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Abstract. We examine the properties of certain mappings between the lat-

tice of ideals of a commutative ring R and the lattice of submodules of an

R-module M , in particular considering when these mappings are lattice ho-

momorphisms. We prove that the mapping λ from the lattice of ideals of R

to the lattice of submodules of M defined by λ(B) = BM for every ideal B

of R is a (lattice) isomorphism if and only if M is a finitely generated faithful

multiplication module. Moreover, for certain but not all rings R, there is an

isomorphism from the lattice of ideals of R to the lattice of submodules of an

R-module M if and only if the mapping λ is an isomorphism.
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1. Introduction

This paper is concerned with mappings, in particular homomorphisms, between

lattices. Let L and L′ be lattices. As usual, given a and b in L, the least upper bound

and greatest lower bound of a and b are denoted by a ∨ b and a ∧ b, respectively.

Given mappings ϕ and θ from the lattice L to the lattice L′ we define ϕ ≤ θ

provided ϕ(a) ≤ θ(a) for all a ∈ L. Clearly, ϕ ≤ θ and θ ≤ ϕ together imply ϕ = θ.

We begin with a very simple result.

Lemma 1.1. Let L, L1 and L2 be lattices, let ϕ, ϕ1 and ϕ2 be mappings from L

to L1 and let θ, θ1 and θ2 be mappings from L1 to L2 such that ϕ1 ≤ ϕ2, θ1 ≤ θ2

and θ(a) ≤ θ(b) for all a, b ∈ L1 with a ≤ b. Then θϕ1 ≤ θϕ2 and θ1ϕ ≤ θ2ϕ.

Proof. Let a ∈ L. Then ϕ1(a) ≤ ϕ2(a) and hence

θϕ1(a) = θ(ϕ1(a)) ≤ θ(ϕ2(a)) = θϕ2(a).

On the other hand,

θ1ϕ(a) = θ1(ϕ(a)) ≤ θ2(ϕ(a)) = θ2ϕ(a).

The result follows. �
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A mapping ϕ from a lattice L to a lattice L′ is a homomorphism provided

ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b) and ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b),

for all a, b ∈ L. A bijective (respectively, injective, surjective) homomorphism is

called an isomorphism (respectively, monomorphism, epimorphism).

The next result is absolutely standard and easy to prove.

Lemma 1.2. The following statements are equivalent for a bijection ϕ from a

lattice L to a lattice L′.

(i) ϕ is an isomorphism.

(ii) ϕ(a ∨ b) = ϕ(a) ∨ ϕ(b) for all a, b ∈ L.

(iii) ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b) for all a, b ∈ L.

Moreover, in this case the inverse mapping ϕ−1 : L′ → L is also an isomorphism.

Throughout this note all rings will be commutative with identity and all mod-

ules will be unital. Let R be a ring and M be any R-module. The collection of

submodules of M form a lattice which we shall denote by L(RM) with respect to

the following definitions:

L ∨N = L+N and L ∧N = L ∩N,

for all submodules L and N of M . Note that L(RM) is a lattice with least element

the zero submodule, greatest element M and, for any given submodules L and N

of M ,

L ≤ N in L(RM) ⇔ L ⊆ N in M.

In particular, we shall denote the lattice L(RR) of ideals of R by L(R). We shall

be interested in mappings between L(R) and L(RM).

Let R be a ring and M an R-module. Let L and N be submodules of M . Then

(L :R N) will denote the set of elements r ∈ R such that rN ⊆ L. Note that

(L :R N) is an ideal of R. In particular, (0 :R M) is the annihilator of M in R

and we shall denote it simply by annR(M). As usual, M is called faithful in case

annR(M) = 0.

Define a mapping λ : L(R)→ L(RM) by

λ(B) = BM,

for all ideals B of R and define a mapping µ : L(RM)→ L(R) by

µ(N) = (N :R M),

for every submodule N of M . Note that λ(B) ≤ λ(C) for all ideals B,C of R with

B ≤ C and µ(L) ≤ µ(N) for all submodules L,N of M with L ≤ N . Note further

that for each ideal B of R,

B ⊆ (BM :R M) = µλ(B),
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and thus

1 ≤ µλ.

On the other hand, for each submodule N of M ,

λµ(N) = (N :R M)M ⊆ N,

gives that

λµ ≤ 1.

From Lemma 1.1 it follows that λ = λ1 ≤ λ(µλ) = (λµ)λ ≤ 1λ = λ and thus

λ = λµλ.

Similarly, Lemma 1.1 gives that µ = 1µ ≤ (µλ)µ = µ(λµ) ≤ µ1 = µ, so that

µ = µλµ.

Lemma 1.3. With the above notation, the following statements are equivalent.

(i) λ is a surjection.

(ii) λµ = 1.

(iii) N = (N :R M)M for every submodule N of M .

(iv) µ is an injection.

Proof. (i) ⇒ (ii) Because λµλ = λ. (ii) ⇔ (iii) Clear. (ii) ⇒ (iv) Clear. (iv) ⇒
(ii) Because µλµ = µ. (ii) ⇒ (i) Clear. �

The proof of the next result is similar to the proof of Lemma 1.3

Lemma 1.4. With the above notation, the following statements are equivalent.

(i) λ is an injection.

(ii) µλ = 1.

(iii) B = (BM :R M) for every ideal B of R.

(iv) µ is a surjection.

Moreover, in this case M is faithful.

Corollary 1.5. With the above notation, the mapping λ is a bijection if and only

if µ is a bijection. In this case λ and µ are inverses of each other.

Proof. By Lemmas 1.3 and 1.4. �

Again let R be a ring and let M be an R-module. Let A = annR(M). By

defining

(r +A)m = rm (r ∈ R, m ∈M),

M becomes a faithful (R/A)-module with the property that a subset X of M is an

R-submodule of M if and only if X is an (R/A)-submodule of M . Thus the lattice
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L(RM) is identical to the lattice L(R/AM). We define a mapping λ : L(R/A) →
L(RM) by

λ(B/A) = BM,

for every ideal B of R containing A. In addition, we define a mapping µ : L(RM)→
L(R/A) by

µ(N) = (N :R M)/A,

for every submodule N of M , noting that, of course, A ⊆ (N :R M) for every

submodule N of M . Lemmas 1.3 and 1.4 have analogues for λ and µ. Now we

define π : L(R)→ L(R/A) by

π(C) = (C +A)/A,

for every ideal C of R. It is clear that

λ = λπ and µ = πµ.

We shall prove that a domain R is Prüfer if and only if the above mapping

λ : L(R) → L(RM) is a (lattice) homomorphism for every (cyclic) R-module M

(Theorem 2.3). Given a general ring R, if M is a faithful multiplication module

then the mapping λ is a homomorphism (Theorem 2.12). Moreover, λ is an iso-

morphism if and only if M is a finitely generated faithful multiplication module

and in this case the inverse of λ is µ which is also an isomorphism (Theorem 4.3).

Furthermore, in case R is a semilocal Noetherian domain or a Dedekind domain

then the lattices L(R) and L(RM) are isomorphic if and only if the above mapping

λ is an isomorphism (Corollary 5.4 and Theorem 5.5).

2. The Mapping λ

Let R be a ring and let M be an R-module. Let the mapping λ : L(R)→ L(RM)

be as before, so that λ(B) = BM for every ideal B of R. It is clear that

λ(B ∨ C) = λ(B) ∨ λ(C),

for all ideals B and C of R. Thus λ is a homomorphism if and only if

λ(B ∧ C) = λ(B) ∧ λ(C),

for all ideals B and C of R. It will be convenient for us to call the module M a

λ-module in case the above mapping λ is a homomorphism.

Lemma 2.1. The following statements are equivalent for an R-module M .

(i) M is a λ-module.

(ii) (B1 ∩ · · · ∩Bn)M = (B1M) ∩ · · · ∩ (BnM) for every positive integer n and

ideals Bi (1 ≤ i ≤ n) of R.

(iii) (B ∩ C)M = BM ∩ CM for all finitely generated ideals B and C of R.
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Proof. (i) ⇒ (ii) By induction on n,

(B1∩· · ·∩Bn)M = λ(B1∧· · ·∧Bn) = λ(B1)∧· · ·∧λ(Bn) = (B1M)∩· · ·∩ (BnM).

(ii) ⇒ (iii) Clear.

(iii) ⇒ (i) Suppose that (iii) holds. Let G and H be any ideals of R. Then

λ(G ∧H) = (G ∩H)M ⊆ GM ∩HM = λ(G) ∧ λ(H),

so that λ(G ∧ H) ≤ λ(G) ∧ λ(H). Let m ∈ GM ∩ HM . There exist a positive

integer n and elements gi ∈ G, hi ∈ H(1 ≤ i ≤ n) with

m ∈ (g1M + · · ·+ gnM) ∩ (h1M + · · ·+ hnM) = G′M ∩H ′M,

where G′ = Rg1 + · · · + Rgn ⊆ G and H ′ = Rh1 + · · · + Rhn ⊆ H. Now by

hypothesis, G′M ∩H ′M = (G′ ∩H ′)M ⊆ (G ∩H)M . Thus m ∈ (G ∩H)M . We

have proved that GM ∩ HM ⊆ (G ∩ H)M so that λ(G ∧ H) ≤ λ(G) ∧ λ(H). It

follows that λ(G ∧ H) = λ(G) ∧ λ(H) for all ideals G and H of R. Thus λ is a

homomorphism and M is a λ-module. �

Let R be a domain with field of fractions F . Let I be any non-zero ideal of

R. Then I∗ is the R -submodule of F consisting of all elements f ∈ F such that

fI ⊆ R. Note that I∗I is an ideal of R. The ideal I is called invertible provided

I∗I = R (see, for example, [5, p. 67]). It is well known that I is an invertible ideal

of R if and only if there exists an R-submodule X of F such that IX = R. The

domain R is called Prüfer in case every non-zero finitely generated ideal of R is

invertible. For a very comprehensive account of the properties of Prüfer domains

see [5].

Lemma 2.2. Let R be a domain, let B and C be invertible ideals of R and let M

be the R-module B+C. Then M is a λ-module only if M is also an invertible ideal

of R.

Proof. We are given that

(B ∩ C)(B + C) = λ(B ∧ C) = λ(B) ∧ λ(C) = B(B + C) ∩ C(B + C).

Note that

(B ∩ C)(B + C) ⊆ BC,

and

BC ⊆ B(B + C) ∩ C(B + C).

Thus BC = (B ∩ C)(B + C). It follows that the ideal B + C is invertible. �

The next result is presumably known but we do not have a reference for it.
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Theorem 2.3. The following statements are equivalent for a (commutative) do-

main R.

(i) R is Prüfer.

(ii) Every R-module is a λ-module.

(iii) Every homomorphic image of a λ-module is a λ-module.

(iv) Every cyclic R-module is a λ-module.

(v) Every ideal of R is a λ-module.

(vi) Every 2-generated ideal of R is a λ-module.

Proof. (i) ⇒ (ii) Let M be any R-module. Let B and C be non-zero finitely

generated ideals of R. Let D = B + C. Then D is a finitely generated ideal of R

and hence D∗D = R. Let G = D∗B and H = D∗C so that G and H are ideals of

R such that G+H = D∗B +D∗C = D∗(B + C) = R. Note that

BH = BD∗C = C(D∗B) = CG.

Now

B ∩ C = (B ∩ C)(G+H) ⊆ BH + CG = BH = CG ⊆ B ∩ C,
so that B ∩ C = BH = CG. Next

BM ∩ CM = (G+H)(BM ∩ CM) ⊆ GCM +HBM

= (B ∩ C)M ⊆ BM ∩ CM,

and hence BM ∩ CM = (B ∩ C)M . By Lemma 2.1, M is a λ-module.

(ii) ⇒ (iii) Clear.

(iii) ⇒ (iv) Because the R-module R is clearly a λ-module.

(ii) ⇒ (v) ⇒ (vi) Clear.

(iv) ⇒ (i) Let B, C and E be ideals of R. By (iv) and Lemma 2.1 we know that

B(R/E)∩C(R/E) = (B∩C)(R/E) and hence that (B+E)∩(C+E) = (B∩C)+E.

It follows that B ∩ (C + E) ⊆ (B ∩ C) + E and hence that B ∩ (C + E) ⊆ (B ∩
C) + (B ∩E). Therefore B ∩ (C +E) = (B ∩C) + (B ∩E) for all ideals B, C and

E of R. By [5, Theorem 25.2], R is a Prüfer domain.

(vi) ⇒ (i) By Lemma 2.2, every non-zero 2-generated ideal of R is invertible

because every non-zero principal ideal is clearly invertible. By [5, Theorem 22.1],

R is a Prüfer domain. �

Note that if R is a domain which is not Prüfer then Theorem 2.3 shows that,

despite the fact that the R-module R is a λ-module, there exists an ideal of R

which is not a λ-module and there exists a homomorphic image of R which is not

a λ-module. Thus in general the class of λ-modules is not closed under taking

submodules and homomorphic images.

There is another class of rings for which every module is a λ-module. If R is a

ring then an R-module M will be called a chain module provided the lattice L(RM)
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is a chain, that is for any submodules N and L of M either N ⊆ L or L ⊆ N . The

ring R will be called a chain ring if the R-module R is a chain module.

Proposition 2.4. Let R be any chain ring. Then every R-module is a λ-module.

Proof. Let M be any R-module. Let B and C be ideals of R. Without loss of

generality we can suppose that B ⊆ C because R is a chain ring. Then BM ⊆ CM
and we have:

(B ∩ C)M = BM = BM ∩ CM.

By Lemma 2.1 M is a λ-module. �

To find other examples of λ-modules we first prove a simple lemma.

Lemma 2.5. Let R be any ring. Then

(a) Every direct summand of a λ-module is a λ-module.

(b) Every direct sum of λ-modules is also a λ-module.

Proof. (a) Let K be a direct summand of a λ-module M . Let B and C be any

ideals of R. Then

BK ∩ CK = (K ∩BM) ∩ (K ∩ CM) = K ∩ (BM ∩ CM)

= K ∩ (B ∩ C)M = (B ∩ C)K.

By Lemma 2.1 K is a λ-module.

(b) Let Li (i ∈ I) be any collection of λ-modules and let L = ⊕i∈ILi. Given any

ideals B and C of R we have:

BL ∩ CL = (⊕i∈IBLi) ∩ (⊕i∈ICLi) = ⊕i∈I(BLi ∩ CLi)

= ⊕i∈I(B ∩ C)Li = (B ∩ C)L.

By Lemma 2.1 L is a λ-module. �

Corollary 2.6. Let R be any ring and let an R-module M = M1 ⊕ M2 be the

direct sum of a projective submodule M1 and a semisimple submodule M2. Then

the module M is a λ-module.

Proof. Clearly every simple module and the R-module R are λ-modules. Apply

Lemma 2.5. �

For any ring R, every semisimple R-module is a λ-module but the mapping λ

is not a monomorphism (if R is not von Neumann regular) and seldom an epimor-

phism, as the following result shows.

Proposition 2.7. Let R be any ring and let M be a semisimple R-module. Then

the above mapping λ is a homomorphism. Moreover,

(a) λ is a monomorphism only if R is von Neumann regular, and

(b) λ is an epimorphism only if M is cyclic.
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Proof. The first part follows by Corollary 2.6.

Let M = ⊕i∈I Ui for some non-empty collection of simple R-modules Ui (i ∈ I).

For each i ∈ I let Pi = annR(Ui). First suppose that λ is a monomorphism. Let

0 6= a ∈ R. Then λ(Ra) = ⊕j∈J Uj , where J is the set of elements i ∈ I such that

a /∈ Pi. Clearly we have

λ(Ra2) = ⊕j∈J Uj = λ(Ra),

and hence Ra = Ra2. This proves (a).

To prove (b), we suppose now that λ is an epimorphism. Suppose that I contains

at least two elements. For each i ∈ I let Bi = ∩j 6=i Pj . By [4, Theorem 2.2]

R = Pi +Bi for all i ∈ I. It follows that Pi 6= Pj for all distinct i, j in I. Moreover

if A = ∩i∈I Pi then R/A is semisimple Artinian. Thus I is finite and M is a finite

direct sum of non-isomorphic simple modules. In this case it is well known that M

is cyclic. �

Let Z denote the ring of rational integers. LetM denote the Z-module⊕p∈S(Z/Zp),
for any infinite set S of primes in Z. Then Proposition 2.7 shows that the mapping

λ : L(Z) → L(ZM) is a homomorphism that is neither a monomorphism nor an

epimorphism. The question remains, for a given ring R, which R-modules M are

λ-modules. This is certainly the case if λ : L(R) → L(RM) is a bijection (see

Lemma 1.2) but note the following simple fact.

Example 2.8. Let R be any ring and let F be a free R-module of rank ≥ 2. Then

the mapping λ : L(R)→ L(RF ) is a monomorphism but not an epimorphism.

Proof. Given ideals B and C of R, λ(B) = λ(C) implies that BF = CF and hence

B = C. It follows that λ is an injection. By Corollary 2.6 λ is a monomorphism.

However, if F has a basis fi (i ∈ I) then, for each j ∈ I, Rfj 6= λ(B) for any ideal

B of R. Thus λ is not an epimorphism. �

Next we consider when the mapping λ is a surjection for a given module M .

The module M is called a multiplication module in case λ is a surjection, in which

case M satisfies the equivalent conditions of Lemma 1.3. In other words, M is a

multiplication module if and only if for each submodule N of M there exists an

ideal B of R such that N = BM . Multiplication modules have been extensively

studied (see, for example, [1] - [4], [8] - [11]). Note the following simple fact about

multiplication modules that is included for completeness.

Lemma 2.9. Let R be a ring and let M be an R-module with annihilator A in R.

Then the R-module M is a multiplication module if and only if the (R/A)-module

M is a multiplication module.
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Proof. Let N be any submodule of M and let B be any ideal of R. Then N = BM

if and only if N = ((B +A)/A)M . The result follows. �

It is quite possible for the mapping λ to be a surjection but not an injection, as

we shall see shortly. Note the following fact about multiplication modules which

we shall require later.

Lemma 2.10. (See [4, Theorem 1.2].) Let R be any ring. Then an R-module M

is a multiplication module if and only if for each maximal ideal P of R either

(a) for each m in M there exists p in P such that (1− p)m = 0, or

(b) there exist x ∈M and q ∈ P such that (1− q)M ⊆ Rx.

Corollary 2.11. Let R be any ring. Then an R-module M is a finitely generated

multiplication module if and only if for each maximal ideal P of R there exist

m ∈M , p ∈ P such that (1− p)M ⊆ Rm.

Proof. Suppose that M is a finitely generated multiplication module. There exist

a positive integer n and elements mi ∈M (1 ≤ i ≤ n) such that M = Rm1 + · · ·+
Rmn. Let P be any maximal ideal of R. By the lemma, either (a) or (b) in the

lemma holds. Suppose that (a) holds. Then for each 1 ≤ i ≤ n there exists pi ∈ P
such that (1 − pi)mi = 0. Let p = 1 − [(1 − p1) . . . (1 − pn)] ∈ P and note that

(1− p)mi = 0 for all 1 ≤ i ≤ n. Thus (1− p)M = 0. This proves the necessity.

Conversely, suppose that the module M has the stated property. Suppose that

the ideal
∑

x∈M (Rx :R M) is proper and let Q be a maximal ideal of R such that∑
x∈M

(Rx :R M) ⊆ Q.

By hypothesis, there exist u ∈ M, q ∈ Q such that (1 − q)M ⊆ Ru and hence

1 − q ∈ (Ru :R M) ⊆ Q, a contradiction. Thus R =
∑

x∈M (Rx :R M) and there

exist a positive integer k and elements ui ∈ M (1 ≤ i ≤ k) such that R = (Ru1 :R

M) + · · ·+ (Ruk :R M). It follows that

M = RM = (Ru1 :R M)M + · · ·+ (Ruk :R M)M ⊆ Ru1 + · · ·+Ruk ⊆M.

Hence M = Ru1 + · · ·+Ruk and M is finitely generated. By [4, Corollary 1.5] M

is a multiplication module. �

The next result shows that multiplication modules are λ-modules in certain cases.

Theorem 2.12. Let R be any ring. Then every faithful multiplication R-module

is a λ-module.

Proof. By Lemma 2.1 and [4, Theorem 1.6]. �

Corollary 2.13. Let R be a ring and let M be any multiplication module with

A = annR(M). Then the mapping λ : L(R/A)→ L(RM) is a homomorphism.
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Proof. By Lemma 2.9 and Theorem 2.12. �

Corollary 2.14. Let R be any ring and let an R-module M be a direct summand

of a direct sum of faithful multiplication R-modules. Then M is a λ-module.

Proof. By Lemma 2.5 and Theorem 2.12. �

For any ring R, the R-module R ⊕ R is a faithful λ-module which is not a

multiplication module and therefore the converse of Theorem 2.12 is false. Note

further that in general if R is a domain which is not Prüfer then there exists a cyclic

R-module which is not a λ-module (see Theorem 2.3). Clearly cyclic modules are

multiplication modules. This shows that the modules in Theorem 2.12 need to be

faithful. Moreover in Theorem 2.12, although λ is an epimorphism it need not be

an isomorphism as the following result shows.

Proposition 2.15. Let R be a ring and let I be a proper ideal of R which is

generated by idempotent elements such that annR(I) = 0. Then the R-module

I is a faithful multiplication module and the mapping λ : L(R) → L(RI) is an

epimorphism but not a monomorphism.

Proof. Let J be any ideal of R with J ⊆ I. Let a ∈ J . Then a ∈ Re1 + · · ·+Ren

for some positive integer n and idempotent elements ei(1 ≤ i ≤ n) of I. It is well

known that there exists an idempotent e ∈ I such that Re1 + · · · + Ren = Re.

Then a = be for some b ∈ R and hence a = ae ∈ JI. It follows that J = JI.

Hence the R-module I is a faithful multiplication module. By Theorem 2.12 λ is an

epimorphism. However, λ(R) = RI = I2 = λ(I), so that λ is not an injection. �

To illustrate Proposition 2.15 we have the following example.

Example 2.16. Let a ring R =
∏

i∈I Fi be the direct product of any infinite

collection of fields Fi (i ∈ I). Then R is a commutative von Neumann regular ring

whose socle S = ⊕i∈I Fi. Moreover for any proper ideal B of R with S ⊆ B the

R-module B is a faithful multiplication module such that the mapping λ : L(R) →
L(RB) is an epimorphism but not a monomorphism.

Proof. It is clear that R is a commutative von Neumann regular ring. Let f = {fi}
be any non-zero element of R where the ith component fi is an element of Fi for

each i ∈ I. For each j ∈ I let e(j) denote the element in R whose jth component

is 1 and all of whose other components are 0. There exists k ∈ I such that fk 6= 0.

Then e(k)f is a non-zero element of Uk where Uk is the ideal of R consisting of

all elements {ui} in R such that ui = 0 for all i 6= k. Clearly Ui is a simple

submodule of RR for each i ∈ I and ⊕i∈I Ui is an essential submodule of RR so

that S = ⊕i∈I Ui = ⊕i∈I Fi is the socle of R. Let B be any proper ideal of R with

S ⊆ B. Then B is generated by idempotent elements and annR(B) = 0. Apply

Proposition 2.15. �
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Note that in Proposition 2.15 the ideal I is not finitely generated.

3. The Mapping µ

Given a ring R, in this section we shall consider the mapping µ from the lattice

L(RM) of submodules of an R-module M to the lattice L(R) of ideals of R defined

by µ(N) = (N :R M) = annR(M/N). We shall say that M is a µ-module in case

the mapping µ is a homomorphism. First note the following simple fact.

Lemma 3.1. Let R be a ring and let M be an R-module. Then M is a µ-module

if and only if (N + L :R M) = (N :R M) + (L :R M) for all submodules N and L

of M .

Proof. Let N and L be any submodules of M . Clearly

µ(N ∧ L) = (N ∩ L :R M) = (N :R M) ∩ (L :R M) = µ(N) ∧ µ(L).

Next note that

µ(N ∨ L) = µ(N) ∨ µ(L)⇔ (N + L :R M) = (N :R M) + (L :R M).

The result follows. �

Corollary 3.2. Let M be a µ-module for a ring R such that M = N + L for

some submodules N and L. Then there exists a ∈ R such that aM ⊆ N and

(1− a)M ⊆ L.

Proof. Note that Lemma 3.1 gives:

R = (M :R M) = (N + L :R M) = (N :R M) + (L :R M).

Clearly the result follows. �

In contrast to Theorem 2.3, no (non-zero) ring R has the property that the

mapping µ : L(RM) → L(R) is a homomorphism for every R-module M , as the

next result shows.

Corollary 3.3. Let R be any (non-zero) ring and let M be any non-zero R-module.

Then the R-module M ⊕M is not a µ-module.

Proof. Suppose that M ⊕M is a µ-module. By Corollary 3.2, there exists a ∈ R
such that a(M ⊕M) ⊆M ⊕ 0 and (1− a)(M ⊕M) ⊆ 0⊕M , so that aM = 0 and

(1− a)M = 0 giving M = 0, a contradiction. �

Compare the next result with Lemma 2.10

Corollary 3.4. Let M be a µ-module for a ring R. Then for each maximal ideal P

of R either M = PM or there exist m ∈M and p ∈ P such that (1− p)M ⊆ Rm.
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Proof. Let P be a maximal ideal of R such that M 6= PM . Note that M/PM

is a non-zero semisimple module and hence contains a maximal submodule. Let L

be a maximal submodule of M such that PM ⊆ L. Let m be any element of M

with m /∈ L. Clearly M = L+Rm. By Corollary 3.2 there exists an element p ∈ R
such that pM ⊆ L and (1 − p)M ⊆ Rm. If p /∈ P then R = P + Rp and hence

M = PM + pM ⊆ L, a contradiction. Thus p ∈ P , as required. �

Corollary 3.5. Let R be a ring and let M be a µ-module over R such that M 6= PM

for every maximal ideal P of R. Then the R-module M is a multiplication module.

Moreover the mapping µ is a monomorphism.

Proof. By Lemmas 1.3 and 2.10 and Corollary 3.4. �

We now aim to prove a partial converse of Corollary 3.5. It is proved in Theorem

2.3 that a domain is Prüfer if and only if every homomorphic image of a λ-module

is a λ-module. Contrast this fact with the following result.

Proposition 3.6. Every homomorphic image of a µ-module is a µ-module.

Proof. Let K be any submodule of M and let M be the module M/K. Let N be

any submodule of M . There exists a submodule N of M containing K such that

N = N/K. Then

(N :R M) = annR(M/N) = annR(M/N) = (N :R M).

Apply Lemma 3.1. �

Corollary 3.7. For any ring R, every cyclic R-module is a µ-module.

Proof. Consider the R-module R. Let B and C be any ideals of R. Then

(B + C :R R) = B + C = (B :R R) + (C :R R).

By Lemma 3.1 RR is a µ-module. Now apply Proposition 3.6. �

We now characterize which finitely generated modules are µ-modules.

Theorem 3.8. Given any ring R, a finitely generated R-module is a µ-module if

and only if M is a multiplication module.

Proof. The necessity is proved in Corollary 3.5. Conversely suppose that M is a

multiplication module. LetN,L be any submodules ofM . Clearly (N :R M)+(L :R

M) ⊆ (N + L :R M). Suppose that (N :R M) + (L :R M) 6= (N + L :R M). Let

a ∈ (N + L :R M) such that a /∈ (N :R M) + (L :R M). Let B = {r ∈ R : ra ∈
(N :R M) + (L :R M)}. Then B is a proper ideal of R and hence B ⊆ P for some

maximal ideal P of R. Because M is a finitely generated multiplication module,

Corollary 2.11 shows that there exist m ∈M and p ∈ P such that (1−p)M ⊆ Rm.
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In particular, note that (1 − p)N and (1 − p)L are both submodules of the cyclic

R-module Rm. Next,

(1− p)aM ⊆ (1− p)(N + L) = (1− p)N + (1− p)L.

Because Rm is a µ-module by Corollary 3.7, we now see that

(1− p)a ∈ ((1− p)N + (1− p)L :R Rm) = ((1− p)N :R Rm) + ((1− p)L :R Rm).

Therefore (1−p)a = b+ c for some b ∈ ((1−p)N :R Rm) and some c ∈ ((1−p)L :R

Rm). Note that

(1− p)bM ⊆ bRm ⊆ (1− p)N ⊆ N,

and hence that (1 − p)b ∈ (N :R M). Similarly (1 − p)c ∈ (L :R M). But this

implies that

(1− p)2a = (1− p)b+ (1− p)c ∈ (N :R M) + (L :R M),

which in turn implies that (1 − p)2 ∈ B ⊆ P , a contradiction. It follows that

(N + L :R M) = (N :R M) + (L :R M) for all submodules N and L of M . By

Lemma 3.1 M is a µ-module. �

Corollary 3.9. The following statements are equivalent for a module M over a

ring R.

(i) Every finitely generated submodule of M is a µ-module.

(ii) Every 2-generated submodule of M is a µ-module.

(iii) R = (Rx :R Ry) + (Ry :R Rx) for all elements x, y ∈M .

(iv) R + (N :R L) + (L :R N) for all finitely generated submodules N and L of

M .

(v) Every finitely generated submodule of M is a multiplication module.

Proof. (i) ⇔ (v) By Theorem 3.8.

(i) ⇒ (ii) Clear.

(ii) ⇒ (iii) Let x, y ∈M . By Lemma 3.1,

R = (Rx+Ry :R Rx+Ry) = (Rx :R Rx+Ry) + (Ry :R Rx+Ry)

= (Rx :R Ry) + (Ry :R Rx).

(iii) ⇒ (v) Let K be any finitely generated submodule of M . There exist a

positive integer n and elements ui ∈ K (1 ≤ i ≤ n) such that K = Ru1 + · · ·+Run.

If n = 1 then K is a multiplication module. Suppose that n ≥ 2. By induction

on n the submodule L = Ru1 + · · · + Run−1 is a multiplication module. Let P

be any maximal ideal of R. By Corollary 2.11, there exist v ∈ L, p ∈ P such

that (1 − p)L ⊆ Rv. Let u = un and note that K = L + Ru. By hypothesis,

R = (Ru :R Rv) + (Rv :R Ru) so that either (Ru :R Rv) * P or (Rv :R Ru) * P .
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Suppose first that (Ru :R Rv) * P . Then there exists p1 ∈ P such that (1 −
p1)v ∈ Ru. This implies that

(1− p1)(1− p)K ⊆ (1− p1)(1− p)L+Ru ⊆ Ru.

Now suppose that (Rv :R Ru) * P . Then there exists p2 ∈ P such that (1−p2)u ∈
Rv. In this case,

(1− p2)(1− p)K ⊆ (1− p2)(1− p)L+ (1− p)(1− p2)Ru ⊆ Rv.

In case n ≥ 2 we have proved that for each maximal ideal P of R there exist an

element w in K and an element q in P such that (1− q)K ⊆ Rw. By Lemma 2.10

K is a multiplication module.

(iv) ⇒ (iii) Clear.

(i) ⇒ (iv) Given any finitely generated submodules N,L of M , the submodule

N + L is also finitely generated and hence a µ-module. By Lemma 3.1,

R = (N + L :R N + L) = (N :R N + L) + (L :R N + L)

= (N :R L) + (L :R N).

This completes the proof. �

Next we give examples to show that the condition that the module M be finitely

generated is necessary for both implications in Theorem 3.8.

Example 3.10. Let F be any field and let R denote the collection of all sequences

{f1, f2, f3, . . . } of elements of F with the property that there exists a positive integer

n (depending on the particular sequence) such that fn = fn+1 = fn+2 = . . . . Then

R is a commutative von Neumann regular ring whose socle S is a multiplication

module but not a µ-module.

Proof. It is not difficult to see that the commutative ring R is von Neumann

regular. Next it is clear that S consists of all sequences {f1, f2, f3, . . . } of elements

of F such that 0 = fn = fn+1 = fn+2 = . . . for some positive integer n. By

Proposition 2.15, the module S is a faithful multiplication module. Let S1 denote

the subset of S consisting of all sequences {f1, f2, f3, . . . } such that f2k = 0 (k ≥ 1)

and let S2 denote the subset of S consisting of all elements {f1, f2, f3, . . . } with

f2k−1 = 0 (k ≥ 1). Clearly S1 and S2 are submodules of the R-module S such that

S = S1 ⊕ S2, (S1 :R S) = S1 and (S2 :R S) = S2. By Corollary 3.2 the R-module

S is not a µ-module. �

Example 3.11. Again let Z denote the ring of rational integers and let M denote

the Prüfer p-group for any prime p in Z. Then the Z-module M is a µ-module but

not a multiplication module.
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Proof. If N and L are proper submodules of M then (N :R M) = (L :R M) = 0

by [7, Proposition 2.6]. Now Lemma 3.1 gives that M is a µ-module. On the other

hand, if K is any proper non-zero submodule of M then K 6= BM for any ideal B

of Z and hence M is not a multiplication module. �

Recall that a module M over a general ring R is called hollow in case M is not

the sum of two proper submodules. Next we generalise Example 3.11

Proposition 3.12. Let R be a domain which is not a field and let M be a non-zero

injective R-module. Then

(a) The above mapping λ is a homomorphism but is neither a monomorphism

nor an epimorphism.

(b) The mapping µ is a homomorphism if and only if M is a hollow module.

However µ is neither a monomorphism nor an epimorphism.

Proof. Note that M = BM = λ(B) for every non-zero ideal B of R and 0 = (N :R

M) = µ(N) for every proper submodule N of M by [7, Proposition 2.6].

(a) For all ideals B and C of R we have (B ∩ C)M = BM ∩ CM . By Lemma

2.1 λ is a homomorphism. Let a be any non-zero element of R such that a is not

a unit in R. Then λ(Ra) = M = λ(R) so that λ is not a monomorphism. For any

maximal ideal P of R, P 6= 0 and hence M = PM . Thus M is not simple. If L is

a non-zero proper submodule of M then L 6= λ(E) for any ideal E of R. Thus λ is

not an epimorphism.

(b) It is clear that µ is a homomorphism if and only if whenever N and L are

proper submodules of M then the submodule N + L is also proper, that is M is

hollow. We have seen above that M is not simple and hence µ(L) = 0 = µ(0)

for every non-zero proper submodule L of M . Thus µ is not a monomorphism.

Moreover if a is as before we have Ra 6= µ(K) for every submodule K of M , so that

µ is not an epimorphism. �

The next result is an analogue of Theorem 2.3. It is an immediate consequence

of Corollary 3.9 because domains with the property that every finitely generated

ideal is a multiplication module are precisely Prüfer domains.

Theorem 3.13. The following statements are equivalent for a domain R.

(i) R is Prüfer.

(ii) Every finitely generated ideal of R is a µ-module.

(iii) Every 2-generated ideal of R is a µ-module.

Proof. By Corollary 3.9. �

Note that Theorem 3.13 shows that the class of µ-modules is not closed under

submodules in general.
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Lemma 3.14. Given any ring R, the following statements are equivalent for an

R-module M .

(i) R = (N :R L) + (L :R N) for all submodules N and L of M .

(ii) Every submodule of M is a µ-module.

Proof. (i) ⇒ (ii) Let K be any submodule of M and let N and L be submodules

of K. Then

(N + L :R K) = R(N + L :R K) = [(N :R L) + (L :R N)](N + L :R K)

= (N :R N + L)(N + L :R K) + (L :R N + L)(N + L :R K)

⊆ (N :R K) + (L :R K).

It is clear that (N :R K) + (L :R K) ⊆ (N + L :R K). By Lemma 3.1 K is a

µ-module.

(ii) ⇒ (i) Let N and L be submodules of M . Then the submodule N + L is a

µ-module. Lemma 3.1 then gives

R = (N+L :R N+L) = (N :R N+L)+(L :R N+L) = (N :R L)+(L :R N). �

The next result should be compared with Proposition 2.4. Recall that a (non-

zero) ring R is called local in case it contains precisely one maximal ideal.

Proposition 3.15. Given any local ring R, the following statements are equivalent

for an R-module M .

(i) M is a chain module.

(ii) Every submodule of M is a µ-module.

(iii) Every finitely generated submodule of M is a µ-module.

Proof. (i) ⇒ (ii) Given any submodules N and L of M either N ⊆ L or L ⊆ N

and hence R = (N :R L) + (L :R N). By Lemma 3.14 every submodule of M is a

µ-module.

(ii) ⇒ (iii) Clear.

(iii)⇒ (i) Let U and V be any submodules of M such that U * V . Let u ∈ U \V .

Let v ∈ V . Then Ru+Rv is a µ-module and Lemma 3.1 gives that

R = (Ru+Rv :R Ru+Rv)) = (Ru :R Ru+Rv) + (Rv :R Ru+Rv)

= (Ru :R Rv) + (Rv :R Ru).

Because R is local either 1 ∈ (Ru :R Rv) and v ∈ Ru or else 1 ∈ (Rv :R Ru) and

u ∈ Rv ⊆ V . By the choice of u it follows that v ∈ Ru for all v ∈ V and hence

V ⊆ Ru ⊆ U . We have proved that U ⊆ V or V ⊆ U for any submodules U and V

of M . Thus M is a chain module. �

We next consider semisimple modules.
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Proposition 3.16. Let R be any ring. Then the following statements are equivalent

for a semisimple R-module M.

(i) M is a µ-module.

(ii) (N + L :R M) = (N :R M) + (L :R M) for all submodules N and L of M

with N ∩ L = 0.

(iii) R = annR(N)+annR(L) for all submodules N and L of M with N ∩L = 0.

Proof. (i) ⇒ (ii) Clear by Lemma 3.1.

(ii) ⇒ (iii) Let N and L be any submodules of M with N ∩L = 0. There exists

a submodule K of M such that M = N ⊕ L⊕K. By (ii),

R = (M :R M) = (L⊕K :R M) + (N :R M) = annR(N) + annR(L⊕K)

⊆ annR(N) + annR(L) ⊆ R,

so that R = annR(N) + annR(L).

(iii) ⇒ (i) Let N and L be submodules of M Suppose first that N ∩ L = 0. Let

annR(N) = B and annR(L) = C. By hypothesis, R = B + C. If M = N ⊕ L
then (N + L :R M) = R = C + B = (N :R M) + (L :R M). Now suppose that

M 6= N⊕L. There exists a non-zero submodule K of M such that M = N⊕L⊕K.

Note that (N+L :R M) = annR(K) = D (say), (N :R M) = annR(L⊕K) = C∩D
and (L :R M) = annR(N ⊕K) = B ∩D. By hypothesis R = B + D implies that

B∩D = (B∩D)(B+D) ⊆ BD ⊆ B∩D. Thus B∩D = BD. Similarly C∩D = CD.

Combining this information gives us the following:

(N + L :R M) = D = D(B + C) = CD +BD = (N :R M) + (L :R M).

Now suppose that N ∩ L need not be zero. There exists a submodule H of M

such that L = (N ∩L)⊕H. This implies that N +L = N ⊕H. By the above proof

we have

(N + L :R M) = (N ⊕H :R M) = (N :R M) + (H :R M)

⊆ (N :R M) + (L :R M) ⊆ (N + L :R M).

Thus in any case (N +L :R M) = (N :R M) + (L :R M) for all submodules N and

L of M . By Lemma 3.1 M is a µ-module. �

Example 3.17. Let R be the ring in Example 2.16. Then the socle S of R is a

semisimple µ-module over R.

Proof. We saw in Example 2.16 that S = ⊕i∈I Ui. For each i ∈ I let πi : S → Ui

denote the canonical projection. Let N and L be submodules of the R-module S

such that N ∩L = 0. It is rather easy to see that N ∩Ui = πi(N) for all i ∈ I. Let

I1 = {i ∈ I : πi(N) 6= 0}. Then N = ⊕i∈I1 Ui. Similarly, if I2 = {i ∈ I : πi(L) 6=
0} then L = ⊕i∈I2 Ui. Because N ∩ L = 0, the set I1 ∩ I2 must be empty or, in
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other words, I2 ⊆ I \ I1. Let f = {fi} ∈ R. Let g denote the element {gi} such

that gi = fi (i ∈ I2) and otherwise gi = 0. Then

f = g + (f − g) ∈ annR(N) + annR(L).

This proves that R = annR(N) + annR(L). By Proposition 3.16 it follows that the

R-module S is a µ-module. �

We saw in Corollary 2.6 that every semisimple module is a λ-module. However

Proposition 3.16 shows that if M is the semisimple Z-module ⊕p∈Π (Z/Zp), where

Π is the collection of all primes p in Z, then M is not a µ-module.

4. Finitely Generated Modules

Again R is a commutative ring and M a unital R-module. We begin this section

with the following elementary result.

Lemma 4.1. Let P be a maximal ideal of a ring R and let M be an R-module.

Then M 6= PM if and only if P = (PM :R M).

Proof. Clear. �

The next result can be found essentially in [4, Theorem 3.1].

Lemma 4.2. Let R be any ring and let M be an R-module with annihilator A in

R. If M is finitely generated then M 6= PM for every maximal ideal P of R with

A ⊆ P . Moreover, the converse holds in case M is a multiplication module.

Proof. Suppose first that M is finitely generated. Suppose further that M = PM

for some maximal ideal P of R. Then the usual determinant argument gives that

(1− p)M = 0 for some p ∈ P . Thus 1− p ∈ A and hence A * P . Conversely, now

suppose that M is a multiplication module such that M 6= PM for every maximal

ideal P of R with A ⊆ P . We have to prove that M is finitely generated. Suppose

that R 6=
∑

m∈M (Rm :R M). Then there exists a maximal ideal Q of R such that∑
m∈M (Rm :R M) ⊆ Q. Note that A = (R0 :R M) ⊆ Q. By hypothesis,there

exists an element x in M such that x /∈ QM . Because M is a multiplication module,

Rx = BM for some ideal B of R. Clearly B * Q. But B ⊆ (Rx :R M) ⊆ Q, a

contradiction. Thus R =
∑

m∈M (Rm :R M). There exist a positive integer n and

elements mi ∈ M (1 ≤ i ≤ n) such that 1 ∈ (Rm1 :R M) + · · · + (Rmn :R M). In

this case, we have

M = 1M ⊆ (Rm1 :R M)M + · · ·+ (Rmn :R M)M ⊆ Rm1 + · · ·+Rmn ⊆M,

and hence M = Rm1 + · · ·+Rmn. �
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Recall that we are interested in the mapping λ from the lattice L(R) of ideals

of a ring R to the lattice L(RM) of submodules of an R-module M defined by

λ(B) = BM for every ideal B of R and the mapping µ : L(RM) → L(R) defined

by µ(N) = (N :R M) for every submodule N of M . Now we come to our main

result.

Theorem 4.3. Let R be a ring and let M be an R-module. Then the following

statements are equivalent.

(i) The mapping λ : L(R)→ L(RM) is an isomorphism.

(ii) The mapping µ : L(RM)→ L(R) is an isomorphism.

(iii) M is a multiplication module such that B = (BM :R M) for every ideal B

of R.

(iv) M is a finitely generated faithful multiplication module.

Proof. (i) ⇔ (ii) By Corollary 1.5.

(i) ⇒ (iii) Because λ is an isomorphism, λ is a bijection. In particular, λ is a

surjection and hence M is a multiplication module. Next Lemma 1.4 shows that

µλ = 1 because λ is an injection. Therefore, for each ideal B of R,

B = µλ(B) = µ(BM) = (BM :R M).

This proves (iii).

(iii) ⇒ (iv) Note that annR(M) = (0 :R M) = 0 by (iii) and hence M is faithful.

Moreover, for any maximal ideal Q of R, QM = M implies that R = (M :R M) =

(QM :R M) = Q, a contradiction. Thus M 6= QM for every maximal ideal M of

R. By Lemma 4.2 M is finitely generated.

(iv)⇒ (i) By [4, Theorem 3.1], if C and D are ideals of R such that λ(C) = λ(D)

then CM = DM and hence C = D. Thus λ is an injection. But M being

a multiplication module gives that λ is a surjection. Being a bijection, λ is an

isomorphism by Lemma 1.2. �

Corollary 4.4. Let R be a ring and let M be an R-module with annihilator A in

R. Then M is a finitely generated multiplication module if and only if the mapping

λ : L(R/A)→ L(RM) is an isomorphism.

Proof. Suppose that M is a finitely generated multiplication module. Then the

(R/A)-module M is a finitely generated faithful multiplication module (Lemma 2.9)

and the mapping λ is an isomorphism by Theorem 4.3. Conversely, suppose that λ

is an isomorphism. By Theorem 4.3, the (R/A)-module M is a finitely generated

multiplication module. It follows that the R-module M is a finitely generated

multiplication module by Lemma 2.9. �
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Corollary 4.5. Let R be a domain and let M be an R-module. Then the mapping

λ : L(R)→ L(RM) is an isomorphism if and only if M is a faithful multiplication

module.

Proof. Suppose that M is a (non-zero) faithful multiplication module. By [4,

Lemma 4.3 and Theorem 4.4] M is finitely generated. Now apply Theorem 4.3. �

5. Isomorphisms of Lattices

Let R be a ring and M an R-module. Suppose that ρ : L(R)→ L(R) is a lattice

isomorphism (in particular, ρ could be the lattice isomorphism induced from an

automorphism of the ring R) and suppose that σ : L(RM) → L(RM) is a lattice

isomorphism(in particular, σ could be the lattice isomorphism induced from an R-

isomorphism from M to M). Then σλρ : L(R)→ L(RM) is a mapping which is an

isomorphism if and only if λ is an isomorphism. Thus in general there can be many

mappings from L(R) to L(RM) each of which may or may not be an isomorphism.

Now let R be a ring which is not Hopfian, that is there exists a ring epimorphism

ν : R → R which is not a monomorphism. Let A denote the non-zero kernel of ν.

Then R ∼= R/A so that L(R) is isomorphic to L(R/A) which in turn is isomorphic

to L(R(R/A)). However in this case λ : L(R)→ L(R(R/A)) is not an isomorphism

because R/A is not a faithful R-module. For a specific example, let R denote the

polynomial ring F [x1, x2, x3, . . . ] in indeterminates xi (i ≥ 1) over a field F . Let

n be any positive integer. The linear mapping ν from the F -vector space R to R

defined by ν(xi) = 0 if 1 ≤ i ≤ n and ν(xi) = i − n if i ≥ n + 1 induces a ring

epimorphism with non-zero kernel An = Rx1 + · · ·+Rxn.

This leads us to ask the following question.

Question 5.1. Let R be a ring and let M be an R−module such that the lattices

L(R) and L(RM) are isomorphic. Then what can one say about the module M?

For example, need M be a multiplication module?

As a contribution towards the answer to this question we offer some modest re-

sults. We look at Noetherian rings and modules. Any Noetherian module has Krull

dimension (see, for example, [6, Lemma 6.2.3]). For the definition and properties

of Krull dimension see [6, Chapter 6]. We shall denote the Krull dimension of the

ring R by kdim(R) and of an R-module M by kdim(RM), if either exists.

Lemma 5.2. Let R be a Noetherian domain and let M be an R-module such that

the lattices L(R) and L(RM) are isomorphic. Then M is a finitely generated faithful

R-module.

Proof. Let A = annR(M). Clearly the module M is Noetherian and kdim(R) =

kdim(RM). But M is a finitely generated (R/A)-module. By [6, Lemma 6.2.5],
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kdim(M) ≤ kdim(R/A). Thus kdim(R) ≤ kdim(R/A). Finally, by [6, Proposition

6.3.11], A = 0 and hence M is faithful. �

Recall that a ring R is called semilocal provided it contains only a finite number

of maximal ideals.

Theorem 5.3. Let R be a ring and let M be a finitely generated R-module such

that the lattices L(R) and L(RM) are isomorphic. Suppose further that either (a)

R is a local ring or (b) R is a semilocal ring and M is faithful. Then M is cyclic.

Proof. (a) Suppose that R has unique maximal ideal P . Then the lattice L(RM)

must have only one maximal submodule which must be the submodule PM . Let

m ∈ M \ PM . Then M = Rm + PM . It follows that M/Rm = P (M/Rm). But

M is finitely generated so that Nakayama’s Lemma gives that M = Rm.

(b) Let Q1, . . . , Qn denote the maximal ideals of R, for some positive integer n.

If M = QiM , for some 1 ≤ i ≤ n, then by the usual determinant argument we have

(1− q)M = 0 for some q ∈ Qi, contradicting the fact that M is faithful. Thus M 6=
QiM (1 ≤ i ≤ n). Because the lattices L(R) and L(RM) are isomorphic it follows

that the maximal submodules of M are precisely the submodules QiM (1 ≤ i ≤ n).

Let Q = Q1∩· · ·∩Qn, the Jacobson radical of R. Then QM is the Jacobson radical

of M and hence QM = Q1M ∩ · · · ∩ QnM . The lattice isomorphism then gives

M/QM ∼= R/Q, which is a cyclic R-module. The proof of (a) then gives that M is

cyclic. �

Corollary 5.4. Let R be a semilocal Noetherian domain. Then the following state-

ments are equivalent for a non-zero R-module M .

(i) The above mapping λ : L(R)→ L(RM) is an isomorphism.

(ii) The lattices L(R) and L(RM) are isomorphic.

(iii) M ∼= R.

Proof. (i) ⇒ (ii) Clear.

(ii) ⇒ (iii) By Lemma 5.2 M is faithful and by Theorem 5.3 M is cyclic. There-

fore M ∼= R.

(iii) ⇒ (i) By Theorem 4.3. �

Next we give another situation where we can settle when there is an isomorphism

from the lattice of ideals of a ring R to the lattice of submodules of an R-module

M .

Theorem 5.5. Let R be a Dedekind domain (which is not a field). Then the

following statements are equivalent for a non-zero R-module M .

(i) The above mapping λ : L(R)→ L(RM) is an isomorphism.

(ii) The lattices L(R) and L(RM) are isomorphic.
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(iii) M ∼= B for some non-zero ideal B of R.

Proof. (i) ⇒ (ii) Clear.

(ii) ⇒ (iii) Suppose that τ : L(RM)→ L(R) is an isomorphism. Because R is a

Noetherian ring, the R-module M must be Noetherian. Next note that if N and

L are submodules of M such that N ∩ L = 0 then τ(N) ∩ τ(L) = 0. This implies

that τ(N)τ(L) = 0 and hence τ(N) = 0 or τ(L) = 0. Thus N = 0 or L = 0. It

follows that the R-module M is uniform. Since R has zero socle it follows that the

R-module M has zero socle and thus M is a torsion-free R-module. Putting this

information together gives us that M is isomorphic to a non-zero ideal of R.

(iii) ⇒ (i) Every non-zero ideal of R is invertible and hence is a multiplication

module. By Corollary 4.5, (i) follows. �

Combining Corollaries 4.5 and 5.4 and Theorem 5.5 we see that if R is a semilocal

Noetherian domain or a Dedekind domain then the lattices L(R) and L(RM) are

isomorphic if and only if M is a faithful multiplication module, and in this case the

R-module M is finitely generated and the mappings λ and µ are both isomorphisms.
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