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Abstract. Motivated by the concept of clean index of rings of Lee and Zhou

we introduce the concept of nil clean index of rings. For any element a of a

ring R with unity, we define η(a) = {e ∈ R | e2 = e and a−e ∈ nil(R)}, where

nil(R) is the set of all nilpotent elements of R. Then nil clean index of R is

defined by sup{ |η(a)| : a ∈ R} and it is denoted by Nin(R). In this article,

we characterize rings of nil clean indices 1, 2 and 3 and prove some interesting

results pertaining them.
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1. Introduction

Rings R are associative rings with unity unless otherwise indicated, and modules

(and bimodules) are unitary. The Jacobson radical, group of units, set of idempo-

tents and set of nilpotent elements of a ring R are denoted by J(R), U(R), idem(R)

and nil(R) respectively. Cyclic group of order m will be denoted by Cm. Notion

of clean rings was first introduced by Nicholson [5], which was later extended to

nil clean rings by Diesel [2]. Chen [1] characterized uniquely clean and uniquely

nil clean rings completely. Further Lee and Zhou [3,4] introduced clean index of

rings, which motivated us to introduced and study nil clean index of rings. For an

element a ∈ R, if a− e ∈ nil(R) for some e2 = e ∈ R, then a = e+ (a− e) is called

a nil clean expression of a in R and a is called a nil clean element. The ring R is

called nil clean if each of its elements is nil clean. A ring R is uniquely nil clean

if every element of R has a unique nil clean expression in R. For any element a of

R, we denote η(a) = {e ∈ R | e2 = e and a− e ∈ nil(R)} and nil clean index of R

is defined by sup{|η(a)| : a ∈ R} and it is denoted by Nin(R), where |η(a)| denotes

the cardinality of the set η(a). Thus, R is uniquely nil clean if and only if R is a

nil clean ring of nil clean index 1.
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2. Elementary Properties

Some basic properties related to nil clean index are presented here as a prepa-

ration for the article.

Lemma 2.1. Let R be a ring, and let e, a, b ∈ R. The following hold:

(1) If e ∈ R is a central idempotent or a central nilpotent, then |η(e)| = 1, so

Nin(R) ≥ 1.

(2) e ∈ η(a) iff 1− e ∈ η(1− a), and so |η(a)| = |η(1− a)|.
(3) If f : R → R is a homomorphism, then e ∈ η(a) implies f(e) ∈ η(f(a)),

and for converse part f must be monomorphism.

(4) If a ring R has at most n idempotents or at most n nilpotent elements, then

Nin(R) ≤ n.

Proof. (1) Let e be a central idempotent, so we have e = e + 0, a nil clean

expression of e. If possible let e = a+ n be another nil clean expression of e in R,

where a ∈ idem(R), n ∈ nil(R) and nk = 0 for some positive integer k. Then

(e− a)2k−1 = 0 implies

e2k−1 −
(

2k − 1

1

)
e2k−2a+ · · ·+

(
2k − 1

2k − 2

)
(−1)2k−2ea2k−2 + (−1)2k−1a2k−1 = 0,

(e+ (−1)2k−1a)−
{(

2k − 1

1

)
−
(

2k − 1

2

)
+ · · ·+ (−1)(2k−3)

(
2k − 1

2k − 2

)}
ea = 0.

Using elementary result of binomial coefficients, we get (e−a)−(1+(−1)2k−3)ea =

0. Hence e = a, i.e, |η(e)| = 1.

(2) e ∈ η(a) ⇔ a − e is nilpotent ⇔ e − a is nilpotent ⇔ (1 − a) − (1 − e) is

nilpotent ⇔ 1− e ∈ η(1− a), so we get |η(a)| = |η(1− a)|.
(3) is straightforward and (4) is clear from the definition of nil clean index. �

Lemma 2.2. If S is a subring of a ring R, where S and R may or may not share

the same identity, then Nin(S) ≤ Nin(R).

Proof. Since S is a subring of R, so all the idempotents and nilpotent elements

of S are also idempotents and nilpotent elements of R. If e ∈ ηS(a) i.e., e2 =

e in S and a−e ∈ nil(S), where a ∈ S, then e2 = e in R and a−e ∈ nil(R), i.e., e ∈
ηR(a). Therefore ηS(a) ⊆ ηR(a) for all a ∈ S, implies |ηS(a)| ≤ |ηR(a)| for all a ∈
S or supa∈S |ηS(a)| ≤ supa∈S |ηR(a)| ≤ supa∈R |ηR(a)|. So we get Nin(S) ≤ Nin(R).

�
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Lemma 2.3. Let R = S × T be the direct product of two rings S and T. Then

Nin(R) = Nin(S)Nin(T ).

Proof. Since S and T are subrings of R, so Nin(S) ≤ Nin(R) and Nin(T ) ≤
Nin(R). If Nin(S) = ∞ or Nin(T ) = ∞, then Nin(R) = ∞ and hence, Nin(R) =

Nin(S)Nin(T ) holds. So let Nin(S) = n < ∞, Nin(T ) = m < ∞. Then n, m ≥ 1

and there exist elements s ∈ S and t ∈ T, such that |ηS(s)| = n, |ηT (t)| = m.

If s = ei + ni, i = 1, 2, . . . , n and t = fj + mj , j = 1, 2, . . . ,m, where e′is, f
′
js

are idempotents and n′is, m
′
js are nilpotent elements of S and T respectively, then

there exists an element (s, t) ∈ R, such that (s, t) = (ei, fj) + (ni,mj), which are

mn nil clean expression of (s, t) ∈ R. Hence Nin(R) ≥ mn.

If possible let Nin(R) > nm, say nm + 1, then there exists an element (a, b) ∈
R, such that it has at least nm + 1 nil clean expression in R. That is (a, b) =

(gi, hi)+(ci, di) where i = 1, 2, . . . ,mn+1, (gi, hi)
2 = (gi, hi) and (ci, di) ∈ nil(R).

Then a = gi + ci and b = hi + di are nil clean expressions for a and b re-

spectively. Let K = {(gi, hi) | i = 1, 2, 3, . . . ,mn, mn + 1}. Then |K| = nm +

1 implies |{gi}|.|{hi}| = nm + 1, and this implies |{gi}| > n or |{hi}| > m, which

gives Nin(S) > n or Nin(T ) > m, which is absurd. �

Lemma 2.4. Let I be an ideal of R with I ⊆ nil(R) and let n ≥ 1 be an integer.

Then the following hold:

(1) If idempotents lift modulo I, then Nin(R/I) = NinR.

(2) If Nin(R) ≤ n, then every idempotent of R/I can be lifted to at most n

idempotents of R.

Proof. (1) Let a ∈ R, then any idempotent x + I ∈ η(a + I) is lifted to an

idempotent ex of R. Now from (a+I)−(x+I) ∈ nil(R/I) we get (a+I)−(ex+I) ∈
nil(R/I), which means there exists some positive integer k, such that (a − ex)k +

I = I which gives a− ex ∈ nil(R) i.e., ex ∈ η(a). So the mapping η(a)→ η(a+ I)

is onto, i.e., |η(a)| ≥ |η(a+ I)| for all a ∈ R.
Conversely if e ∈ η(a), then a−e ∈ nil(R), so there exists some positive integer k,

such that (a−e)k = 0 ∈ I. This implies (a−e)k+I = I and so {(a−I)−(e+I)} ∈
nil(R/I) which gives e + I ∈ η(a + I). Therefore the mapping η(a + I) → η(a) is

onto. i.e., |η(a + I)| ≥ |η(a)|, for all a ∈ R. Hence |η(a)| = |η(a + I)|, for all a ∈
R, which implies supa∈R |η(a)| = sup(a+I)∈R/I |η(a + I)|, consequently Nin(R) =

Nin(R/I).

(2) Let a ∈ R such that a2 − a ∈ I. If a− e ∈ I ⊆ nil(R), for some e2 = e ∈ R,

then e ∈ η(a). But |η(a)| ≤ Nin(R) ≤ n. So there are at most n such elements. �



148 DHIREN KUMAR BASNET AND JAYANTA BHATTACHARYYA

Lemma 2.5. Let R =

(
A M

0 B

)
, where A and B are rings, AMB is a bimodule.

Let Nin(A) = n and Nin(B) = m. Then

(1) Nin(R) ≥ |M |.
(2) If (M,+) ∼= Cpk , where p is a prime and k ≥ 1, then Nin(R) ≥ n +

[n2 )(|M | − 1), where [n2 ) denotes the least integer greater than or equal to
n
2 .

(3) Either Nin(R) ≥ nm+ |M | − 1 or Nin(R) ≥ 2nm.

Proof. (1) Let α =

(
1A 0

0 0

)
. Then

{(
1A w

0 0

)
|w ∈M

}
⊆ η(α) as

(
1A w

0 0

)
−(

1A 0

0 0

)
=

(
0 w

0 0

)
is nilpotent. So Nin(R) ≥ |η(α)| ≥ |M |.

(2) Let q = pk and a = ei + ni, i = 1, 2, . . . n be n distinct nil clean expressions

of a in A. For any e = e2 ∈ A, (M,+) = eM ⊕ (1 − e)M. Since (M,+) ∼= Cpk ,

so (M,+) is indecomposable and hence M = eM or M = (1 − e)M . Assume

(1− e1)M = · · · = (1− es)M = M and es+1M = · · · = enM = M .

If s ≥ (n− s) (i.e., s ≥ [n2 )), then for α =

(
1A − a 0

0 0

)
we have

η(α) ⊇

{(
1A − ei 0

0 0

)
,

(
1A − ej w

0 0

)
: 1 ≤ i ≤ n, 1 ≤ j ≤ s, 0 6= w ∈M

}
So |η(α)| ≥ n+ s(q − 1).

If s ≤ (n− s) (i.e., n− s ≥ [n2 )), then for β =

(
a 0

0 0

)

η(β) ⊇

{(
ei 0

0 0

)
,

(
ej w

0 0

)
: 1 ≤ i ≤ n, s+ 1 ≤ j ≤ n, 0 6= w ∈M

}
So |η(β)| ≥ n+ (n− s)(q − 1). Hence Nin(R) ≥ n+ [n2 )(q − 1).

(3) Let a = ei + ni, i = 1, 2, . . . n and b = fj +mj , j = 1, 2, . . .m be distinct nil

clean expressions of a and b in A and B respectively.

Case I: ei0M(1− fj0) + (1− ei0)Mfj0 = 0 for some i0 and j0. Then ei0w = wfi0

for all w ∈M . Thus for α =

(
1A − a 0

0 b

)

η(α) ⊇

{(
1A − ei 0

0 fj

)
,

(
1A − ei0 w

0 fj0

)
; 1 ≤ i ≤ n, 1 ≤ j ≤ m; 0 6= w ∈M

}
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So |η(α)| ≥ mn+ |M | − 1.

Case II: eiM(1− fj) + (1− ei)Mfj 6= 0 for all i and j. Take 0 6= wij ∈ eiM(1−

fj) + (1− ej)Mfj for each pair (i, j). Then for α =

(
a 0

0 b

)

η(α) ⊇

{(
ei 0

0 fj

)
,

(
ei wij

0 fj

)
; 1 ≤ i ≤ n, 1 ≤ j ≤ m; 0 6= wij ∈M

}
So |η(α)| ≥ 2mn.

Combining Case I and II we have, either Nin(R) ≥ nm + |M | − 1 or Nin(R) ≥
2nm. �

Lemma 2.6. Let R =

(
A M

0 B

)
, where A and B are rings, AMB is a bimodule

with (M,+) ∼= C2r . Then Nin(R) = 2rNin(A)Nin(B).

Proof. Let k = Nin(A) and l = Nin(B). Let a = ei + ni, i = 1, 2, . . . k and

b = fj + mj , j = 1, 2, . . . l be distinct nil clean expressions of a and b in A and

B respectively. Write M = {0, x, 2x, . . . , (2r − 1)x}, for any e = e2 ∈ A, either

M = eM or M = (1A − e)M ; so ex ∈ {0, x}. Suppose e1x 6= e2x, say e1x = 0 and

e2x = x. Then

ax = n1x = x+ n2x = (1 + n2)x.

Because ax ∈ M, ax = ix for some 2 ≤ i ≤ 2k. Then n1x = ix ⇒ 0 = ipx (Since

np = 0 for some p ∈ N), which gives i is even, so let i = 2j. Now (1 + n2)x =

(2j)x⇒ (1 + n2)rx = (2j)rx = jk(2k)x = 0⇒ x = 0 (as (n+ 1) ∈ U(A)) a contra-

diction as x 6= 0. So e1x = e2x = · · · = enx. Similarly xf1 = xf2 = · · · = xfl.

Case I: eix = 0 and xfj = 0. For α =

(
1A − a 0

0 b

)
we have(

1A − a 0

0 b

)
=

(
1A − ei w

0 fj

)
+

(
−ni −w

0 mj

)
, i = 1, 2, . . . , k

j = 1, 2, . . . , l,∀w ∈M .

Therefore, in this case, Nin(R) ≥ |η(α)| ≥ 2rkl.

Case II: eix = x, xfj = x. Then

β =

(
1A − a 0

0 b

)
=

(
1A − ei w

0 fj

)
+

(
−ni −w

0 mj

)
, i = 1, 2, . . . k,

j = 1, 2, . . . , l,∀ w ∈M .

Therefore, in this case, Nin(R) ≥ |η(α)| ≥ 2rkl.

Case III: eix = x, xfj = 0. Then
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γ =

(
a 0

0 b

)
=

(
ei w

0 fj

)
+

(
ni −w
0 mj

)
, i = 1, 2, . . . , k

j = 1, 2, . . . , l,∀ w ∈M .

Therefore, in this case, Nin(R) ≥ |η(α)| ≥ 2rkl.

Case IV: eix = 0, xfj = x. Then

δ =

(
a 0

0 b

)
=

(
ei w

0 fj

)
+

(
ni −w
0 mj

)
, i = 1, 2, . . . , k

j = 1, 2, . . . , l, ∀ w ∈M .

Therefore, in this case, Nin(R) ≥ |η(α)| ≥ 2rkl.

On the other hand for α =

(
c z

0 d

)
∈ R we have

η(α) =

{(
e w

0 f

)
∈ R, e ∈ η(c), f ∈ η(d), w = ew + we

}
.

Therefore, |η(α)| ≤ |M ||η(c)||η(d)| ≤ 2rkl and hence Nin(R) ≤ 2rkl. Thus,

Nin(R) = 2rkl = 2rNin(A)Nin(B). �

Lemma 2.7. Let A and B be rings and AMB a nontrivial bimodule.

If R =

(
A M

0 B

)
is a formal triangular matrix ring, then Nin(A) < Nin(R) and

Nin(B) < Nin(R).

Proof. Let k = Nin(A) and let a = ei + ni (i = 1, 2, . . . , k) be k distinct nil clean

expressions of a in A. If e1M = 0. Then(
1A − a 0

0 0

)
=

(
1A − ei 0

0 0

)
+

(
−ni 0

0 0

)

=

(
1A − e1 x

0 0

)
+

(
−n1 −x

0 0

)
∀ 0 6= x ∈M.

There are at least k + 1 distinct nil clean expressions of

(
1A − a 0

0 0

)
in R.

If e1M 6= 0, then e1x 6= 0 for some x ∈M. So we have(
a 0

0 0

)
=

(
ei 0

0 0

)
+

(
ni 0

0 0

)

=

(
e1 e1x

0 0

)
+

(
n1 −e1x
0 0

)
∀ 0 6= x ∈M.
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There are at least k + 1 distinct nil clean expressions of

(
a 0

0 0

)
in R.

So in any case Nin(R) ≥ k + 1 > k = Nin(A). Similarly, Nin(R) > Nin(B). �

Lemma 2.8. Let R be a ring with unity, then In(R) ≥ Nin(R), where In(R) is the

clean index of R.

Proof. Definition of In(R) is similar to that of Nin(R) where nilpotent is replaced

by unit, for details one can see [3]. Let Nin(R) = k, then there is at least an element

a ∈ R, such that it has k nil clean expressions in R, i.e., a = ei +ni, i = 1, 2, · · · , k,
where ei ∈ idem(R) and ni ∈ nil(R). From this we get, a − 1 = ei + (ni − 1)

are k clean expression for (a − 1) ∈ R, and therefore In(R) ≥ k, hence In(R) ≥
Nin(R). �

3. Rings of Nil Clean Index 1

Lemma 3.1. Nin(R) = 1, if and only if R is abelian and for any 0 6= e2 = e ∈ R,
e 6= n+m for any n,m ∈ nil(R).

Proof. Let e2 = e ∈ R, then for any r ∈ R, we have e+0 = [e+er(1−e)]+[−er(1−
e)], where {e+er(1−e)}2 = e+er(1−e) and {−er(1−e)}2 = er(1−e)er(1−e) =

0 i.e.,− er(1− e) ∈ nil(R). Since Nin(R) = 1, so e = e+ er(1− e) which gives er =

ere, Similarly re = ere, hence er = re i.e., R is abelian. Again, if e = n + m for

some n,m ∈ nil(R), then e+ (−m) = 0 + n, since Nin(R) = 1, this is not possible.

Conversely, suppose R is abelian and no nonzero idempotent can be written as a

sum of two nilpotent elements. We know that Nin(S) ≥ 1 for any ring S. Suppose

if possible a ∈ R has two nil clean expressions

a = e1 + n1 = e2 + n2, where e1, e2 ∈ idem(R) and n1, n2 ∈ nil(R). (1)

If e1 = e2, we have nothing to prove. So let e1 6= e2. Now multiplying equation (1)

by (1− e1) we get,

e1(1− e1) + n1(1− e1) = e2(1− e1) + n2(1− e2)

e2(1− e1) = n1(1− e1)− n2(1− e2). (2)

Since R is Abelian, e2(1− e1) ∈ idem(R) and n1(1− e1), n2(1− e2) are nilpotent

elements. So (2) gives a contradiction if e2(1−e1) 6= 0. On other hand if e2(1−e1) =

0, then (1) implies e1(1−e2) = n1−n2 which is again a contradiction. This implies

|η(a)| ≤ 1 for all a ∈ R, hence Nin(R) = 1. �
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Theorem 3.2. Nin(R) = 1 if and only if R is an abelian ring.

Proof. (⇒) This is done in Lemma 3.1.

(⇐) Let R be an abelian ring and e a non zero idempotent of R. We claim that e

can not be written as sum of two nilpotent elements. Suppose e = a+b where an =

0, bm = 0, and n < m. Then (e−a)m = 0 and by using binomial theorem we get

em −
(
m
1

)
ae(m−1) +

(
m
2

)
a2e(m−2) − · · ·+ (−1)(n−1)

(
m

n−1
)
a(n−1)e(m−n+1) = 0

which gives

e[1−
(
m
1

)
a+

(
m
2

)
a2 − · · ·+ (−1)(n−1)

(
m

n−1
)
a(n−1) + (−1)n

(
m
n

)
an +

(−1)(n+1)
(

m
n+1

)
a(n+1) + · · ·+ (−1)mam] = 0

and this gives e(1 − a)m = 0. Therefore we get, e = 0 ( since 1 − a ∈ U(R)).

Similarly, if n > m, then (e − b)n = 0 and so e = 0, a contradiction. Hence, no

nonzero idempotent can be written as sum of two nilpotent elements and therefore

Nin(R) = 1. �

Above theorem gives the following observations:

(1) A ring R with Nin(R) = 1 is always Dedekind finite, but the converse is

not true by Example 4.3.

(2) Rings with trivial idempotents have nil clean index one and consequently

the local rings are of nil clean index one. If Nin(R) = 1, then it is easy

to see that idempotents of R[[x]] are idempotents of R, and for any α =

α0 + α1x + · · · ∈ R[[x]], it is easy to see that ηR[[x]](α) ⊆ ηR(α0), this

gives Nin(R[x]) = Nin(R[[x]]) = 1. But if Nin(R) > 1, then there is some

noncentral idempotent e ∈ R, such that er 6= re for some r ∈ R. So

either er(1 − e) 6= 0 or (1 − e)re 6= 0. Let er(1 − e) 6= 0, then we have

a = e+er(1−e) = [e+er(1−e)xi]+ [er(1−e)(1−xi)] where i is a positive

integer, are infinitely many nil clean expression of a in R[x] which implies

Nin(R[x]) =∞. Now we have the following theorem.

Theorem 3.3. Let R be a ring, Nin(R[[x]]) is finite iff Nin(R) = 1.

Proof. If Nin(R) = 1, then it is easy to see that idempotents of R[[x]] are idem-

potents of R, and for any α = α0 + α1x + · · · ∈ R[[x]], it is easy to see that

ηR[[x]](α) ⊆ ηR(α0), this gives Nin(R[x]) = Nin(R[[x]]) = 1. But if Nin(R) > 1

then, there is some noncentral idempotent e ∈ R, such that er 6= re for some

r ∈ R. So either er(1 − e) 6= 0 or (1 − e)re 6= 0. Let er(1 − e) 6= 0, then we have

a = e+er(1−e) = [e+er(1−e)xi]+ [er(1−e)(1−xi)] where i is a positive integer,

are infinitely many nil clean expression of a in R[x] which implies Nin(R[x]) =∞.
Hence the theorem follows. �
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Corollary 3.4. Nin(R[[x]]) is 1 or infinite.

4. Rings of Nil Clean Indices 2 and 3

In this section, we characterize the rings of nil clean indices 2 and 3. From the

discussion above we see that such rings should be non abelian. For rings A and B

and for a bimodule AMB , we denote by

(
A M

0 B

)
the formal triangular matrix

ring.

Theorem 4.1. Nin(R) = 2 if and only if R =

(
A M

0 B

)
, where Nin(A) =

Nin(B) = 1 and AMB is a bimodule with |M | = 2.

Proof. (⇐) For α0 =

(
0 0

0 1B

)
∈ R,

{(
0 ω

0 1B

)
; ω ∈M

}
⊆ η(α0). So,

Nin(R) ≥ |η(α0)| ≥ |M | = 2. For any α =

(
a x

0 b

)
∈ R,

η(α) =

{(
e w

0 f

)
; e ∈ η(a), f ∈ η(b), w = ew + wf

}
.

Because |M | = 2, |η(a)| ≤ 1, |η(b)| ≤ 1, it follows that |η(α)| ≤ 2. Hence, Nin(R) =

2.

(⇒) Suppose R is non abelian and let e2 = e ∈ R be a non central idempotent.

If neither eR(1 − e) nor (1 − e)Re is zero, then take 0 6= x ∈ eR(1 − e) and 0 6=
y ∈ (1 − e)Re. Then e = e + 0 = (e + x) − x = (e + y) − y are three distinct

nil clean expressions of e in R. So without loss of generality, we can assume that

eR(1− e) 6= 0 but (1− e)Re = 0. The Peirce decomposition of R gives

R =

(
eRe eR(1− e)

0 (1− e)R(1− e)

)
.

As above 2 = Nin(R) ≥ |eR(1 − e)|; so |eR(1 − e)| = 2. Write eR(1 − e) = {0, x}.
Suppose a = e1 + n1 = e2 + n2 are distinct nil clean expressions of a in eRe. If

e1x = x, then (
a 0

0 0

)
=

(
e1 0

0 0

)
+

(
n1 0

0 0

)

=

(
e2 0

0 0

)
+

(
n2 0

0 0

)

=

(
e1 x

0 0

)
+

(
n1 x

0 0

)
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are three distinct nil clean expressions of

(
a 0

0 0

)
∈ R. If e1x = 0, then

(
a 0

0 1B

)
=

(
e1 0

0 1B

)
+

(
n1 0

0 0

)

=

(
e2 0

0 1B

)
+

(
n2 0

0 0

)

=

(
e1 x

0 1B

)
+

(
n1 x

0 1B

)

are three distinct nil clean expressions of

(
a 0

0 1B

)
in R. This contradiction

shows that Nin(eRe) = 1. Similarly, Nin((1− e)R(1− e)) = 1. �

The next proposition gives a sufficient condition for rings to have nil clean index

3.

Proposition 4.2. If R =

(
A M

0 B

)
, where Nin(A) = Nin(B) = 1 and AMB is

a bimodule with |M | = 3, then Nin(R) = 3.

Proof. This is similar to the proof of the implication “(⇐)” of Proposition 4.1. �

The condition of Proposition 4.2 is a sufficient condition, but not necessary, as

shown by the following example.

Example 4.3. R =

(
Z2 Z2

Z2 Z2

)
is a ring of nil clean index 3.

We see that, nil(R) =

{(
0 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
1 1

1 1

)}
. Using

Lemma 2.1, we get Nin(R) ≤ 4. Also,

η

((
1 0

0 0

))
=

{(
1 0

0 0

)
,

(
1 1

0 0

)
,

(
1 0

1 0

)}
,

thus Nin(R) ≥ 3. Similarly, by verifying for each element we see that Nin(R) = 3.

But it is not of the form

(
A M

0 B

)
. �

Next we have the following proposition for the full matrix ring.

Proposition 4.4. Let R = Mn(S), where S is a ring with unity and let n ≥ 2 be

an integer. Then
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(1) Nin(R) ≥ 3.

(2) Nin(R) = 3 iff n = 2 and S ∼= Z2.

Proof. For a = E11, E11 +
∑n

i=2 riE1i and E11 +
∑n

i=2 siEi1 are contained in

ηR(a) ∀ri, si ∈ S (2 ≤ i ≤ n). So

Nin(R) ≥ |ηR(a)| ≥ 2|S|n−1 − 1.

(1) If |S| ≥ 3 or n ≥ 3, then Nin(R) ≥ min{2.32−1 − 1, 2.33−1 − 1} = 5. Also,

Nin(M2(Z2)) = 3. So Nin(R) ≥ 3.

(2) If Nin(R) = 3, then 3 = Nin(R) ≥ 2|S|n−1 − 1 i.e., 2 ≥ |S|n−1. So we

must have n = 2 and |S| = 2. So S ∼= Z2. Converse part is obviously true as

Nin(M2(Z2)) = 3. �

Theorem 4.5. Let R be a ring. If Nin(R) = 3, then one of the following holds:

(1) R =

(
A M

0 B

)
, where A and B are rings with Nin(A) = Nin(B) = 1

and AMB is a bimodule with |M | = 3.

(2) R =

(
A M

N B

)
, where A and B are rings with Nin(A) = Nin(B) = 1

and AMB , BNA are bimodules with |M | = |N | = 2.

Proof. Let Nin(R) = 3. Then R is non abelian. Let e ∈ R be a noncentral

idempotent. Set A = eRe, B = (1− e)R(1− e), M = eR(1− e), N = (1− e)Re.
Since e is noncentral, so M and N are not both zero, so we have two cases:

Case I: M 6= 0, N = 0 or M = 0, N 6= 0. Without loss of generality let M 6= 0,

N = 0. Then R =

(
A M

0 B

)
. Clearly by Lemma 2.5, 2 ≤ |M | ≤ Nin(R) = 3.

Also, by Lemma 2.7, we have Nin(A) < Nin(R) and Nin(B) < Nin(R). By Lemma

2.6, if |M | = 2, then 3 = Nin(R) = 2Nin(A)Nin(B), which is a contradiction. So

|M | = 3. Now by Lemma 2.5, we see that

3 = Nin(R) ≥ Nin(A)Nin(B) + |M | − 1 or Nin(R) ≥ 2Nin(A)Nin(B)

⇒ Nin(A)Nin(B) ≤ 1 or Nin(A)Nin(B) ≤ 3

2

⇒ Nin(A)Nin(B) = 1,

that is Nin(A) = Nin(B) = 1. So we get (1).

Case II: Let N 6= 0 and M 6= 0, so |N | ≥ 2 and |M | ≥ 2. Now

η(e) ⊇ {e+ w, e+ z;w ∈M, 0 6= z ∈ N}.
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Thus

3 = Nin(R) ≥ |η(e)| ≥ |M |+ |N | − 1 ⇒ 4 ≤ |M |+ |N | ≤ 4 ⇒ |M | = |N | = 2.

Again C =

(
A M

0 B

)
⊆ R, so Nin(C) ≤ Nin(R) = 3. But

Nin(C) = 2Nin(A)Nin(B) ≤ 3⇒ Nin(A) = Nin(B) = 1, so this proves (2). �

Note: Ring homomorphisms in general do not preserve the nil clean index. For

example, if we consider a ring R of nil clean index 2, then R cannot be abelian, so

Nin(R[[x]]) can not be finite. But R is a homomorphic image of R[[x]]. However in

case of Nin(R) = 1, we have the following result.

Theorem 4.6. The homomorphic image of a ring R with Nin(R) = 1 is again a

ring with Nin(R) = 1, provided idempotents of R can be lifted modulo the kernel of

the homomorphism.

Proof. Straightforward. �
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