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1. Introduction

Convolutions play important roles in many different areas of mathematics, e.g.,

functional analysis, algebra, logic, probability theory, group theory, number theory

or measure theory. Concentrating on algebraic aspects the notion of a convolution

ring is investigated and discussed by Fotino [5], Pierce [8], Rowen [10], Porst [9],

Komatsu et al. [6], Aguiar and Mahajan [1], to mention a few.

Some years ago Veldsman [12] presented and studied a rather general convolution

concept. Specifically, he investigated radical theoretic properties of rings originating

from apparently widely different ring constructions and suggested a new grouping

of seemingly disparate ring constructions. To this end he introduced the notion

of convolution rings in a very general algebraic setting and showed that many im-

portant ring constructions can be covered under this umbrella. Furthermore, he

investigated the influence of the so-called convolution type on the corresponding

convolution ring. In a subsequent paper [13] he defined a more specialized con-

volution type, namely an arithmetic convolution type thereby providing a unified

treatment of many rings which have been called arithmetic.

In this short note we further exploit the ideas of Veldsman. We consider a

commutative associate unital ring R and suggest the definition of an R-convolution

type T . At appropriate places the relation of this new notion to known concepts

is commented. For a given R-algebra A we study some ring properties of the

set C(A, T ) of certain functions with values in A; in particular, some results on
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zero-divisors and units of C(A, T ) are established. Various definitions of particular

convolution types which were introduced by Veldsman [13] are easily extended and

used in our surroundings. Our considerations are illustrated by several examples of

R-convolution types.

2. Definition and examples of R-convolution types

For the purpose of this note we introduce the following notion which in essence

stems from work by Veldsman [13,12] and which was slightly modified in [3]. The

reader is referred to [12] for a detailed discussion of the meaning and consequences

of the properties listed below.

Throughout we let R be an associative and commutative ring, and we assume

that R is unital, i.e., it has a multiplicative identity element which is different from

the additive neutral element. In the definition given below it is convenient to regard

ρ as the convolution rule, I as the index set and T as the subset of trivial elements

of I; the mapping τ is sometimes called the weighting kernel (e.g., see [5]).

Definition 1. Let I be a non-empty set, S a subset1 of P(I) with S 6= {I} and

ρ : I → P(I × I) and τ : I × I → R be mappings. The quadruple T = (I,S, ρ, τ)

is called an R-convolution type if it enjoys the following properties.

(C1) For all S1, S2 ∈ S there is an S ∈ S such that S ⊆ S1 ∩ S2.

(C2) The intersection of all S ∈ S is empty.

(C3) Given S1, S2 ∈ S there exists an S ∈ S with the following property: For

all s ∈ S the relation (i, j) ∈ ρ(s) implies i ∈ S1 or j ∈ S2.

(C4) For all i ∈ I and S1, S2 ∈ S we have

card {(r, s) ∈ ρ(i) : r ∈ I \ S1, s ∈ I \ S2} <∞ .

(C5) For all i ∈ I, (r, s) ∈ ρ(i) and (p, q) ∈ ρ(r) there exists a unique u ∈ I such

that (p, u) ∈ ρ(i), (q, s) ∈ ρ(u) and

τ(r, s) τ(p, q) = τ(p, u) τ(q, s).

(C6) For all i ∈ I, (r, s) ∈ ρ(i) and (p, q) ∈ ρ(s) there exists a unique v ∈ I such

that (v, q) ∈ ρ(i), (r, p) ∈ ρ(v) and

τ(r, s) τ(p, q) = τ(v, q) τ(r, p).

(C7) For all i ∈ I, (p, q) ∈ ρ(i) we have q = i provided p belongs to the set

T := {t ∈ I : (t, t) ∈ ρ(t)and τ(t, j) = τ(j, t) = 1for all j ∈ I}

1P(X) denotes the set of all subsets of the set X.
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where 1 denotes the multiplicative identity element of R.

(C8) For every i ∈ I there are uniquely determined s, t ∈ T such that

(t, i) ∈ ρ(i) and (i, s) ∈ ρ(i).

(C9) There is some S ∈ S such that T ⊆ I \ S.

Let us briefly comment on this definition and its relation to known concepts.

Remark 2. (i) In our definition above the values of τ need not necessarily

be rational integers. Therefore, apart from property (C2) our notion is

slightly more general than the ones used in [13,3].

(ii) Note that T,S 6= ∅ in view of (C8) and (C9), respectively.

(iii) If ∅ ∈ S then (C1), (C2), (C3) and (C9) are trivially satisfied.

(iv) As can be seen in the examples below it fairly commonly occurs that τ is

symmetric, i.e., we have τ(i, j) = τ(j, i) for all i, j ∈ I .
(v) If T = I then τ = 1, i.e., we have τ(i, j) = 1 for all i, j ∈ I.

(vi) Let τ = 1. Then we directly find T = {t ∈ I : (t, t) ∈ ρ(t)} .
(vii) If ρ is symmetric, i.e., ρ satisfies the property

(r, s) ∈ ρ(i) ⇐⇒ (s, r) ∈ ρ(i) (i, r, s ∈ I), (1)

then only one of the conditions (C5) or (C6) needs to be verified (cf. [12,

Section 1]).

(viii) The occurrence of property (C2) is rather common (cf. Example 4 below).

(ix) Property (C4) is trivially satisfied if card ρ(i) <∞.

(x) Let us suppose that I is contained in the set N of positive rational integers

and that

(i, j) ∈ ρ(k) ⇐⇒ ij = k (i, j, k ∈ I).

Under this condition we have

τ(i, j) τ(ij, k) = τ(i, jk) τ(j, k) (i, j, k ∈ I) (2)

by (C5). Fotino [5, Section 3] observed that in algebraic topology solutions

of equation (2) are viewed as cocycles; moreover, if R is an integral domain

then (symmetric) functions of the shape

τ(i, j) =
α(ij)

α(i)α(j)
(i, j ∈ I)

with a non-vanishing function α : I → R (i.e., α(i) 6= 0 for all i ∈ I) are

viewed as coboundaries.



ON CONVOLUTION TYPES IN COMMUTATIVE RINGS 49

In the remainder of this note we let T = (I,S, ρ, τ) be an R-convolution type

and A be a unital R-algebra (see [7]). Following [12] we set

C(A, T ) = {f : I → A : there exists some S ∈ Ssuch that f(s) = 0 for all s ∈ S}

and define two operations on C(A, T ): For f, g ∈ C(A, T ) and i ∈ I we set

(f + g)(i) = f(i) + g(i)

and

(f • g)(i) =
∑

(u,v)∈ρ(i)

τ(u, v)f(u)g(v) .

Now we show some algebraic properties of C(A, T ).

Proposition 3. (i) (C(A, T ),+, •) is a unital ring with multiplicative iden-

tity element ι1A where 1A denotes the multiplicative identity in A and the

mapping ιa : I → A is defined by

ιa(i) =

{
a (i ∈ T )

0 (i /∈ T )

for a ∈ A.

(ii) The mapping ι : A→ C(A, T ) given by ι(a) = ιa defines a ring monomor-

phism.

(iii) For r ∈ R and f, g ∈ C(A, T ) we have

r(f + g) = rf + rg and r(f • g) = (rf) • g .

(iv) Let A be commutative and assume that τ is symmetric and that ρ enjoys

property (1). Then C(A, T ) is commutative.

Proof. Note that by (C9) the mappings ιa belong to C(A, T ).

(i), (ii) Clear by [12, Section 1].

(iii), (iv) This can immediately be checked by the definitions. �

Based on these observations we regard A as a subring of C(A, T ) and identify a

and ιa for all a ∈ A. Clearly, if I possesses only one element then S = {∅}, τ = 1,

and C(A, T ) and A coincide.

Some examples which are inspired by known concepts conclude this section.

Example 4. (i) Let T be a discrete convolution type in the sense of [3, Defi-

nition 1]. If T fulfills (C2) then it is a Z-convolution type; here we denote

by Z the set of rational integers. Observe that in all examples listed in

[3, Example 4] property (C2) is fulfilled. In particular, replacing Z by R
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all examples mentioned in [3, Example 4 (i)] can be seen as R-convolution

types.

(ii) Adopting the notion coined in [13] we let (X,σ) be an arithmetic convolu-

tion type such that X contains a non-empty subset T defined in [13, Section

2]. As observed in [3, Remark 2] the quadruple (X, {∅} , σ, 1) is a discrete

convolution type, thus a Z-convolution type by (i).

(iii) [12, Example 2.6] Fix m ∈ N and define

I := {(i, j) : i, j ∈ {1, . . . ,m}} .

Then T := (I, {∅} , ρ, 1) is an R-convolution type where we define

ρ(i, j) =
{(

(i, k), (k, j)
)

: k ∈ {1, . . . ,m}
}
.

Moreover, in this case C(R, T ) is isomorphic to the full m×m matrix ring

over R.

(iv) [12, Example 2.10] Let G be a multiplicatively written semigroup with iden-

tity and at least two elements, S := {S ⊆ G : G \ S finite} and

ρ(g) := {(s, t) : s, t ∈ G, st = g} .

Then (G,S, ρ, 1) is an R-convolution type.

(v) [12, Example 2.11] Let G be a multiplicatively written finite group. Suppose

that G possesses an element u such that u2 equals the identity and such

that G contains a subset S with the property

s ∈ S ⇐⇒ us /∈ S .

Fix d ∈ {−1, 1} ⊆ R. For g, h ∈ G define

ρ(g) := {(s, t) : s, t ∈ G, st = g or st = ug}

and

τ(g, h) :=

{
1, if gh ∈ S,
d, if gh /∈ S.

Then (G, {∅} , ρ, τ) is an R-convolution type.

(vi) The example given by Bhattacharjee and Saikia [2, Example 5.1] under

the name of an SB-product can be modified. Let I be a multiplicatively

closed subset of the positive integers which contains 1, and set S := {I, ∅}.
Further, define the convolution rule by

ρ(i) := {(1, i), (i, 1)} (i ∈ I),
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and let τ : I × I → R be a symmetric map such that τ(1, i) = 1 for all

i ∈ I . Obviously, ρ is symmetric, and it can straightforwardly be checked

that (I,S, ρ, τ) is an R-convolution type; clearly, we have T = {1}.
Observe that in the definition of ρ(i) we cannot take the identical set as

in [2, Example 5.1]. The reason lies in the requirement of the uniqueness

of the element u in property (C5); this uniqueness is used in the proof of

the associativity of the ring C(A, T ) in Proposition 3. More precisely, our

proof exploits a bijective relation between summands of certain sums while

in [2, Theorem 2.2] associativity is achieved by a condition on these sums

themselves.

3. Zero-divisors and units in algebras with an R-convolution type

In this section we continue to keep our conventions; in particular, we let T be

an R-convolution type.

Let us first construct some useful elements in the ring C(A, T ).

Lemma 5. Let M be a finite nonvoid subset of I and f : I → A be a mapping such

that f(i) = 0 for all i ∈ I \M . Then f belongs to C(A, T ).

Proof. We use induction on the number of elements of M in order to show that

there exists some S ∈ S such that S ⊆ I \M . Observe that then f(s) = 0 for all

s ∈ S, thus we have f ∈ C(A, T ).

If M = {i} then by (C2) there is some S ∈ S such that i /∈ S, and we clearly

have S ⊆ I \M . Now, let cardM > 1 and pick non-empty disjoint subsets M1,M2

of M such that M = M1 ∪M2. In view of 0 < cardM1, cardM2 < cardM and our

induction hypothesis there exist S1, S2 ∈ S such that S1 ⊆ I \M1 and S2 ⊆ I \M2.

By (C1) there is an S ∈ S such that S ⊆ S1∩S2. Certainly, we have S ⊆ I \M . �

An application of this lemma shows that C(A, T ) can have zero-divisors irre-

spective of whether A has or has not.

Proposition 6. C(A, T ) has non-zero zero-divisors if one of the following two

conditions is satisfied.

(i) There exist p, q ∈ I such that (p, q) /∈ ρ(i) for every i ∈ I.

(ii) There exists an element p ∈ I \ T such that (p, p) ∈ ρ(p) and (p, p) /∈ ρ(i)

for every i ∈ I \ {p}.

Proof. (i) The proof of [13, Proposition 2] can be copied (cf. [3, Propostion 5]).

(ii) We adapt the proof of [13, Proposition 3]. By (C8) there is a t ∈ T such that
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(t, p) ∈ ρ(p). Pick a ∈ A \ {0} and define

f(i) =


−a, if i = p,

τ(p, p) a, if i = t,

0, otherwise

and g(i) =

{
−a, if i = p,

0, otherwise
(i ∈ I).

Then f, g ∈ C(A, T ) by Lemma 5. Further we have f, g 6= 0, and we find f • g = 0

since

(f • g)(p) =
∑

(u,v)∈ρ(p)

τ(u, v)f(u)g(v) =
∑

(u,p)∈ρ(p)

τ(u, p)f(u)(−a)

= τ(p, p) f(p) (−a) + τ(t, p) f(t) (−a) = τ(p, p) (−a) (−a) + τ(p, p) a (−a)

= τ(p, p)
(
−a+ a

)
(−a) = 0

and for i 6= p

(f • g)(i) =
∑

(u,p)∈ρ(i)

τ(u, p)f(u)(−a) = 0

because (p, p), (t, p) /∈ ρ(i) . �

From now on we assume that there is a linear order on I denoted by ≤. For

the convenience of the reader we recall the following notions which were coined by

Veldsman [13, Section 3] for the important case I ⊆ Z. Similarly as in [13, Section

3] and [3, Section 3] we aim at excluding zero-divisors in C(A, T ) which do not

belong to A.

Definition 7. We say that T

• fulfills the lower bound requirement if I \T has a lower bound in I provided

that I 6= T.

• has the complementary ordering property if for all i ∈ I and all (r, s), (u, v) ∈
ρ(i) we have

r ≤ u ⇐⇒ s ≥ v .

• is well-behaved if it satisfies the following three properties.

(i) T fulfills the lower bound requirement.

(ii) T has the complementary ordering property.

(iii) For all i, j ∈ I there exists some k ∈ I such that (i, j) ∈ ρ(k).

Remark 8. [13, Section 3]

(i) Suppose that T has the complementary ordering property.

(a) Let i ∈ I and (r, s), (u, v) ∈ ρ(i) such that r < u. Then we have s > v.
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(b) The second condition mentioned in Proposition 6 is not satisfied.

More precisely, there does not exist an element p ∈ I \ T such that

(p, p) ∈ ρ(p) \
⋃
i∈I

ρ(i) .

(ii) Let T be well-behaved. Then cardT = 1, i.e., I possesses exactly one

trivial element: By Remark 2 (ii) we have cardT ≥ 1. Suppose that there

exist p, q ∈ T such that q < p, and pick k ∈ I such that (q, p) ∈ ρ(k).

Property (C7) yields k = p, hence (q, p) ∈ ρ(p). Using property (C8) we

find s ∈ T such that (p, s) ∈ ρ(p). But this yields s = p by (C7), while the

complementary ordering property requires p > s: Contradiction.

Moreover, none of the two conditions mentioned in Proposition 6 is

satisfied.

As explained in [13] a well-behaved convolution type imposes a strong algebraic

structure on the set I. We formulate the result [13, Proposition 7] as follows.

Proposition 9. Let ρ be symmetric and T be a well-behaved R-convolution type.

For any i, j ∈ I there is a unique k ∈ I such that (i, j) ∈ ρ(k); in this case we write

k = i ∗ j. Moreover, (I, ∗) is a commutative cancellative semigroup with the unique

trivial element as identity. For all i, j, k ∈ I the relation i < j implies i ∗ k < j ∗ k.

If card I > 1 then I is infinite.

Proof. The proofs of [13, Lemma 6 and Proposition 7] hold under our prerequisites.

As an example we verify [13, Lemma 6 (v)], i.e., we show that if

(r, s) ∈ ρ(i) (3)

then any two elements of i, r, s determine the third uniquely. Indeed, the assumption

(u, s) ∈ ρ(i) yields r = u by the complementary ordering property. Now, let

(r, s) ∈ ρ(j) (4)

with some j ∈ I. Since T is a well-behaved there exists some k ∈ I such that

(i, j) ∈ ρ(k). (5)

In view of (5) and (3) property (C5) of Definition 1 yields some v ∈ I such that

(r, v) ∈ ρ(k) and (s, j) ∈ ρ(v). Analogously, (j, i) ∈ ρ(k) and (4) imply the existence

of some u ∈ I such that (r, u) ∈ ρ(k) and (s, i) ∈ ρ(u). Thus we have (r, v) ∈ ρ(k)

and (r, u) ∈ ρ(k). By what we have just seen above we conclude u = v. But then

we have j = i because we know (s, j) ∈ ρ(u) and (s, i) ∈ ρ(u). �
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The criterion on the existence of zero-divisors in [13, Proposition 4] can be ex-

tended to our settings here and we record the result as follows.

Theorem 10. Suppose that every non-empty subset of I which is bounded from

below has a minimal element. Further, let T be a well-behaved R-convolution type

such that for all r, s ∈ I the element τ(r, s) is not a zero-divisor in A. Then C(A, T )

has zero-divisors if and only if A has zero-divisors.

Proof. We first claim that I has a minimal element. Indeed, by Remark 8 there

is some t ∈ I such that T = {t}. Thus our assertion is trivial if I = T , and we let

I 6= T . By the lower bound requirement there exists k ∈ I such that k is a lower

bound for I \ T . Then min {t, k} is a minimal element of I.

Now, the proof of [13, Proposition 4] can be adapted. �

This theorem and Proposition 3 (iii) immediately yield the following result.

Corollary 11. Suppose that every non-empty subset of I which is bounded from

below has a minimal element. Let R be an integral domain and T be a well-behaved

R-convolution type such that τ(r, s) 6= 0 for all r, s ∈ I. Then C(R, T ) is an integral

domain.

Let us now turn to units in C(R, T ). Analogously as in [13, Section 4] we present

conditions which guarantee that C(R, T ) has more units than R.

Theorem 12. Let I be contained in N. Further assume that T is an R-convolution

type which satisfies the lower bound requirement and the following two conditions.

(i) For all t ∈ T we have ρ(t) = {(t, t)}.
(ii) Let i, j, k ∈ I and (i, j) ∈ ρ(k). If i /∈ T then j < k.

Then f ∈ C(R, T ) is a unit if and only if f(t) is a unit in R for all t ∈ T .

Proof. The proof of [3, Theorem 12] which is adapted from the proof of [13, Propo-

sition 5] can be copied. �

Specializing to well-behaved R-convolution types yields the following character-

ization of units.

Corollary 13. Let I ⊆ N, ρ be symmetric and T be a well-behaved R-convolution

type. Then f ∈ C(R, T ) is a unit if and only if f(t) is a unit in R for all t ∈ T .

Proof. In the proof of Proposition 9 we already mentioned that [13, Lemma 6]

holds under our prerequisites. Therefore the assertion follows from the Theorem.

�
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Let us briefly return to an example given above.

Example 14. Under the additional condition card I > 1 we extend our remarks on

the R-convolution type T := (I,S, ρ, τ) described in Example 4 (vi). By assumption

I contains some i > 1, and we clearly have (i, i) /∈ ρ(k) for all k ∈ I, hence T is

not well-behaved. By Proposition 6 the ring C(A, T ) has non-zero zero divisors;

in fact, the proof of this proposition allows an easy construction of some zero-

divisors. Further, we observe that T fulfills the lower bound requirement and has

the complementary ordering property. In particular, if R is a field then Theorem 12

yields that f ∈ C(R, T ) is a unit if and only if f(1) 6= 0.

Komatsu et al. [6, Section 3] defined a so-called Qα-convolution which may be

extended in the following way.

Theorem 15. Let I be a multiplicatively closed subset of the positive integers which

contains 1. Define

ρ(i) = {(r, s) ∈ I × I : rs = i} (i ∈ I).

Let F be a field and α : I → F and β : I × I → F be non-vanishing maps. If β is

bi-multiplicative, i.e.,

β(ij, k) = β(i, k)β(j, k) and β(i, jk) = β(i, j)β(i, k) (i, j, k ∈ I)

then T := (I, {∅} , ρ, τ) is an F -convolution type where τ : I × I → F is given by

τ(i, j) :=
α(ij)

α(i) α(j)
· β(i, j) (i, j ∈ I) .

The units of C(F, T ) are precisely the maps f : I → F such that f(1) 6= 0. More-

over, if β = 1 then C(F, T ) is commutative.

Proof. In view of Remark 2 (iii), (vii) the verification of properties (C1), . . . ,

(C9) in Definition 1 can straightforwardly be performed. For instance, in order to

check (C5) we let i ∈ I, (r, s) ∈ ρ(i) and (p, q) ∈ ρ(r). Then rs = i and pq = r.

Therefore, u := qs ∈ I since I is closed under multiplication. Clearly, we have

(p, u) ∈ ρ(i), (q, s) ∈ ρ(u), and u is uniquely determined since for u′ ∈ I such that
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(q, s) ∈ ρ(u′) we have u′ = qs = u . Further, we have

τ(r, s) τ(p, q) =
α(i)

α(r) α(s)
· α(r)

α(p) α(q)
· β(pq, s) · β(p, q)

=
α(i)

α(s)
· 1

α(p) α(q)
· β(p, s) · β(q, s) · β(p, q)

=
α(pu)

α(p) α(u)
· α(u)

α(s) α(q)
· β(p, q) · β(p, s) · β(q, s)

=
α(pu)

α(p) α(u)
· α(qs)

α(q) α(s)
· β(p, qs) · β(q, s)

= τ(p, u) τ(q, s) .

Obviously, T is well-behaved. We observe that T = {1} , and then the charac-

terization of the units of C(F, T ) follows from Theorem 12.

Finally, if β = 1 then τ is symmetric, and we infer from Proposition 3 that

C(F, T ) is commutative. �

Finally we show that the so-called generalized convolution ring of arithmetic

functions studied by Shapiro [11], Fotino [5] and Ferrero [4] can be seen as a con-

volution type in our settings here.

Corollary 16. Let τ : N× N→ C be a non-vanishing map such that

τ(i, j) τ(ij, k) = τ(i, jk) τ(j, k) (i, j, k ∈ N) .

Then T := (I, {∅} , ρ, τ) is a C-convolution type where we set

ρ(i) = {(r, s) ∈ N× N : rs = i} (i ∈ N).

The units of C(C, T ) are precisely the maps f : N → C such that f(1) 6= 0. More-

over, if τ is symmetric then C(C, T ) is commutative.

Proof. We infer from [5, Theorem 3.1] that there exist a non-vanishing map α :

N→ C and a bi-multiplicative map β : N× N→ C such that

τ(i, j) =
α(ij)

α(i) α(j)
· β(i, j) (i, j ∈ N) ;

furthermore, if τ is symmetric then β = 1. Now, our assertion follows from Theo-

rem 15. �
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