducible.

(5) a is prime.

Then (1) ⇒ (2) ⇒ (3) and (5) ⇒ (4) ⇒ (3). Further, if R is strongly associate,

then (1)-(3) are equivalent, and (4) ⇒ (1) and (2).

Proof. (1)⇒ (2) Let a be τ -U-irreducible and suppose a = λa1a2 · · · am db1b2 · · · bne
is a τ -U-factorization, then by Lemma 2.11 this is also a τ -U-factorization. There-

fore, a ∼ bi for some 1 ≤ i ≤ n.
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(2) ⇒ (3) Let a be τ -U-irreducible and suppose that a = λa1 · · · as is a τ -

factorization. Then by Lemma 2.11, this factorization can be rearranged into a

τ -U-factorization. Because a is τ -U-irreducible, a is associate to one of the essential

divisors in this τ -U-factorization, which is a τ -factor, thus proving a is τ -irreducible.

(5) ⇒ (4) This result is well known.

(4) ⇒ (3) Let a be irreducible and suppose a = λa1 · · · am is a τ -factorization.

Then as in Lemma 2.11, this is certainly a factorization of a, so a ∼ ai for some

1 ≤ i ≤ m, proving a is τ -irreducible.

For the remainder of the proof, suppose R is strongly associate.

(3)⇒ (1) Let a be τ -irreducible. Suppose a = λa1a2 · · · am db1b2 · · · bne is a τ -U-

factorization of a. Since a ∼ b1 · · · bn, we have a ≈ b1 · · · bn, so there is a µ ∈ U(R)

such that a = µb1 · · · bn. Also, since biτbj for all i 6= j, this is a τ -factorization.

Now, a being τ -irreducible implies a ∼ bi for some 1 ≤ i ≤ n, proving a is τ -U-

irreducible as desired.

(4)⇒ (1) (resp. (2)) Let a be irreducible and suppose a = λa1a2 · · · am db1b2 · · · bne
is a τ -U-factorization (resp. τ -U-factorization) of a. Then a ∼ b1 · · · bn implies that

a ≈ b1 · · · bn, so there exists µ ∈ U(R) such that a = µb1 · · · bn. This is a factoriza-

tion of a, so a ∼ bi for some 1 ≤ i ≤ n as desired. �

The following diagram demonstrates the relationships between various forms of

irreducibility where ≈ represents the ring being strongly associate.

prime

��
irreducible

≈

rz
≈
�� $,

τ -U-irreducible +3 τ -U-irreducible +3

≈

jj τ -irreducible

≈

ii

Example 2.13. Let R = Z×Z with τ defined via aτb if and only if a, b ∈ Z(Z×Z) =

{ (m,n)|m = 0 or n = 0}. Then (15, 1) = (3, 1) · (5, 1) shows that 15 is not

irreducible in Z × Z; however, (15, 1) has no non-trivial τ -factorizations since no

zero-divisor is a factor of (15, 1). Therefore, (15, 1) is τ -irreducible. Moreover,

Z× Z is strongly associate, so (15, 1) is both τ -U-irreducible and τ -U-irreducible.

Example 2.13 demonstrates that the downward arrows emanating from irre-

ducible are not reversible. Whether τ -irreducible implies τ -U-irreducible and whether
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τ -U-irreducible implies τ -U-irreducible when R is not strongly associate are still

open questions.

Definition 2.14. A commutative ring R with identity is said to be τ -atomic (resp.

τ -U-atomic, τ -U-atomic) if for each non-unit a ∈ R, there is a τ -factorization

(resp. τ -U-factorization, τ -U-factorization) of a such that every τ -divisor (resp.

essential τ -divisor, essential τ -divisor) of a is τ -irreducible (resp. τ -U-irreducible,

τ -U-irreducible). We also use the term τ -atomic factorization (resp. τ -U-atomic, τ -

U-atomic) to describe a factorization of a into τ -irreducibles (resp. τ -U-irreducibles,

τ -U-irreducibles).

Proposition 2.15. Let R be a commutative ring with identity and let τ be a sym-

metric relation on R#. If R is strongly associate, then the following are equivalent.

(1) R is τ -atomic.

(2) R is τ -U-atomic.

(3) R is τ -U-atomic.

Proof. (1) ⇒ (2) Let d ∈ R be a non-unit and let d = λx1 · · ·xn be a τ -

atomic factorization. As in [8, Proposition 1.2], we can rearrange any factorization

into a U-factorization. After reordering, if necessary, we have a τ -U-factorization

d = λx1 · · ·xs dxs+1 · · ·xne. Moreover, each factor is τ -irreducible, so certainly

each essential divisor is τ -irreducible. By Proposition 2.12 we see that every τ -

irreducible element in a strongly associate ring is τ -U-irreducible. Thus we have a

τ -U-factorization of d with each essential τ -divisor being τ -U-irreducible.

(2) ⇒ (3) This proof is similar to the previous proof and is left to the reader.

(3) ⇒ (1) Let d ∈ R be a non-unit. Let d = λa1a2 · · · am db1b2 · · · bne be a

τ -U-atomic factorization. Then d ∼ b1 · · · bn and biτbj for each i 6= j. Since R

is strongly associate, this implies d = µb1 · · · bn for some µ ∈ U(R). This yields

a τ -factorization of d, and each bi is a τ -U-irreducible element. Proposition 2.12

shows that τ -U-irreducible elements are τ -irreducible as desired. �

Proposition 2.16. Let R be a commutative ring with identity and let τ be an

associate preserving, reflexive, multiplicative and divisive relation on R#.

(1) If a ≈ b, then b has a τ -U-factorization if and only if a has a τ -U-

factorization.

(2) If a ∼ b, then b has a τ -U-factorization if and only if a has a τ -U-

factorization.

(3) If a has a τ -U-factorization, then a has a τ -U-factorization.
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Moreover, in the above results the essential component of the given factorization

is identical to the essential component of the derived factorization.

Proof. (1) If b = λx1 · · ·xmdy1 · · · yne is a τ -U-factorization and a = γb where

γ ∈ U(R), then a = (γλ)x1 · · ·xmdy1 · · · yne is a τ -U-factorization.

(2) Assume b = x1 · · ·xmdy1 · · · yne is a τ -U-factorization. Since τ is reflexive

and multiplicative, we have xiτb and yjτb for all i, j. Since τ is associate preserving,

this yields xiτa and yjτa for all i, j. Let a = bc. Then c|a. Since xiτa and yjτa,

we have xiτc and yjτc since τ is divisive. Thus, a = cx1 · · ·xmdy1 · · · yne is a

τ -U-factorization.

(3) Assume a = x1 · · ·xmdy1 · · · yne is a τ -U-factorization. Then a ∼ y1 · · · yn,

and clearly dy1 · · · yne is a τ -U-factorization of y1 · · · yn. The result now follows

from (2).

The moreover statement is clear from the above arguments. �

It is easy to verify that part (1) of Proposition 2.16 holds if we replace τ -U-

factorizations with τ -U-factorizations or with τ -factorizations. At first glance, part

(3) of Proposition 2.16 may seem vacuous if one observes that any non-unit a ∈ R
has a τ -U-factorization, since a = 1dae is a τ -U-factorization. However, the proof

of this result ensures that a has a non-trivial τ -U-factorizations whenever a has a

non-trivial τ -U-factorization.

The following result provides some examples of of strong associate rings and

some useful results of being such a ring. Please see [2] for any undefined terms.

Proposition 2.17. If R is a commutative ring which satisfies one of the following

properties:

(1) R is Artinian

(2) R is a principal ideal ring

(3) Z(R) ⊆ J(R), the Jacobson radical of R

(4) R is présimplifiable

(5) R is semi-quasilocal

(6) R is a p.p. ring, a ring in which every principal ideal is projective

Then R is a strongly associate ring and we have the following.

(1) a is τ -atomic if and only if a is τ -U-atomic if and only if a is τ -U-atomic.

(2) τ -atomicity, τ -U-atomicity and τ -U-atomicity is preserved by associates.

(3) R is τ -atomic if and only if R is τ -U-atomic if and only if R is τ -U-atomic.
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Proof. By [2], the rings listed in the statement of the theorem are strongly asso-

ciate. This means (1)-(3) of Proposition 2.12 are equivalent. The rest of the results

follow immediately. �

The previous result indicates that having only ‘well-behaved’ zero-divisors al-

lows for pleasing relationships between the various definitions of factorizations. In

addition, this can be seen for regular elements in any ring.

Proposition 2.18. Let x be a regular element of a ring, or let x be a nonzero

element a présimplifable ring. Then x ∼ y ⇔ x ≈ y ⇔ x ∼= y. Moreover, x

has no non-unit inessential divisors in any U-factorization of x. This means all

τ -factorizations, τ -U-factorizations and τ -U-factorizations coincide.

Proof. It is well known that the associate relations coincide in a présimplifiable

ring or when dealing with regular elements, see [17,18].

We now show why there can be no non-unit inessential divisors in a présimplifiable

ring or in a U-factorization of a regular element. Suppose x = λa1a2 · · · am
db1b2 · · · bne. Then x ∼ b1 · · · bn. So we may write xr = b1 · · · bn for some r ∈ R.

x = a1 · · · amxr = (a1 · · · amr)x.

Thus since x 6= 0 is a regular element (or x is in a présimplifable ring), we see that

a1 · · · amr ∈ U(R) and each ai must be a unit for all 1 ≤ i ≤ m. This implies

that the factorization can be written as x = γb1b2 · · · bn where γ ∈ U(R). This is

a τ -factorization of x, and clearly x = γdb1b2 · · · bne is a τ -U-factorization and a

τ -U-factorization. �

With this last result in mind, if we restrict factorization to regular elements as

in [18], then all of the results from Proposition 2.17 hold. That is,

(1) a is τ -atomic if and only if a is τ -U-atomic if and only if a is τ -U-atomic.

(2) τ -atomicity, τ -U-atomicity and τ -U-atomicity is preserved by associates.

(3) Every regular element of R has a τ -atomic factorization if and only if every

regular element of R has a τ -atomic factorization and only if every regular

element has a τ -U-atomic factorization.

3. Irreducible divisor graphs

The concept of examining algebraic structures via graphs has received a great

deal of attention in the past 25 years. The trend began with zero-divisor graphs in

the 1990’s (see [3] for a survey of work) and has since moved into factorization theory

(see [9] for a survey of work). The main theme in this area of research is to identify
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algebraic properties of zero-divisors, or factoring, based on patterns and properties

of the graphical representation. Given the variety of factorization methods found

in this paper, we can define related graphical structures corresponding to these

factorization methods. Throughout the section, we assume that τ is a symmetric,

associate-preserving relation on a commutative ring R with identity.

In general, we say a graph A is a subset of a graph B, denoted A ⊆ B if the

vertex set of A is contained in the vertex set of B and if x is connected via an edge

to y in A, then they are also connected in B.

In [13], Coykendall and Maney introduced the concept of an irreducible divisor

graph of a nonzero, non-unit in an atomic domain. Given an atomic domain D

and some x ∈ D∗\U(D), the irreducible divisor graph of x in D, denoted G(x),

has as vertices one representative from each associate class of irreducible divisors

of x. Two vertices, y and z, have an edge between them if and only if yz | x. In

general, a graph is complete if any two distinct vertices are connected by an edge,

while a graph is connected if a path exists between any two distinct vertices. This

irreducible divisor graph proved surprisingly elegant and useful in domains; perhaps

most pleasing was the result that D is a unique factorization domain (UFD) if and

only if G(x) is connected for every nonzero, non-unit x ∈ D [13, Theorem 5.1]. As

a corollary of this result, it is seen that for a given x ∈ D, G(x) is connected if and

only if G(x) is complete. We now seek to modify this definition to account for the

various factorization methods previously discussed.

Definition 3.1. We denote the set of all τ -irreducible elements of R as τ -Irr(R).

Similarly, when we pick one representative from each associate class of τ -Irr(R),

we denote the resulting set by τ -Irr(R). We define, τ -U-Irr(R), τ -U-Irr(R),

τ -U-Irr(R), and τ -U-Irr(R) similarly.

We would like our constructions to be independent of the choice of element picked

as an associate class representative in the relevant sets defined above. Because of

this, we will insist that τ be associate preserving when dealing with τ -Irr(R),

τ -U-Irr(R), and τ -U-Irr(R).

We note that if R is a strongly associate ring then τ -Irr(R) = τ -U-Irr(R) =

τ -U-Irr(R) by Proposition 2.12.

Definition 3.2. The τ -irreducible-associate-divisor graph of x ∈ R\U(R), denoted

by Gτ (x), consists of vertices V = {y ∈ τ -Irr(R)| y appears in a τ -factorization of

x}, and for y1, y2 ∈ V , we have y1 − y2 if and only if both y1 and y2 appear in the

same τ -factorization of x.
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The creation and subsequent study of τ -U-factorizations places the focus of fac-

toring upon the essential divisors of an element. We create two related types of

graphs that focus on these essential divisors.

Definition 3.3. The τ -U-irreducible-associate-divisor graph of x ∈ R\U(R), de-

noted by Gτ -U(x), consists of vertices V = {y ∈ τ -U-Irr(R)| y appears as an

essential divisor in a τ -U-factorization of x} and for y1, y2 ∈ V , we have y1 − y2 if

and only if both y1 and y2 appear as essential divisors in the same τ -U-factorization

of x.

The alternate τ -U-irreducible-associate-divisor graph of x ∈ R\U(R), denoted

by γτ -U(x), consists of vertices V = {y ∈ τ -U-Irr(R)| y appears as an essential

divisor in a τ -U-factorization of x} and for y1, y2 ∈ V , we have y1 − y2 if and only

if both y1 and y2 appear in the same τ -U-factorization of x.

Finally, with the introduction of τ -U-factorizations, we can modify the previous

two graphs to reflect this differing factorization technique.

Definition 3.4. The τ -U-irreducible-associate-divisor graph of x ∈ R\U(R), de-

noted by Gτ -U(x), consists of vertices V = {y ∈ τ -U-Irr(R)| y appears as an

essential divisor in a τ -U-factorization of x} and for y1, y2 ∈ V , we have y1 − y2 if

and only if both y1 and y2 appear as essential divisors in the same τ -U-factorization

of x.

The alternate τ -U-irreducible-associate-divisor graph of x ∈ R\U(R), denoted

by γτ -U(x), consists of vertices V = {y ∈ τ -U-Irr(R)| y appears as an essential

divisor in a τ -U-factorization of x} and for y1, y2 ∈ V , we have y1 − y2 if and only

if both y1 and y2 appear in the same τ -U-factorization of x.

We now provide an example to demonstrate why we insist that τ be associate

preserving.

Example 3.5. Let R = F [X,Y, Z]/(X −XY Z) as in [7, Example 2.3]. Let x, y, z

represent the image of X,Y, Z in R, respectively. Set τ = {(xy, z), (z, xy)}. Notice

this τ is not associate preserving since xyτz while x ∼ xy yet x and z are not

τ -related. We now consider the irreducible divisor graphs of x and xy to illustrate

why we wish to require that τ be associate preserving. The only non-trivial τ -

factorization of x is x = λ(xy)z for some λ ∈ U(R). Thus xy and z are τ -

irreducible (since they have no non-trivial τ -factorizations). This means the τ -

irreducible divisor graph of x has 2 vertices: (xy) and z, which are connected by an

edge. On the other hand, x ∼ xy. Yet xy has no non-trivial τ -factorizations, since
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if it did, it would mean xy = λ(xy)z for some λ ∈ U(R). But then xy = λxyz = λx;

however, it was shown that xy 6≈ x in [7]. Thus the irreducible divisor graph

of xy has only a single vertex, namely xy. When τ is not associate preserving,

the structure of the irreducible divisor graph may well depend upon the choice of

associate representative.

By definition, it should be clear that for any x ∈ R\U(R), Gτ -U(x) ⊆ γτ -U(x) ⊆
Gτ (x) and Gτ -U(x) ⊆ γτ -U(x). In the rest of this section we examine the other

subgraph containment possibilities.

The following diagram demonstrates the known subgraph relationships between

the various graphs defined previously where A ↪→ B represents that A is a subgraph

of B and the dotted line indicates containments that are unknown. All other

non-trivial containments are not possible in general as we demonstrate following

the diagram. The three possible containments which are not known are whether

Gτ -U(x) ⊆ Gτ -U(x), γτ -U(x) ⊆ γτ -U(x), or Gτ -U(x) ⊆ γτ -U(x). It easily follows

from definitions that Gτ -U(x) ⊆ Gτ -U(x) and γτ -U(x) ⊆ γτ -U(x) if and only if all τ -

U-irreducible elements are also τ -U-irreducible; hence, this open question is closely

equivalent to the open question posed in Section 2.

Gτ -U(x) �
� //

� _

��

� r

%%

γτ -U(x)
� _

��

� � // Gτ (x)

Gτ -U(x) �
� // γτ -U(x)

The following example shows that Gτ (x) * γτ -U(x) and Gτ (x) * γτ -U(x). This

implies that Gτ (x) * Gτ -U(x) and Gτ (x) * Gτ -U(x).

Example 3.6. Let R = R×Z with τd = R#×R#. Then (1, 0) = (1, p)d(1, 0)e is a

τd-U-factorization (and τd-U- factorization) into irreducibles (τd-irreducibles) where

p is a prime in Z by [11, Lemma 2.3]. However, (1, p) is never an essential divisor in

any U-factorization of (1, 0) (or τd-U-factorization or τd-U- factorization). Thus

(1, p) ∈ V (Gτd((1, 0))) but (1, p) is not an element of the vertex set of the other

graphs. This shows that Gτd((1, 0)) * γτd-U((1, 0)) and Gτd((1, 0)) * γτd-U((1, 0)).

We illustrate the various τd-irreducible divisor graphs of (1, 0). We find that

the only τd-irreducible factors of (1, 0) are of the form (λ, 0) or (λ, p) where p is

a nonzero prime. Furthermore, any factorization, must have a factor of the form

(a, 0) since Z is a domain. Thus, we find that the only essential factor is of the

form (λ, 0) since Z is a domain. We choose our associate representatives to be
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(1, a) where a > 0. For τd-atomic factorizations, we have factorizations of the form

(1, 0) = (1, 0)(1, 0)e0(1, 2)e1(1, 3)e2 · · · (1, pi)ei

where ei ≥ 0 and pi are positive primes. On the other hand, the only τ -U and

τ -U-factorizations up to associate have the form

(1, 0) = (1, a1)(1, a2) · · · (1, an)d(1, 0)e.

Because there is only one essential divisor up to associate, we find that the τ -U

(U)-irreducible and alternate τ -U (U)-irreducible divisor graphs coincide.

Figure 1. (a) Gτd((1, 0)) (b) Gτd-U((1, 0)) = Gτd-U((1, 0)) =

γτd-U((1, 0)) = γτd-U((1, 0))

We next show that in general γτ -U(x) * Gτ -U(x).

Example 3.7. Let R = Z2[X,Y, Z]/(XY, Y Z)×Z2 with aτb if and only if π1(ab) =

0 ∈ Z2[X,Y, Z]/(XY, Y Z). Clearly τ is symmetric and preserves associates. Due to

the τ relation on R, it is straightforward to show that (X, 1), (Y , 1), and (Z, 1) are

all τ -U-irreducible. Consider the τ -U-factorizations (0, 1) = (X, 1)d(Z, 1)(Y , 1)e =

(Z, 1)d(X, 1)(Y , 1)e. Note that though both (X, 1) and (Z, 1) are essential τ -U-

irreducible divisors in τ -U-factorizations, they are never essential divisors in the

same τ -U-factorization since (X, 1) is not τ -related to (Z, 1). So, we have (X, 1)−
(Z, 1) in γτ-U((0, 1)), but not in Gτ-U((0, 1)). Thus, in general, γτ-U(x) * Gτ-U(x).

The next example shows that neither Gτ -U(x) nor γτ -U(x) are, in general, sub-

graphs of any of the following: Gτ -U(x), γτ -U(x) or Gτ (x).

Example 3.8. Let R = Z(+)Z8, the idealization of Z with Z8. By [2], R is not a

strongly associate ring. Note that if a 6= 0, then (a, x) ≈ (±a, y) if x, y ∈ {1, 3, 5, 7}
or x, y ∈ {0, 2, 4, 6}. In addition, (0, 1) ∼ (0, 3) ∼ (0, 5) ∼ (0, 7) and (0, 2) ≈ (0, 6).

No other associate or strong associate relationships exist.
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Define τ as (r, x)τ(s, y) if and only if either r = s = 0 or r, s 6= 0. Note that

τ is associate-preserving. In addition, it is straightforward to check that (0, 3) is

τ -U-irreducible.

The only τ -factorization or τ -U-factorization of (0, 1) is (0, 1) = (0, 1) = d(0, 1)e
since if (0, 1) = (a, x)(b, y), then, without loss of generality, a 6= 0 and b = 0, which

implies that (a, x) is not τ -related to (b, y).

Thus (0, 1) = (3, 0)d(0, 3)e is a τ -U-factorization and not a τ -U-factorization

or τ -factorization. Thus (0, 3) ∈ V (Gτ-U((0, 1))) = V (γτ-U((0, 1))) and (0, 3) /∈
V (Gτ-U((0, 1))) = V (γτ-U((0, 1))) = V (Gτ ((0, 1))) = {(0, 1)}.

Thus, neither Gτ-U(x) nor γτ-U(x) are, in general, subgraphs of any of the fol-

lowing: Gτ-U(x), γτ-U(x) or Gτ (x).

The final example in this section demonstrates that γτ -U(x) is not, in general, a

subgraph of either Gτ -U(x) or Gτ -U(x).

Example 3.9. Let R = Z6 × Z, a strongly associate ring by [2, Theorem 3], and

let τ = R# × R#. By [11, Lemma 2.3], the irreducibles of R are of the form

(x, u) or (v, y) where u ∈ U(Z6), v ∈ U(Z), x ∈ {2, 3, 4}, and y is either 0 or

a prime. All irreducible elements are also τ -irreducible, τ -U-irreducible, and τ -

U-irreducible by Proposition 2.12. Observe that (0, 0) = (1, 0)d(2, 1)(3, 1)(5, 0)e =

(5, 0)d(2, 1)(3, 1)(1, 0)e, and these are τ -U-factorizations (and hence τ -U-factorization)

into irreducible elements. Clearly (1, 0) − (5, 0) in γτ-U((0, 0)). Since (1, 0) and

(5, 0) can never appear as essential divisors in the same U-factorization of (0, 0),

we see that (1, 0) is not connected to (5, 0) in Gτ-U((0, 0)) or in Gτ-U((0, 0)). Thus,

γτ-U(x) is not, in general, a subgraph of either Gτ-U(x) or Gτ-U(x).

If R is strongly associate, we get an equivalence among most of the vertex sets

in the graphs this paper considers. Let y be an essential τ -irreducible divisor

in a τ -U-factorization of x; i.e., x = a1 · · · andyb1 · · · bme is a τ -U-factorization

with y τ -irreducible. Then y is also an essential τ -irreducible divisor in a τ -U-

factorization of x since x = a1 · · · andyb1 · · · bme = λdyb1 · · · bme, where λ ∈ U(R)

since x ≈ yb1 · · · bm. Thus, x = λdyb1 · · · bme is a τ -U-factorization, so y is also

an essential τ -irreducible divisor in a τ -U-factorization of x. Thus V (Gτ -U(x)) =

V (Gτ -U(x)) = V (γτ -U(x)) = V (γτ -U(x)). However, these vertex sets need not equal

V (Gτ (x)) as demonstrated by Example 3.6.

Proposition 3.10. If R is strongly associate, then the following hold.

(1) Gτ-U(x) = Gτ-U(x)

(2) γτ-U(x) ⊆ γτ-U(x)
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Proof. If R is strongly associate, then we get V (Gτ-U(x)) = V (Gτ-U(x)) = V (γτ-U(x)) =

V (γτ-U(x)) by the remarks preceding this proposition.

(1) If a− b in Gτ -U(x), then we have a− b in Gτ -U(x) since a τ -U-factorization

of x will also be a τ -U-factorization of x. If a − b in Gτ -U(x), then there exists

a τ -U-factorization of x of the form x = λz1 · · · zmdabc1 · · · cne with λ ∈ U(R).

Thus x ∼ abc1 · · · cn, which implies that x ≈ abc1 · · · cn by the strongly associate

condition. Hence, x = udabc1 · · · cne with u ∈ U(R) is a τ -U-factorization, so a− b
in Gτ -U(x).

(2) Similar to (1). �

We end this section by capitalizing on Proposition 2.18 and showing that all the

graphs defined in this paper coincide when x is a regular element of a ring.

Proposition 3.11. Let x be a regular element of a ring R or let x be a nonzero

element a présimplifable ring R. If τ is a symmetric and associate preserving

relation on R#, then the following graphs are all equal.

(1) Gτ (x)

(2) Gτ-U(x)

(3) γτ-U(x)

(4) Gτ-U(x)

(5) γτ-U(x)

Proof. By Proposition 2.18, we see that all of the τ , τ -U, and τ -U factorizations

coincide. Thus the τ , τ -U, and τ -U irreducible elements coincide and therefore

these graphs all have the same vertex sets. It is immediate from the definitions of

the graphs that the edges must also coincide since there are no non-unit inessential

divisors. �

4. Graphs of 0

As mentioned in the previous section, the study of zero-divisor graphs has re-

ceived a great deal of attention in recent years. The concept of the graph of the

zero-divisors of a commutative ring was first introduced by Beck in [12] when dis-

cussing the coloring of a commutative ring. In his work all elements of the ring

were considered vertices of the graph. Since the seminal paper by Anderson and

Livingston [5], the standard is to regard only nonzero zero-divisors as vertices of

the graph, and we adhere to this standard in the definition below.

Definition 4.1. Let Z(R) denote the set of zero-divisors of R and Z(R)∗ denote

the set of nonzero zero-divisors. Then the zero-divisor graph of R, denoted Γ(R),
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is the graph with vertex set Z(R)∗, and for distinct r, s ∈ Z(R)∗, there is an edge

between r and s, denoted r − s, if and only if rs = 0. In this case, we say r and s

are adjacent.

We begin by observing that though the structure of Γ(R) can often provide ring-

theoretic information about R, the same is not true for γτ−U(0). Let τ be a relation

on R#. Then it is easily established that γτ -U(0) is always a complete graph. To see

this let x and y be distinct vertices in γτ−U(0). Thus 0 = λa1 · · · amdxb1 · · · bme =

γc1 · · · cldyd1 · · · dke are τ -U-factorizations with x and y τ -U-irreducible. Clearly,

0 = λya1 · · · amdxb1 · · · bme is a τ -U-factorization. Thus x− y in γτ -U(0). Observe

that symmetry in the relation was not needed in this argument.

Proposition 4.2. Let τ be a symmetric relation on R. Then Gτ-U(0) ⊆ Gτ-U(0).

Moreover, if R is strongly associate then Gτ-U(0) = Gτ-U(0).

Proof. First, observe that if 0 = a1 · · · amdb1 · · · bme is a τ -U-factorization, then

0 = db1 · · · bme is a τ -U-factorization. Thus, by Proposition 2.12, V (Gτ -U(0)) ⊆
V (Gτ -U(0)). This also shows that if a− b in Gτ -U(0), then a− b in Gτ -U(0).

If R is strongly associate and τ is a symmetric relation on R, then Gτ -U(0) =

Gτ -U(0) by Proposition 3.10. �

In the examples presented below, we show that the graphs of interest in this

paper, other than γτ -U(0), can exhibit a wide range of graph-theoretic properties

when looking at the various graphs of 0.

The example below shows that Gτ -U(0), Gτ -U(0), and γτ -U(0) need not be con-

nected, let alone complete.

Example 4.3. Let R = Z2[X,Y ]/(X2, Y 2) = {a0+a1X+a2Y +a3XY |ai ∈ {0, 1}}
with aτb if and only if (a) = (b). It is a straightforward to show that R is strongly

associate and that X, Y , and X + Y are all very strongly irreducible, and hence

are τ -irreducible, τ -U-irreducible, and τ -U-irreducible by Proposition 2.12, with

strong associates X +XY , Y +XY , and X + Y +XY , respectively. Observe that

τ is a symmetric, associate-preserving, relation on R, and it is easy to see that

Gτ-U(0) = Gτ-U(0) = γτ-U(0) = Gτ (0). This common graph consists of 3 isolated,

looped vertices.

We note that Z4[x] is strongly associate by [2, Theorem 1]. Thus, in the ex-

amples below, irreducible elements are also τ -irreducible, τ -U-irreducible and τ -U-

irreducible.
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In the next example, we construct a disconnected graph whose connected com-

ponents are all complete.

Example 4.4. Let R = Z4[X] with aτb if and only if a, b ∈ Z(R) and a and

b share the same degree. Then τ is symmetric and associate preserving. It is

straightforward to show that if aτb then ab = 0. Thus, every nonzero zero-divisor

is τ -irreducible. This implies that Gτ-U(0) = Gτ-U(0) = γτ-U(0) = Gτ (0), where

the common graph consists of complete connected components, where vertices in a

connected component correspond to zero-divisors of a common degree. This graph

exhibits an infinite diameter and a girth of 3.

It is also possible to get a shared connected graph of infinite diameter and girth

three, as the next example demonstrates.

Example 4.5. Let R = Z4[X] with aτb if and only if a, b ∈ Z(R) and

|deg(a)− deg(b)| ∈ {0, 1}. Thus, τ is symmetric and associate preserving. As

in Example 4.4, if aτb then ab = 0, and each nonzero zero-divisor is τ -irreducible.

This implies that Gτ-U(0) = Gτ-U(0) = γτ-U(0) = Gτ (0). This common graph

is connected and of infinite diameter since a path of length n is required to move

from the vertex 2 to the vertex 2Xn. In addition, this graph has girth 3 since

2− 2X − 2X + 2− 2.

With some small tweaks to Example 4.5, we can create connected graphs of

arbitrarily large girths, as the next example demonstrates.

Example 4.6. Let R = Z4[X] and let n ∈ Z with n ≥ 1. Let aτb if and only if

a, b ∈ {2Xk|k = 0, 1, 2 . . . } and either |deg(a)− deg(b)| ∈ {0, 1} or deg(a) = n− 1

and deg(b) = 0. Thus τ is symmetric and associate preserving. As in Example 4.5,

each 2Xk is τ -irreducible, and if aτb, then ab = 0. It is straightforward to see that

Gτ-U(0) = Gτ-U(0) = γτ-U(0) = Gτ (0). This common graph is connected and of

infinite diameter since a path of length m is required to move from the vertex 2Xn to

the vertex 2Xn+m. In addition, this graph has girth n since 2−2X−· · ·−2Xn−1−2

is the only cycle present in the graph. This is an infinite line graph with a cycle as

indicated.

In several of the examples above, we had Gτ -U(0) = Gτ -U(0) = γτ -U(0) = Gτ (0).

However, this need not always be the case.

Consider the ring R = Z[X,Y, Z]/(XY, Y Z) with τ = R# × R#. We have that

X −Z in γτ -U(0) and in Gτ (0), but not in either Gτ -U(0) or Gτ -U(0). Observe that

2 ∈ V (Gτ (0)) since 0 = 2XY is a τ -factorization into τ -irreducibles. However, 2 is
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never an essential divisor in any U-factorization of 0, so 2 is not a vertex in Gτ -U(0),

Gτ -U(0), γτ -U(0) or γτ -U(0). Thus, Gτ (0) and γτ -U(0) can each be distinct from all

of the other graphs.

The remaining open question from this section is determining whether or not

Gτ -U(0) = Gτ -U(0). It is true in the strongly associate case by Proposition 3.10,

and we have that Gτ -U(0) ⊆ Gτ -U(0) by Proposition 4.2. Determining whether

Gτ -U(0) ⊆ Gτ -U(0) is equivalent to determining whether V (Gτ -U(0)) ⊆ V (Gτ -U(0)).

This, in turn, is equivalent to determining whether τ -U-irreducible implies τ -U-

irreducible, which is one of the open questions from Section 2.
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