ON GRADED SEMIPRIME AND GRADED WEAKLY SEMIPRIME IDEALS

Farkhonde Farzalipour and Peyman Ghiasvand

Received: 19 February 2012; Revised: 25 June 2012 Communicated by A. Çiğdem Özcan

ABSTRACT. Let G be an arbitrary group with identity e and let R be a Ggraded ring. In this paper, we define graded semiprime ideals of a commutative G-graded ring with nonzero identity and we give a number of results concerning such ideals. Also, we extend some results of graded semiprime ideals to graded weakly semiprime ideals.

Mathematics Subject Classification (2010):13A02, 13C05, 13A15 Keywords: graded semiprime, graded weakly semiprime, graded secondary

1. Introduction

Weakly prime ideals in a commutative ring with nonzero identity have been introduced and studied by D. D. Anderson and E. Smith (see [3]). Also, other generalizations of prime ideals (weakly prime ideals) of commutative rings are studied in [1], [2], [4] and [5]. Weakly primary ideals in a commutative ring with nonzero identity have been introduced and studied in [7]. Graded prime ideals in a commutative *G*-graded ring with nonzero identity have been introduced and studied by M. Refaei and K. Alzobi in [10]. Also, graded weakly prime ideals in a commutative graded ring with nonzero identity have been studied by S. Ebrahimi Atani (see [6]). Here we study graded semiprime and graded weakly semiprime ideals of a commutative graded ring with nonzero identity. For example, we show that graded semiprime ideals of graded secondary ideals are graded secondary. Throughout this work R will denote a commutative G-graded ring with nonzero identity.

Before we state some results let us introduce some notation and terminology. A ring (R, G) is called a *G*-graded ring if there exists a family $\{R_g : g \in G\}$ of additive subgroups of *R* such that $R = \bigoplus_{g \in G} R_g$ such that $R_g R_h \subseteq R_{gh}$ for each *g* and *h* in *G*. For simplicity, we will denote the graded ring (R, G) by *R*. If $a \in R$, then *a* can written uniquely as $\sum_{g \in G} a_g$ where a_g is the component of *a* in R_g . Also, we write $h(R) = \bigcup_{g \in G} R_g$. Moreover, if $R = \bigoplus_{g \in G} R_g$, is a graded ring, then R_e is a subring of R, $1_R \in R_e$ and R_g is an R_e -module for all $g \in G$. An ideal *I* of *R*, where *R* is *G*-graded, is called *G*-graded if $I = \bigoplus_{g \in G} (I \cap R_g)$ or if, equivalently, *I* is generated by homogeneous elements. Moreover, R/I becomes a G-graded ring with g-component $(R/I)_q = (R_q + I)/I$ for $g \in G$. A graded ideal I of R is said to be graded prime ideal if $I \neq R$; and whenever $ab \in I$, we have $a \in I$ or $b \in I$, where $a, b \in h(R)$. A proper graded ideal P of R is said to be graded weakly prime if $0 \neq ab \in P$ where $a, b \in h(R)$, implies $a \in P$ or $b \in P$. A graded ideal I of R is said to be graded maximal if $I \neq R$ and if J be a graded ideal of R such that $I \subseteq J \subseteq R$, then I = J or J = R. A graded ring R is called a graded integral domain if ab = 0 for $a, b \in h(R)$, then a = 0or b = 0. A graded ring R is called a graded local ring if it has a unique graded maximal ideal P, and denoted by (R, P). Let R_1 and R_2 be graded rings. Let $R = R_1 \times R_2$, clearly R is a graded ring. Indeed, we define $h(R) = h(R_1) \times h(R_2)$. Let R be a G-graded ring and $S \subseteq h(R)$ be a multiplicatively closed subset of R. Then the ring of fraction $S^{-1}R$ is a graded ring which is called the graded ring of fractions. Indeed, $S^{-1}R = \bigoplus_{g \in G} (S^{-1}R)_g$ where $(S^{-1}R)_g = \{r/s : r \in R, s \in S\}$ and $g = (degs)^{-1}(degr)$. We write $h(S^{-1}R) = \bigcup_{a \in G} (S^{-1}R)_g$. Let P be any graded prime ideal of a graded ring R and consider the multiplicatively closed subset S = h(R) - P. We denote the graded ring of fraction $S^{-1}R$ of R by R_P^g and we call it the graded localization of R. This ring is graded local with the unique graded maximal ideal $S^{-1}P$ which will be denoted by PR_P^g (see [9]).

2. Graded Semiprime Ideals

In this section, we define the graded semiprime ideals and give some of their basic properties.

Definition 2.1. A proper graded ideal P of a commutative graded ring R with nonzero identity is said to be graded semiprime if $a^k b \in P$ where $a, b \in h(R)$ and $k \in Z^+$, then $ab \in P$.

Every graded prime ideal is a graded semiprime ideal, but the converse is not true in general. For example, let $R = Z_{30}[i] = \{a + bi : a, b \in Z_{30}\}$ that Z_{30} is the ring of integers modulo 30 and let $G = Z_2$. Then R is a G-graded ring with $R_0 = Z_{30}, R_1 = iZ_{30}$. Let $I = \langle 6 \rangle \bigoplus \langle 0 \rangle$. The graded ideal I is graded semiprime, but it is not graded prime. Because $(2,0).(3,0) \in I$, but $(2,0) \notin I$ and $(3,0) \notin I$.

Definition 2.2. Let P be a graded ideal of R and $g \in G$. We say that P_g is a semiprime subgroup of R_g , if $a_q^k b_g \in P_g$ where $a_g, b_g \in R_g$, then $a_g b_g \in P_g$.

Proposition 2.3. Let R be a G-graded ring and $P = \bigoplus_{g \in G} P_g$ a graded ideal of R. If P_g is a semiprime subgroup of R_g for any $g \in G$, then P is a graded semiprime ideal of R.

Proof. Let $a^k b \in P$ where $a, b \in h(R)$. So $a^k b \in P_g$ for some $g \in G$. Hence $ab \in P_g$, so $ab \in P$, as required.

The following lemma is known, but we write it here for the sake of references.

Lemma 2.4. Let R be a graded ring. Then the following hold:

- (1) If I and J are graded ideals of R, then I + J, $I \bigcap J$ and IJ are graded ideals of R.
- (2) If I and J are graded ideals of R and $a \in h(R)$, then $(I:_R J)$ and $(I:_R a)$ are graded ideals of R.

Proposition 2.5. Let R be a G-graded ring, P a graded semiprime ideal of R and $a \in h(R)$. Then the following hold:

- (1) If $a \in P$, then (P : a) = R.
- (2) If $a \notin P$, then (P:a) is a graded semiprime ideal of R.

Proof. (1) It is clear.

(2) Let $x^k y \in (P:a)$ where $x, y \in h(R)$ and $k \in Z^+$. Hence $x^k y a \in P$, so $xya \in P$ since P is graded semiprime. Therefore $xy \in (P:a)$, as needed.

Proposition 2.6. Let R be a G-graded ring and I a graded ideal of R. If P be a graded semiprime ideal of R such that $I^n \subseteq P$ for some $n \in N$, then $I \subseteq P$. Also, if $I^n = P$ for some $n \in N$, then I = P.

Proof. Let $a \in I$, then we can write $a = \sum_{g \in G} a_g$ where $a_g \in I \cap h(R)$. So for any $g \in G$, $a_g^n \in I^n \subseteq P$. Hence for any $g \in G$, $a_g \in P$ since P is a graded semiprime ideal. Therefore $a = \sum_{g \in G} a_g \in P$, so $I \subseteq P$. It is clear that $I^n = P$, then I = P.

Let R be a graded ring. A graded ideal I of R is said to be graded secondary, if for every element $r \in h(R)$; rI = I or there exists $n \in N$ such that $r^n I = 0$ (see [8]).

Theorem 2.7. Let I be a graded secondary ideal of a graded ring R. Then if Q is a graded semiprime subideal of I, then Q is a graded secondary ideal of R.

Proof. Let I be a graded secondary ideal and let $a \in h(R)$. If $a^n I = 0$ for some $n \in N$, then $a^n Q \subseteq a^n I = 0$, as needed. Let aI = I. We show that aQ = Q. Let $q \in Q$. We may assume that $q = \sum_{g \in G} q_g$ where $q_g \in Q \cap h(R)$. So for any $g \in G$, there exists $b_h \in I \cap h(R)$ such that $q_g = ab_h$. Hence $b_h = ac_k$ for some $c_k \in I \cap h(R)$, thus $ab_h = a^2 c_k \in Q$. So $b_h = ac_k \in Q$ since Q is a graded semiprime ideal. Therefore $q_g = ab_h \in aQ$ for any $g \in G$, so $q = \sum_{g \in G} q_g \in aQ$, as required.

Corollary 2.8. Let I be a graded secondary ideal of a graded ring R. Then if Q is a graded semiprime ideal of R, then $Q \cap I$ is a graded secondary ideal of R.

Proof. The proof is straightforward by Theorem 2.7.

Theorem 2.9. Let R be a G-graded ring and P a graded ideal of R. Then P is a graded semiprime ideal of R if and only if the graded ring R/P has no nonzero homogeneous nilpotent element.

Proof. Let P be a graded semiprime ideal of R. Let $a + P \in h(R/P)$. Assume that $(a + P)^n = 0_{R/P}$, so $a^n \in P$. Hence $a \in P$ since P is a graded semiprime ideal. Therefore a + P = 0, as needed. Conversely, Let R/P has no nonzero homogeneous nilpotent element. Let $a^k b \in P$ where $a, b \in h(R)$ and $k \in Z^+$. Hence $(ab + P)^k = 0_{R/P} = P$, so ab + P = 0 by hypothesis. Therefore $ab \in P$, so P is a graded semiprime ideal of R.

Proposition 2.10. Let $I \subseteq P$ be proper graded ideals of a graded ring R. Then P is a graded semiprime ideal of R if and only if P/I is a graded semiprime ideal of R/I.

Proof. Let P be a graded semiprime ideal of R/I. Let $(a+I)^k(b+I) \in P/I$ where $(a+I), (b+I) \in h(R/I)$ and $k \in Z^+$. So $a^k b \in P$, P graded semiprime gives $ab \in P$. Hence $(a+I)(b+I) \in P/I$.

Conversely, let $a^k b \in P$ where $a, b \in h(R)$ and $k \in Z^+$. So $a^k b + I = (a+I)^k (b+I) \in P/I$. Then $(a+I)(b+I) \in P/I$ since P/I is graded semiprime. Hence $ab \in P$, as required.

Proposition 2.11. Let R be a graded ring and $S \subseteq h(R)$ be a multiplication closed subset of R. If P is a graded semiprime ideal of R, then $S^{-1}P$ is a graded semiprime ideal of $S^{-1}R$.

Proof. Let $(r/s)^k . a/t \in S^{-1}P$, where $r/s, a/t \in h(S^{-1}R)$ and $k \in Z^+$. So $r^k a/s^k t = b/t'$ for some $b \in P \cap h(R)$ and $t' \in S$. Hence there exists $s' \in S$ such that $s't'r^k a = s's^k tb \in P$, so P graded semiprime gives $ras't' \in P$. Therefore $ra/st = ras't'/sts't' \in S^{-1}P$, as needed.

Proposition 2.12. Let (R, P) be a graded local ring with graded maximal ideal P and S = h(R) - P. Then I is a graded semiprime ideal of R if and only if IR_P^g is a graded semiprime ideal of R_P^g .

Proof. Let I be a graded semiprime ideal of R, then IR_P^g is a graded semiprime ideal of R_P^g by Proposition 2.11. Let $a^k b \in I$ where $a, b \in h(R)$ and $k \in Z^+$. So $a^k b/1 = (a/1)^k b/1 \in IR_P^g$. Hence $ab/1 \in IR_P^k$, and ab/1 = c/s for some $c \in I \cap h(R)$ and $s \in S$. So there exists $t \in S$ such that $stab = tc \in I$. So $ab \in I$, because if $ab \notin I$, then $(I:ab) \neq R$, and $st \in (I:ab) \cap S \subseteq P \cap S = \emptyset$, which is a contradiction. Therefore I is a graded semiprime ideal of R.

Proposition 2.13. Let $R = R_1 \times R_2$ where R_i is a commutative graded ring with identity for i = 1, 2. Then the following hold:

- (1) P_1 is a graded semiprime ideal of R_1 if and only if $P_1 \times R_2$ is a graded semiprime ideal of R.
- (2) P_2 is a graded semiprime ideal of R_2 if and only if $R_1 \times P_2$ is a graded semiprime ideal of R.

Proof. (1) Let P_1 be a graded semiprime ideal of R_1 . Suppose $(a, b)^k(c, d) \in P_1 \times R_2$ where $(a, b), (c, d) \in h(R) = h(R_1) \times h(R_2)$ and $k \in Z^+$. So $a^k b \in P_1$, and $ab \in P_1$ since P_1 is graded semiprime. Hence $(a, b)(c, d) \in P_1 \times R_2$, as required. Conversely, let $P_1 \times R_2$ is a graded semiprime ideal of R. Let $a^k b \in P_1$ where $a, b \in h(R_1)$ and $k \in Z^+$. So $(a, 1)^k(b, 1) \in P_1 \times R_2$, thus $(a, 1)(b, 1) \in P_1 \times R_2$ since $P_1 \times R_2$ is graded semiprime. Hence $ab \in P_1$, as needed. (2) The proof is similar to that in case (1) and we omit it.

3. Graded Weakly Semiprime Ideals

In this section, we define the graded weakly semiprime ideals and we extend some results of graded semiprime ideals to graded weakly semiprime ideals.

Definition 3.1. A proper graded ideal P of a commutative graded ring R is said to be graded weakly semiprime if $0 \neq a^k b \in P$ where $a, b \in h(R)$ and $k \in Z^+$, then $ab \in P$.

It is clear that every graded semiprime ideal is a graded weakly semiprime ideal. However, since 0 is always graded weakly semiprime, a graded weakly semiprime ideal need not be graded semiprime, but if R be a graded integral domain, then every graded weakly semiprime is graded semiprime.

Definition 3.2. Let $P = \bigoplus_{g \in G} P_g$ be a graded ideal of R and $g \in G$. We say that P_g is a weakly semiprime subgroup of R_g , if $0 \neq a_g^k b_g \in P_g$ where $a_g, b_g \in R_g$, then $a_g b_g \in P_g$.

Proposition 3.3. Let R be a graded ring, P a proper graded ideal of R and $g \in G$. Consider the following statements.

- (1) P is a graded weakly semiprime ideal of R.
- (2) For $a \in R_q$ and $k \in Z^+$; $(P_q :_{R_e} a^k) = (P_q :_{R_e} a) \cup (0 : a^k)$.
- (3) For $a \in R_g$ and $k \in Z^+$; $(P_g :_{R_e} a^k) = (P_g :_{R_e} a)$ or $(P_g :_{R_e} a^k) = (0 :_{R_e} a^k)$.

Then $(1) \Rightarrow (2) \Rightarrow (3)$.

Proof. (1) \Rightarrow (2) Let *P* be a graded weakly semiprime ideal of *R*. It is clear that $(P_g :_{R_e} a) \cup (0 : a^k) \subseteq (P_g :_{R_e} a^k)$. Let $r_e \in (P_g : a^k)$, then $r_e a^k \in P_g$. If $r_e a^k = 0$, then $r_e \in (0 :_{R_e} a^k)$. Let $0 \neq r_e a^k \in P_g \subseteq P$, then $r_e a \in P$ since *P* is graded weakly semiprime, so $r_e a \in P_g$. Therefore $r_e \in (P_g :_{R_e} a)$. Thus

 $(P_g:_{R_e} a^k) \subseteq (P_g:_{R_e} a) \cup (0:a^k)$. Therefore the proof is complete. (2) \Rightarrow (3) It is well known that if an ideal (a subgroup) is the union of two ideals (two subgroups), then it is equal to one of them.

Proposition 3.4. Let $I \subseteq P$ be proper graded ideals of a graded ring R. Then the following hold:

- (1) If P is a graded weakly semiprime ideal of R, then P/I is a graded weakly semiprime ideal of R/I.
- (2) If I and P/I are graded weakly semiprime ideals of R and R/I respectively, then P is graded weakly semiprime.

Proof. (1) Let $0 \neq (a+I)^k(b+I) \in P/I$, where $(a+I), (b+I) \in h(R/I)$ and $k \in Z^+$. So $0 \neq a^k b \in P$, P graded weakly semiprime gives $ab \in P$. Hence, $(a+I)(b+I) \in P/I$.

(2) Let $0 \neq a^k b \in P$. So $a^k b + I = (a + I)^k (b + I) \in P/I$. If $0 \neq a^k b \in I$, then $ab \in I \subseteq P$ since I is graded weakly semiprime, as needed. Let $0 \neq (a+I)^k (b+I) \in P/I$, then $(a+I)(b+I) \in P/I$ since P/I is graded weakly semiprime. Hence $ab \in P$, as required.

Theorem 3.5. Let I be a graded secondary ideal of a graded ring R. Then if Q is a graded weakly semiprime subideal of I, then Q is a graded secondary ideal of R.

Proof. Let *I* be a graded secondary ideal and let $a \in h(R)$. If $a^n I = 0$ for some $n \in N$, then $a^n Q \subseteq a^n I = 0$. Let aI = I. We show that aQ = Q. Let $0 \neq q \in Q$. We may assume that $q = \sum_{g \in G} q_g$ where $0 \neq q_g \in Q \cap h(R)$. So for any $g \in G$, there exists $b_h \in I \cap h(R)$ such that $q_g = ab_h$. Hence $b_h = ac_k$ for some $c \in I \cap h(R)$, thus $0 \neq ab_h = a^2c_k \in Q$. So $b_h = ac_k \in Q$ since Q is a graded weakly semiprime ideal. Therefore $q_g = ab_h \in aQ$ for any $g \in G$, so $q = \sum_{g \in G} q_g \in aQ$, as required. \Box

Corollary 3.6. Let I be a graded secondary ideal of a graded ring R. Then if Q is a graded weakly semiprime ideal of R, then $Q \cap I$ is a graded secondary ideal of R.

Proof. The proof is straightforward by Theorem 3.5.

Proposition 3.7. Let R be a graded ring and $S \subseteq h(R)$ be a multiplication closed subset of R. If P is a graded weakly semiprime ideal of R, then $S^{-1}P$ is a graded weakly semiprime ideal of $S^{-1}R$.

Proof. Let $0/1 \neq (r/s)^k . a/t \in S^{-1}P$, where $r/s, a/t \in h(S^{-1}R)$ and $k \in Z^+$. So $0/1 \neq r^k a/s^k t = b/t'$ for some $b \in P \cap h(R)$ and $t' \in S$, hence there exists $s' \in S$ such that $0 \neq s't'r^k a = s's^k t b \in P$ (because if $s't'r^k a = 0$, $r^k a/s^k t = s't'r^k a/s't's^k t = 0/1$, a contradiction), so P graded weakly semiprime gives $ras't' \in P$. Hence $ra/st = ras't'/sts't' \in S^{-1}P$, as needed.

Theorem 3.8. Let (R, P) be a graded local ring with graded maximal ideal P and S = h(R) - P. Then I is a graded weakly semiprime ideal of R if and only if IR_P^Q is a graded weakly semiprime ideal of the graded ring R_{P}^{g} .

Proof. Let I is a graded weakly semiprime ideal of R, then IR_P^g is a graded weakly semiprime ideal of R_P^g by Proposition 3.7. Let $0 \neq a^k b \in I$, where $a, b \in h(R)$ and $k \in Z^+$. So $0/1 \neq a^k b/1 = (a/1)^k b/1 \in IR_P^g$ (if $0/1 = a^k b/1$, then $s(a^k b) = 0$ for some $s \in S$, so $s \in (0 : a^k b) \cap S \subseteq P \cap S = \emptyset$, a contradiction). Hence $ab/1 \in IR_P^k$, and so ab/1 = c/s for some $c \in I \cap h(R)$ and $s \in S$. So there exists $t \in S$ such that $stab = tc \in I$. So $ab \in I$, because if $ab \notin I$, then $(I:ab) \neq R$, and $st \in (I:ab) \cap S \subseteq P \cap S = \emptyset$, which is a contradiction. Therefore I is a graded weakly semiprime ideal of R. \square

Proposition 3.9. Let $R = R_1 \times R_2$, where R_i (i=1,2) is a commutative graded ring with nonzero identity. Then the following hold:

- (1) If $P_1 \times R_2$ is a graded weakly semiprime ideal of R, then P_1 is a graded weakly semiprime ideal of R_1 .
- (2) If $R_1 \times P_2$ is a graded weakly semiprime ideal of R, then P_2 is a graded weakly semiprime ideal of R_2 .

Proof. (1) Let $P_1 \times R_2$ is a graded weakly semiprime ideal of R. Suppose $0 \neq 1$ $a^k b \in P_1$, where $a, b \in h(R)$ and $k \in Z^+$. So $0 \neq (a, 1)^k (b, 1) \in P_1 \times R_2$, then $(a,1)(b,1) \in P_1 \times R_2$ since $P_1 \times R_2$ is a graded weakly semiprime ideal. Hence $ab \in P_1$, so P_1 is a graded weakly semiprime ideal of R_1 .

(2) The proof is similar to that in case (1).

References

- [1] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39 (2011), 1646–1672.
- [2] D. D. Anderson and A. Bataineh, *Generalizations of prime ideals*, Comm. Algebra, 36 (2008), 686-696.
- [3] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math., 29 (2003), 831-840.
- [4] A. Badawi and A. Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math., to appear.
- [5] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75(3) (2007), 417–429.
- [6] S. Ebrahimi Atani, On graded weakly prime ideals, Turkish J. Math., 30 (2006), 351 - 358.
- [7] S. Ebrahimi Atani and F. Farzalipour, On weakly primary ideals, Georgian Math. J., 12(3) (2005), 423-429.

- [8] S. Ebrahimi Atani and F. Farzalipour, On graded secondary modules, Turkish J. Math, 31 (2007), 371–378.
- [9] P. Ghiasvand and F. Farzalipour, Some properties of graded multiplication modules, Far East J. Math. Sci, 34 (2009), 341–359.
- [10] M. Refaei and K. Alzobi, On graded primary ideals, Turkish J. Math., 28 (2004), 217–229.

F. Farzalipour, P. Ghiasvand

Department of Mathematics Payame Noor University Tehran 19395-3697, Iran e-mails: f_farzalipour@pnu.ac.ir (F. Farzalipour) p_ghiasvand@pnu.ac.ir (P. Ghiasvand)