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Abstract. In this article, we discuss the n-root closedness, root closedness,

seminormality, S-root closedness, S-closedness, F -closedess of PVDs. A valu-

ation domain, being integrally closed, is obviously root closed. So our interest

of study is for a class of non-valuation PVDs. Let R ⊂ B be a domain exten-

sion such that R is a PVD and the common ideal P of R and B is a prime

ideal in R. If R is n-root closed (respectively root closed, seminormal, S-root

closed, S-closed, F -closed) in B, then R/P is PVD, which is n-root closed (re-

spectively root closed, seminormal, S-root closed, S-closed, F -closed) in B/P .

Further we study the relationship of atomic PVDs to atomic PVDs, SHFDs,

LHFDs and BVDs. We also discuss a relative ascent and descent in general

and particularly for the antimatter property of PVDs.
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1. Introduction

Following [3], an integral domain R with quotient field K is said to be root closed

if whenever xn ∈ R for some x ∈ K, and n ∈ Z+, then x ∈ R. We define R to

be n-root closed if whenever xn ∈ R for some x ∈ K, then x ∈ R. Any integral

domain R is trivially 1-root closed. An integral domain R is root closed if and only

if it is n-root closed for each n ∈ Z+. Further, R is seminormal if whenever x ∈ K
with x2, x3 ∈ R, then x ∈ R. More generally, if R ⊆ B be a unitary commutative

ring extension, then R is n-root closed in B if whenever x ∈ B with xn ∈ R, then

x ∈ R. By [19], R is F -closed in B if whenever x ∈ B with x2, x3 ∈ R and nx ∈ R
for some n ∈ Z+, then x ∈ R. Following [8, Page 2], A is S-root closed in B if

whenever b is in B and bn is in A for some n in S, then b is in A. The ring A is

called S-closed in B if b is in B and bn is in A for all n in S, then b is in A.

According to Cohn [12], an integral domainR is an atomic domain if each nonzero

non-unit of R is a product of a finite number of irreducible elements (atoms) of R.
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Acccording to [21], an atomic domain R is a half-factorial domain (HFD) if for each

nonzero nonunit element x ∈ R, if x = x1...xm = y1...yn with each xi, yj , 1 ≤ i ≤ m,
1 ≤ j ≤ n is irreducible element in R, then m = n.

According to [15], a prime ideal P of an integral domain R with quotient field

K, is known as strongly prime if x, y ∈ K such that xy ∈ P , then either x ∈ P or

y ∈ P . An integral domain R is said to be pseudo-valuation domain (PV D) if each

prime ideal of R is strongly prime.

This study includes an investigation of ”When is a non-valuation PVD n-root

closed (resp., root closed)?” Note that a valuation domain is a PVD (cf. [15,

Proposition 1.1]). But a valuation domain is integrally closed and hence root closed,

so our interest is in a PV D which is not a valuation domain. In the first part of this

study we establish some conditions under which a PV D (which is not a valuation

domain) is n-root closed (respectively root closed). We apply these results to obtain

seminormal, S-root closed and S-closed PV Ds. We also discuss the behavior of root

closure of R/P, where P is a prime ideal of R, whenever R is root closed PV D. In

[8], S-root closure in factor ring of a root closed ring is discussed (cf. [8, Theorem

1.8]), we extend it for n-root closure and for root closure. We also generalize [8,

Proposition 1.5] for n-root closure and for root closure for extension of PV Ds.

According to [4], an HFD is strongly half-factorial domain (SHFD) if each of

its overrings is an HFD. An HFD is locally half-factorial domain (LHFD) if each

of its localization is an HFD. Following [16], let R be an HFD with quotient field

K. If R 6= K, we define the boundary map δR : K∗ → Z by δR(α) = t − s, where

α = (x1...xt)/(y1...ys) ∈ K and xi, yj are irreducible elements in R.

By [16], an integral domain R with quotient field K, is called boundary valuation

domain (BVD) if R is an HFD, and for any α ∈ K with δR(α) 6= 0, either α ∈ R
or α−1 ∈ R, where δR is boundary map defined on K.

We also discuss the relationship of atomic PV Ds in which we relate atomic

PV Ds to SHFDs, LHFDs and BVDs. Further we discuss a relative ascent and

descent of PV Ds.

Finally we emphasize upon the antimatter property (a domain R is an antimat-

ter domain if it has no atoms [13]) of pseudo-valuation domain while considering

the condition ∗. Here we generalized a few of results of [13] relative to the condition

∗.
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2. Root closure in PVDs

We begin with the following.

Remark 2.1. Let V be a valuation domain of the form K + M, where K is any

field and M is the maximal ideal of V . If F is a proper subfield of K which is

n-root closed in K, then by [15, Example 2.1], R = F +M is a PV D which is not

a valuation domain. Since V is a valuation domain and F is n-root closed in K,

therefore R is n-root closed (cf. [3, Lemma 2.1 (c)]).

Let S be a multiplicative submonoid of P, generated by some set of positive

primes. Here, an increasing sequence of subfields of R can be defined by K0 = Q
and Kn+1 = Kn({x ∈ R | xp ∈ Kn for some p ∈ P}). KS = ∪Kn is a field (see [6,

p-7]).

Remark 2.2. The additive monoid monoid S = Q+ ∪ {0} form algebra R[X;S]

over R, which is Bezeout domain (cf. [20, Example 4.5]). Let P = {f ∈ R[X;S] : f

has zero constant term}. P is a prime ideal and clearly the multiplicative system

T = R[X;S]\P is the set of elements with nonzero constant terms. It is easy to see

that R[X;S] = R+P and as it is Bezeout domain, so (R[X;S])T = R+ (P )T = V

is a valuation domain with maximal ideal (P )T (cf. [20, Example 4.5]). Then

R = KS + (P )T , where KS = ∪Kn. Thus R = KS + (P )T is n-root closed, as KS

is n-root closed in R, by [6, Lemma 3.2]. So, R is n-root closed PV D which is not

a valuation domain.

According to [20], an integral domain R, with quotient field K, is said to be

pre-Schreier domain if for all x, y, z ∈ R\{0}, x | yz implies x = rs, where r, s ∈ R
with r | y and s | z. An integrally closed pre-Schreier domain is called a Schreier

domain.

Remark 2.3. In Remark 2.2, the maximal ideal (P )T is idempotent, therefore

R = KS + (P )T is pre-Schreier domain (cf. [20, Theorem 4.4]). As KS is not

algebraically closed in R, therefore R is not integrally closed. Hence R = KS +(P )T

is an example of a pre-Schreier PVD which is not a Schreier domain but is root

closed.

The above observations yield the following:

Lemma 2.4. Let V be a valuation domain of the form K +M, where K is a field

and M be the maximal ideal of V and F be a proper subfield of K.

(1) If F is root closed in K, then R = F +M is root closed PV D.



56 TARIQ SHAH AND WAHEED AHMAD KHAN

(2) If F is seminormal in K, then R = F +M is seminormal PV D.

(3) If F is m,n-root closed in K, then R = F +M is mn-root closed.

(4) If F is S-root closed in K, then R = F +M is S-root closed PV D.

(5) If F is S-closed in K, then R = F +M is S-closed PV D.

Proof. (1) As F is root closed, so F is n-root closed for all n ∈ Z+. By Remark

2.1, R is n-root closed for all n. Hence R is root closed.

(2) As F is seminormal in K, so F is 2, 3-root closed in K. By Remark 2.1, R

is 2, 3-root closed. Hence R is seminormal.

(3) If F is m,n-root closed, K is mn-root closed [3, Lemma 2.1 (a)]. So R is

mn-root closed by Remark 2.1.

(4) Suppose F is S-root closed, by definition of S-root closed if whenever k ∈ K
and kn ∈ F for all n in S, implies k ∈ F and by Remark 2.1, R is n-root closed for

some n ∈ S. Hence R is S-root closed.

(5) As F is S-closed in K, by definition of S-root closed if whenever k ∈ K and

kn ∈ F for all n in S, implies k ∈ F and by Remark 2.1, R is n-root closed for all

n ∈ S. Hence R is S-closed. �

Remark 2.5. (i) By [3, Example 2.2], let L be the algebraic closure of Q and

let F be the subfield of L consisting of all elements α over Q such that the

minimal polynomial for α over Q is solvable. Choose β ∈ L but not in F ,

then let K = F (β). Next, let V = K + M = K[[X]], where K is a field,

M = XV , then R = F + M is root closed. Obviously by [11, Theorem

2.1], R is one-dimensional Noetherian local domain which is not integrally

closed.

(ii) Let V = C+M = C[[X]], where M = XV , then D = R+M is seminormal

(cf. [7, Lemma 2.1 ]). It is not n-root closed PV D for any n > 1, since C
contains n th root of unity, not in R.

In [8], S-root closure of commutative ring extensions R ⊆ B ⊆ C has already

been discussed (see [8, Proposition 1.5]). We are looking at it for n-root closure

and root closure particularly for the extensions of PV Ds.

Proposition 2.6. Let R ⊆ B ⊆ C be extensions of PV Ds such that B is n-root

closed in C, then R is n-root closed in B if and only if R is n-root closed in C.

Proof. Let R ⊆ B ⊆ C be extensions of PV Ds such that B is n-root closed in C.

Let R be n-root closed in B. This implies that for x ∈ B, if xn ∈ R, then x ∈ R.

Since B ⊆ C, therefore x ∈ C. So R is n-root closed in C. Conversely, let R be
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n-root closed in C, this means for any x ∈ C, xn ∈ R implies x ∈ R. So xn ∈ R ⊆ B
shows that xn ∈ B, where x ∈ C. Since B is n-root closed in C, therefore x ∈ B.

Hence R is n-root closed in B. �

Corollary 2.7. Let R ⊆ B ⊆ C be extensions of PV Ds.

(1) Let B be root closed in C, then R is root closed in B if and only if R is root

closed in C.

(2) Let B be seminormal in C, then R is seminormal in B if and only if R is

seminormal in C.

(3) Let B be F -closed in C, then R is F -closed in B if and only if R is F -closed

in C.

Proof. (1) Let R be root closed in B, that is R is n-root closed in B for all n ∈ Z+.

For any x ∈ B, if xn ∈ R, then x ∈ R, for all n ∈ Z+. This means R is n-root closed

in C for all n ∈ Z+ by Proposition 2.6. Hence R is root closed in C. Conversely, let

R be root closed in C. This implies R is n-root closed for all n. That is if xn ∈ R,
where x ∈ C, then x ∈ R for all n. This means R is n-root closed in B for all

n ∈ Z+, by Proposition 2.6. Hence R is root closed in B.

(2) Let R be seminormal in B. That is x2, x3 ∈ R implies x ∈ R, where x ∈ B.

So R is seminormal in C by Proposition 2.6. Conversely, let R be seminormal in

C, that is, if x2, x3 ∈ R, where x ∈ C, then x ∈ R. So R is (2, 3)-root closed in B,

by Proposition 2.6. Hence R is seminormal in B.

(3) Let R be F -closed in B. That is for any x ∈ B whenever nx, x2, x3 ∈ A,
where n ∈ Z+, then x ∈ R. Since B ⊆ C, so x ∈ C. That is for any x ∈ C

whenever nx, x2, x3 ∈ R, then x ∈ R. Hence R is F -closed in C. Conversely, let

R be F -closed in C. This implies whenever x2, x3, nx ∈ R, then x ∈ R, where x

∈ C and . Since x2, x3, nx ∈ R ⊆ B, so x2, x3, nx ∈ B, where x ∈ C. Also B is

F -closed in C, which implies that x ∈ B. Hence R is F -closed in B. �

In [8], it is established that, for a commutative ring extension R ⊆ B, the factor

ring R/I is S-root closed, where R is a root closed ring and I is a common ideal

of R and B (see [8, Theorem 1.8]). We focus on this situation for prime ideal P

of R which is also an ideal in B, instead of I and discussed the root closure of

factor ring R/P, whenever R is root closed PV D. Furthermore we also address the

seminormality and F -closedness for factor ring R/P of a PV D R.

In Theorem 2.8, we prove the result specially for pseudo-valuation domains.
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Theorem 2.8. Let B be a domain extension of a PV D R such that P is a prime

ideal of R which is also an ideal in B. If R is n-root closed in B, then R/P is

PV D, which is n-root closed in B/P.

Proof. By [10, Corollary 3], R/P is PV D. Let (x + P )n ∈ R/P , where x + P ∈
B/P. This implies xn + P ∈ R/P, where xn ∈ R. Since R is n-root closed in B,

so xn ∈ R implies x ∈ R. That is x + P ∈ R/P . Hence R/P is n-root closed in

B/P. �

Corollary 2.9. Let B be a domain extension of a PV D R such that P is a prime

ideal of R which is also an ideal in B. Then

(1) R is root closed in B =⇒ R/P is PV D, which is root closed in B/P .

(2) R is seminormal in B =⇒ R/P is PV D, which is seminormal in B/P .

Proof. (1) R is n-root closed in B for all n ∈ Z+ implies R/P is n-root closed in

B/P for all n, by Theorem 2.8. This means R/P is root closed in B/P .

(2) R is seminormal in B means R is 2, 3-root closed in B. By Theorem 2.8,

R/P is 2, 3-root closed in B/P implies R/P is seminormal in B/P. �

Theorem 2.10. Let B be a domain extension of a PV D R such that P is a prime

ideal of R which is also an ideal in B. If R is S-root closed in B, then R/P is

PV D, which is S-root closed in B/P.

Proof. By [10, Corollary 3] R/P is a PV D. Let (x+ P )n ∈ R/P, where x+ P ∈
B/P for some n ∈ S. This implies xn + P ∈ R/P, that is xn ∈ R for some n ∈ S.

Since R is S-root closed, so x ∈ R and x+ P ∈ R/P . Hence R/P is S-root closed

in B/P. �

Corollary 2.11. Let B be a domain extension of a PV D R such that P is a prime

ideal of R which is also an ideal in B. If R is S-closed in B, then the PV D R/P

is S-closed in B/P.

Proof. Let R be S-root closed in B for all n ∈ S. By Theorem 2.10, R/P is S-root

closed in B/P for all n ∈ S. Hence R/P is S-closed in B/P . �

Theorem 2.12. Let B be a domain extension of a PV D R such that P is a prime

ideal of R which is also an ideal in B. If R is F -closed in B, then R/P is PV D,

which is F -closed in B/P.

Proof. Let R ⊆ B be a ring extension, where R is a PV D which is F -closed in B.

R/P is a PV D ([10, Corollary 3]). R is F -closed in B implies if whenever x ∈ B
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with x2, x3 ∈ R and nx ∈ R for some positive integer n, then x ∈ R. Let (x+P )2,

(x + P )3 ∈ R/P. This means x2 + P, x3 + P ∈ R/P. Let n(x + P ) ∈ R/P, then

nx + P ∈ R/P, where x + P ∈ B/P and so nx ∈ R. As R is F -root closed, so

x ∈ R, which implies that x+ P ∈ R/P . Hence R/P is F -closed in B/P. �

3. Atomic PVDs

In this part we consider the case of atomic PV Ds and relate it with SHFDs,

LHFDs and BVDs.

Recall from [4] that, an HFD is SHFD if each of its overring is an HFD.

Proposition 3.1. A Noetherian PV D is an SHFD.

Proof. Each overring of R is PV D (cf. [15, Corollary 3.3]). Since R is Noetherian,

therefore its integral closure R′ is Noetherian and dim(R′) is 1 (cf. [15, Corollary

3.4]). Obviously R′ is a Dedekind domain. By [14, Theorem 1], every overring of

R is atomic. That is each overring of R is an atomic PV D. So each overring of R

is an HFD by [9, Theorem 5]. Hence R is an SHFD. �

Following [4], an HFD is LHFD if each of its localization is an HFD.

Remark 3.2. By definitions of SHFD and LHFD it is clear that an SHFD is an

LHFD. Therefore a Noetherian PV D is also an LHFD because it is an SHFD

by Proposition 3.1.

Remark 3.3. (i) Let (R,M) be a PV D which is not a valuation domain and

M2 = M , then R is a pre-Schreier [20, Theorem 4.4].

(ii) An atomic PV D may not be a finite factorization domain (FFD), (By [1],

R is a finite factorization domain (FFD) if each nonzero non-unit element

of R has a finite number of non-associate divisors and hence, only a finite

number of factorizations upto order and associates), because R + XC[[X]]

is an atomic PV D which is not an FFD.

Following [16], let R be an HFD with quotient field K. If R 6= K, we define the

boundary map δR : K∗ → Z by δR(α) = t − s, where α = (x1...xt)/(y1...ys) ∈ K
and xi, yj are irreducible elements in R.

Recall from [16] that, an integral domain R with quotient field K, is called BVD

if R is an HFD and for any α ∈ K with δR(α) 6= 0 either α ∈ R or α−1 ∈ R, where

δR is boundary map defined on K.
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Theorem 3.4. The following assertions are equivalent for an integral domain R.

(1) R is an atomic PV D.

(2) R is a BVD.

Proof. (1) ⇒ (2). Let R with quotient field K, be an atomic PV D. This implies

R is an HFD by [9, Theorem 5]. Let δR : K∗ −→ Z be a boundary map defined

on K∗ = K\{0} as δR(α) = t − s, where x/y = α = (x1...xt)/(y1...ys) and xi, s,

yj,s are irreducible elements in R. Assume δR(α) 6= 0. If δR(α) < 0, then t− s < 0,

that is t < s, by [9, Theorem 6] x | y, thus y/x ∈ R gives α−1 ∈ R. If δR(α) > 0,

then t − s > 0, that is t > s, by [9, Theorem 6] y | x, thus x/y ∈ R, which shows

that α ∈ R. Hence R is a BVD.

(2) ⇒ (1). Let R be a BVD, so δR(x) < δR(y) implies x | y (cf. [16, Theorem

2.3]). Thus by [9, Theorem 6] R is a PV D. �

Corollary 3.5. If R is a Noetherian PV D, then each overring of R is a BVD.

Proof. Let R be a Noetherian PV D. Each overring of R is an HFD, by Proposi-

tion 3.1. Also R is a BVD by Theorem 3.4. Each overring of R is BVD (cf. [16,

Theorem 3.3]). �

4. A relative ascent and descent

We recall the following as in [17].

Condition ∗: Let R ⊆ B be a unitary (commutative) ring extension such that

U(B) represent the set of units of B. For each b ∈ B there exist u ∈ U(B) and

a ∈ R such that b = ua.

For a unitary (commutative) ring extension R ⊆ B, the conductor of A in B is

the largest common ideal R : B = {a ∈ R : aB ⊆ R} of R and B.

The following are few examples of unitary (commutative) ring extensions which

are satisfying Condition ∗.

Remark 4.1. [17, Example 1]

(i) If B is a field, then the ring extension R ⊆ B satisfies Condition ∗.
(ii) If B is a fraction ring of R, then the ring extension R ⊆ B satisfies

Condition ∗. Hence the ring extension R ⊆ B satisfies Condition ∗ is

the generalization of localization.

(iii) If the ring extensions R ⊆ B and B ⊆ C satisfy Condition ∗, then so does

the ring extension R ⊆ C.
(iv) If the ring extension R ⊆ B satisfies Condition ∗, then the extensions of

rings R+XB[X] ⊆ B[X] and R+XB[[X]] ⊆ B[[X]] satisfy Condition ∗.



PSEUDO-VALUATION DOMAINS WHICH ARE NOT VALUATION DOMAINS 61

There are number of examples of domain extensions R ⊆ B which are satisfying

Condition ∗ but the conductor ideal R : B is not a maximal ideal of R, as the

following remark shows.

Remark 4.2. (i) Following [2, Example 5.3], let V be a valuation domain

such that its quotient field K is the countable union of an increasing family

{Vi}i∈I of valuation overrings of V. Let L be a proper field extension of K

thus, L∗/K∗ is infinite as indicated in [2, Example 5.3].

(a) The domain extension R = Vi + XL[[X]] ⊆ L[[X]] = B satisfies the

Condition ∗ as the extension Vi ⊆ L satisfies the Condition ∗. But

XL[[X]] is not a maximal ideal in R and such that U(R) 6= U(B).

(b) The domain extension R = Vi +XL[[X]] ⊆ K+XL[[X]] = C satisfies

the Condition ∗ but XL[[X]] is not a maximal ideal in R and such

that U(R) 6= U(C).

(ii) The domain extension R = Z(2)+XR[[X]] ⊆ Q+XR[[X]] = B satisfies

the Condition ∗, indeed; as Z(2) ⊆ Q satisfies Condition ∗, so if f(X) =

q+X
∑∞

i=0 riX
i ∈ B, then q = q

′
q
′′
, where q

′ ∈ U(B) = Q\{0}, q′′ ∈ Z(2),

hence f(X) = q
′
(q

′′
+X

∑∞
i=0(q

′
)−1riX

i), where q
′′

+X
∑∞

i=0(q
′
)−1riX

i ∈
R. But the conductor ideal R : B is not a maximal ideal in R.

(iii) The domain extension R = Z(2)+XR[[X]] ⊆ R[[X]] =B, satisfies Condition

∗ but the conductor ideal R : B is not a maximal ideal in R.

4.1. The case of PVDs. In the following we observe that the ascent of PV D

holds for a domain extension R ⊆ B which satisfies Condition ∗.

Theorem 4.3. Let R ⊆ B be a domain extension which satisfies Condition ∗. If

R is a PV D, then B is a PV D.

Proof. As R is a PV D, [9, Proposition 4] says: A ring R is a PVR iff for all

a, b ∈ R either a | b or every proper divisor of b divides a. Since R is a PV D,

therefore either a | a1 or any divisor d of a1 divides a. Let a | a1 clearly b1 | b2.
Now suppose b1 does not divide b2 and let d | b2 which implies d | a1c1. As c1 is

unit, so d | a1. Since R is a PV D, therefore d | a, which implies that d | ac. That

is d | b1. Hence B is a PV D. �

Corollary 4.4. Let R ⊆ B be a domain extension which satisfies Condition ∗ and

M = R : B be a maximal ideal of R . If R is an atomic PV D, then B is an atomic

PV D.

Proof. Let R be an atomic PV D. By [17, Proposition 2.6 (a)], B is atomic. By

Theorem 4.3, B is PV D. Hence B is an atomic PV D. �



62 TARIQ SHAH AND WAHEED AHMAD KHAN

Remark 4.5. The domain extensions R + XC[[X]] ⊆ C[[X]] and Q + XR[[X]] ⊆
R[[X]] are examples on the Corollary 4.4.

The following is an alternate approach to obtain as of Corollary 4.4. Although

Theorem 4.6 has been proved in [18, Theorem 3.7], but still we are presenting here

when R is a pseudo-valuation domain.

Theorem 4.6. Let R ⊆ B be domain extension which satisfies Condition ∗ and

M = R : B be a maximal ideal in R where KR and KB are quotient fields of R

and B respectively. If R is a pseudo-valuation domain which is also a BVD then

B is also a pseudo-valuation which is BVD.

Proof. Suppose R ⊆ B such that R is a pseudo-valuation domain and also a

bounded valuation domain (BVD). Following Theorem 4.3, B is a pseudo-valuation

domain. As a BVD is an HFD, so R is an HFD and by [17, Theorem 2.6(e)]

B is an HFD. For α ∈ K∗B , we have α = b
d , where b, d ∈ B\{0}. This implies

α = b
d = ab

′

cd′ , where a, c ∈ R, b′ , d′ ∈ U(B). This means α = b
d = a1...asb

′

c1...ctd
′ , where

a1, ..., as, c1, ..., ct ∈ R are irreducibles and by [17, Theorem 2.5(d)] also irreducibles

in B. Obviously u = b
′

d′ ∈ U(B) and therefore α = b
d = a

cu = a1...as

c1...ct
u. Obviously

δB(α) 6= 0 implies δR(a
c ) 6= 0 and therefore either a

c ∈ R or c
d ∈ R. This implies

a
cu ∈ B or c

au
−1 ∈ B. Hence B is a BVD. �

4.2. The case of antimatter domains. If R ⊆ B such that R and B are distinct

domains with equal spectra, that is Spec(R) = Spec(B), then by [5, Proposition

3.3] R is quasi-local with maximal ideal M and R8U(R) = M = B8U(B). While

considering equal spectra context it is easy to deal with antimatter domains in the

same fashion as we dealt with atomic domains, we will utilize here.

The following lemma extended [13, Lemma 3.1] if we add the Condition ∗.

Lemma 4.7. Let R ⊆ B be the domain extension such that Spec(R) = Spec(B),

which satisfies Condition ∗. Let t ∈ B such that t = ur, where u ∈ U(B), r ∈ R,
then t is an atom in B if and only if r is an atom in R.

Proof. By Condition ∗ each t ∈ B can be written as t = ur, where u ∈ U(B),

r ∈ R. Let us suppose that r ∈ R is the only atom of R, then r can only be written

as r = r.1. Then clearly R is a quasilocal domain with maximal ideal M generated

by r. Then by [5, Proposition 3.3] we have M = R8U(R) = B8U(B). But t = ur,

where u ∈ U(B) and hence t ∈ M, which generates the maximal ideal M . Thus t

is an atom in B if r is an atom in R. �
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The following proposition provides the sufficient condition for [13, Proposition

3.2(b)].

Proposition 4.8. Let R ⊆ B be the domain extension such that Spec(R) =

Spec(B), which satisfies Condition ∗, then B is an antimatter domain if and only

if R is an antimatter domain.

Proof. Assume that R is an antimatter domain, then by Condition ∗ for r ∈ R
there exists t ∈ B such that t = ur, with u ∈ U(B) and r ∈ R. This means t and r

are assosiates in divisibility in B and by Lemma 4.7, t is not an atom in B. Thus

B is an antimatter domain. The converse follows by [13, Proposition 3.2(b)]. �

Lemma 4.9. Let R be an integral domain with quotient field F satisfying Condition

∗. If R is an antimatter domain, then any overring of R having same spectrum to

R is an antimatter domain.

Proof. Let R be an antimatter domain and T be its overring such that u ∈ U(T ) ⊆
F and each t ∈ T can be written as t = ur by Condition ∗. Then by Proposition

4.8, it is clear that if R is an antimatter domain then T is an antimatter domain. �

The following lemma is the converse of [13, Cor 3.3(b)].

Lemma 4.10. Let R be a PVD and the extension R ⊆ V satisfies Condition ∗,
where V is the canonically associated valuation overring of R . If R is an antimatter

domain, then V is an antimatter domain.

Proof. The result is obvious by the irreducibility of an elements in R and its

overring V , by adding Condition ∗ gives the result that V is an antimatter domain

if R is an antimatter domain. �

Example 4.11. The domain extension R = Vi + XL[[X]] ⊆ L[[X]] = B satisfies

the Condition ∗ as the extension Vi ⊆ L satisfies the Condition ∗. But XL[[X]]

is not a maximal ideal in R and such that U(R) 6= U(B). Then clearly if R is

antimatter domain then so is B, as irreducibility in R implies irreducibility in B.

Example 4.12. Let V = F + M be a nontrivial valuation domain, where F is

a field and M the maximal ideal of V . Let D be a domain with quotient field F

satisfying Condition ∗, and put R = D +M . Indeed R is an antimatter domain if

and only if D is antimatter domain by [13, Corollary 3.10] with Condition ∗.
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