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Abstract. Let R be a commutative ring with 1 6= 0. The zero-divisor graph of

R is the (undirected) graph whose vertices consist of the nonzero zero-divisors

of R such that two distinct vertices x and y are adjacent if and only if xy = 0.

Given an integer k > 1, let Ak be the adjacency matrix of the zero-divisor

graph of the finite Boolean ring of order 2k. In this paper, it is proved that

the eigenvalues of Ak are completely determined by the eigenvalues given by

two (k − 1) × (k − 1) Pascal-type matrices Pk and Qk. Multiplicities are also

determined.
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1. Introduction

Given any commutative ring R with 1 6= 0, the zero-divisor graph of R is the

(undirected) graph Γ(R) whose vertices are the nonzero zero-divisors of R such that

two distinct vertices x and y are adjacent if and only if xy = 0. The notion of a

zero-divisor graph was introduced by I. Beck in [5], where every element in R was

considered to be a vertex. The present definition was first used by D.F. Anderson

and P.S. Livingston in [3], and has received a considerable amount of attention

during the past ten years (e.g., see [2], [3], [10], [15], [17], [18], [19], and [20]). A

survey of zero-divisor graphs with an extensive bibliography can be found in [2].

An appealing quality of the zero-divisor graph concept is its potential as a means

by which tools from graph theory become available to study problems in algebra,

and vice versa. In the same vein, techniques from linear algebra become acces-

sible to study graphs by representing graph-theoretic information with a matrix.

Combining these ideas enables the investigation of rings via linear algebra. For

example, in [14] it is shown that a finite commutative ring R with 1 6= 0 having

more than two nonzero zero-divisors is a Boolean ring if and only if the determi-

nant of the adjacency matrix of its zero-divisor graph is −1, where the adjacency

matrix is defined such that its (i, j)-entry is 1 if the ith vertex is adjacent to the jth

vertex, and is 0 otherwise. More precisely, let G be any (undirected) graph with

vertex set V (G) = {v1, . . . , vn}. Then an adjacency matrix of G is an n×n matrix
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A(G) = [A(i, j)] such that

A(i, j) =

{

0, if vi 6∈ N(vj)

1, if vi ∈ N(vj)
,

where N(vj) is the set of all vertices of G that are adjacent to vj .

An eigenvalue (respectively, eigenvector) of G is defined as any eigenvalue (re-

spectively, eigenvector) of A(G). Clearly A(G) is a symmetric matrix. Thus, every

eigenvalue of A(G) is real, and has algebraic multiplicity that is equal to its geomet-

ric multiplicity. Also, it is straightforward to check that any two adjacency matrices

of G are unitarily equivalent [11, Lemma 8.1.1]. In particular, the eigenvalues of

G are independent of the sequence (v1, . . . , vn). Hence, there will be no harm in

fixing a sequence of the vertices of G, and then referencing A(G) as the adjacency

matrix of G.

It is not uncommon for nonisomorphic rings to have isomorphic zero-divisor

graphs. For example, note that Γ(Z6) and Γ(Z8) are both isomorphic to the path

on three vertices, but Z6 6∼= Z8 (e.g., Z8 contains nonzero nilpotent elements, but

Z6 does not). Also, there exist nonisomorphic graphs having precisely the same

eigenvalues (see [11, Figure 8.1]). Thus, the condition that a ring is determined by

the eigenvalues of its zero-divisor graph is stronger than the condition that a ring

is determined by its zero-divisor graph.

In [18, Corollary 4.3], D. Lu and T. Wu proved that if R is a Boolean ring with

1 6= 0 and |R| > 4, then R is determined by its zero-divisor graph. That is, if S is

a commutative ring with 1 6= 0, then Γ(R) ∼= Γ(S) if and only if R ∼= S (also, see

[15, Theorem 4.1]). A. Mohammadian generalized this result in [19] by omitting

the “commutative with 1 6= 0” hypotheses. The theorems from [14] strengthen

the former result for finite rings by showing that a finite commutative ring R with

1 6= 0 and |R| > 4 is a Boolean ring if and only if certain “reciprocal properties”

are satisfied by the eigenvalues of Γ(R). In this paper, the numerical values of these

eigenvalues are examined. It is shown that if R is a finite Boolean ring with R 6∼= Z2,

then the eigenvalues of Γ(R) are precisely the eigenvalues given by two particular

Pascal-type matrices (defined in Section 2).

2. The Pascal-type matrices

Pascal-type matrices are known to have important roles in areas of mathematics

including combinatorics, numerical analysis, number theory, and probability (e.g.,

they are linked with several other notable matrices in [1]). The present investigation

establishes connections between certain Pascal-type matrices and Boolean rings.

To begin the construction of these matrices, let 2 ≤ k ∈ Z. For all integers i, j ∈
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{1, . . . , k − 1}, define

Pk(i, j) =











( i

k − j

)

, if i + j ≥ k

0, if i + j < k

and

Qk(i, j) =











( i − 1

k − j − 1

)

, if i + j ≥ k

0, if i + j < k

.

Consider the (k − 1) × (k − 1) matrices Pk = [Pk(i, j)] and Qk = [Qk(i, j)]. Of

course, producing Pk and Qk amounts to the construction of the first k rows of

Pascal’s triangle. For example, if k = 4 then

Pk =







0 0 1

0 1 2

1 3 3






and Qk =







0 0 1

0 1 1

1 2 1






.

Let ϕ denote the golden ratio 1/2 + 1/2
√

5, and let ξ = −ϕ−1. While it ap-

pears that the problem of finding all eigenvalues of Pk has not been solved, it was

shown in [6] that the eigenvalues of Qk are precisely the real numbers ϕk−2, ϕk−3ξ,

ϕk−4ξ2, . . . , ϕξk−3, and ξk−2. More recently, this result was extended for matrices

that generalize Qk in [7], and the eigenvectors of QT
k were later computed in [8].

Recall that a finite ring R is a Boolean ring if and only if it is isomorphic to Z
k
2

(the direct product of k copies of the ring Z2), where k is the number of distinct

prime ideals of R (e.g., see [4, Theorem 8.7]). Throughout, the adjacency matrix

of Γ(Zk
2) will be denoted by Ak. In [16], the eigenvalues of Pk and the negatives of

the eigenvalues of Qk were shown to be eigenvalues of Ak. The goal in the current

paper is to establish that the eigenvalues of Γ(Zk
2) are precisely the eigenvalues of

Pk together with the negatives of the eigenvalues of Qk. Furthermore, it is shown

that every −ϕiξk−2−i (i = 0, . . . , k − 2) has multiplicity
(

k

i

)

− 1 as an eigenvalue of

Γ(Zk
2), and that every eigenvalue of Pk is simple (i.e, has algebraic multiplicity 1)

as an eigenvalue of Γ(Zk
2) (Theorem 4.3).

3. Interlacing eigenvalues

Let N be an n × n matrix. A principal submatrix of N is any matrix that can

be obtained by deleting the ith row and column of N for every i contained in some

proper subset of {1, . . . , n}. For example, for every k ≥ 2, the matrix Pk is the

principal submatrix of Qk+2 that is obtained by deleting the ith row and column

of Qk+2 for all i ∈ {1, k + 1} (see Example 3.2).

If M is an m×m principal submatrix of an n×n matrix N , then there exists an

n×m matrix R such that RT R = Im (the m×m identity matrix) and M = RT NR.
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In fact, R is the n × m matrix such that the ith row of R consists entirely of 0’s if

and only if the ith column of N is to be deleted in the construction of M , and such

that Im is obtained if these rows of 0’s are deleted from R. For example, note that

Pk = RT Qk+2R, where

RT = [0 Ik−1 0] .

If N is a symmetric matrix with eigenvalues λ1(N) ≥ λ2(N) ≥ · · · ≥ λn(N)

(counting multiplicities), then Cauchy’s interlacing theorem implies that the eigen-

values of M interlace those of N ([9, Theorem 1.3.11] or [11, Theorem 9.5.1(a)]).

That is,

λn−m+i(N) ≤ λi(M) ≤ λi(N)

for every i ∈ {1, . . . ,m}. Furthermore, if either λn−m+i(N) = λi(M) or λi(N) =

λi(M), then there exists a λi(M)-eigenvector v of M such that Rv is a λi(M)-

eigenvector of N ([11, Theorem 9.5.1(b)] or [12, Theorem 2.1(ii)]).

It is not difficult to find examples showing that these interlacing inequalities can

fail if N is not symmetric. In fact, the eigenvalues of M can fail to interlace those

of N even if N is similar to a symmetric matrix. For example, if

N =

[

−4 −5

3 4

]

and C =

[

2 3

1 2

]

,

then CNC−1 =

[

0 1

1 0

]

is a symmetric matrix with eigenvalues 1 and −1. How-

ever, the only eigenvalue of the principal submatrix M = [4] of N is 4. In particular,

the eigenvalues of M do not interlace the eigenvalues of N . On the other hand, we

have the following result.

Lemma 3.1. Let M be an m × m principal submatrix of an n × n matrix N .

Suppose that there exists an n × n invertible diagonal matrix D such that DND−1

is symmetric. Then the eigenvalues of M interlace the eigenvalues of N .

Proof. Since conjugating N by a diagonal matrix amounts to multiplying rows and

columns of N by certain nonzero scalars, it follows that M is similar to a principal

submatrix of DND−1; specifically, if R is the n × m matrix described above such

that RT R = Im and M = RT NR, then

(RT DR)M(RT DR)−1 = (RT DR)M(RT D−1R) = RT [DND−1]R. (1)

(Note that the equalities in (1) can be verified intuitively by observing that left

multiplication by RT and right multiplication by R act by deleting the appropriate

rows and columns, respectively.) By Cauchy’s interlacing theorem, the eigenvalues

of RT [DND−1]R interlace those of the symmetric matrix DND−1. Therefore, the

eigenvalues of M interlace the eigenvalues of N . �
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In the next theorem, a diagonal matrix D is constructed such that DQkD−1 is

a symmetric matrix. This construction is illustrated by the following example.

Example 3.2. Note that Q6 =

















0 0 0 0 1

0 1

0 P4 1

0 1

1 4 6 4 1

















. If

C =







2 0 0

0
√

6 0

0 0 2






and D =

















1 0 0 0 0

0 0

0 C 0

0 0

0 0 0 0 1

















,

then

CP4C
−1 =







0 0 1

0 1
√

6

1
√

6 3






and DQ6D

−1 =

















0 0 0 0 1

0 2

0 CP4C
−1

√
6

0 2

1 2
√

6 2 1

















.

Since DQ6D
−1 is symmetric, the eigenvalues of CP4C

−1 interlace the eigenvalues

of DQ6D
−1. Therefore, the eigenvalues of P4 interlace the eigenvalues of Q6. (Al-

ternatively, the eigenvalues of P4 interlace the eigenvalues of Q6 by an application

of Lemma 3.1 with M = P4 and N = Q6.)

Theorem 3.3. Let 0 ≤ k ∈ Z. Define a (k + 1)× (k + 1) diagonal matrix Dk+2 by

Dk+2(i, j) =















√

√

√

√

(

k

i − 1

)

, if i = j

0, if i 6= j

.

Then Dk+2Qk+2D
−1
k+2 is a symmetric matrix. In particular, the eigenvalues of Pk

interlace the eigenvalues of Qk+2 for every 2 ≤ k ∈ Z.
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Proof. If i, j ∈ {1, . . . , k + 1} with i + j ≥ k + 2, then

(Dk+2Qk+2D
−1
k+2)(i, j) =

√

(

k

i − 1

)(

i − 1

(k + 2) − j − 1

)

√

(

k

j − 1

)

−1

=

√

(

k

i − 1

)(

k

j − 1

)(

i − 1

k − j + 1

)(

k

j − 1

)

−1

=

√

(

k

i − 1

)(

k

j − 1

)(

j − 1

k − i + 1

)(

k

i − 1

)

−1

=

√

(

k

j − 1

)(

j − 1

(k + 2) − i − 1

)

√

(

k

i − 1

)

−1

= (Dk+2Qk+2D
−1
k+2)(j, i).

If i + j < k + 2, then Qk+2(i, j) = 0 = Qk+2(j, i). Therefore, the equali-

ties (Dk+2Qk+2D
−1
k+2)(i, j) = 0 = (Dk+2Qk+2D

−1
k+2)(j, i) hold. This proves that

Dk+2Qk+2D
−1
k+2 is a symmetric matrix.

The “in particular” statement now follows by Lemma 3.1. �

Remark 3.4. Theorem 3.3 together with the equality (1) in Lemma 3.1 imply that

every principal submatrix of Qk is similar to a symmetric matrix. Therefore, the

algebraic multiplicity of any eigenvalue of such a matrix is equal to its geometric

multiplicity. This fact is assumed implicitly throughout the remainder of this paper.

Let 2 ≤ k ∈ Z. Set ϕ = 1/2 + 1/2
√

5 and ξ = −ϕ−1. As noted in Section 2, the

eigenvalues of Qk are the real numbers ϕk−2, ϕk−3ξ, ϕk−4ξ2, . . . , ϕξk−3, and ξk−2.

Hence, the equality ξ = −ϕ−1 implies that the eigenvalues of −Qk are given by

ϕiξk−i for i ∈ {1, . . . , k−1}. In particular, every eigenvalue of −Qk is an eigenvalue

of Qk+2. Also, the (k − 1) × (k − 1) matrix Qk has k − 1 distinct eigenvalues, so

every eigenspace of Qk is 1-dimensional.

We conclude this section with two lemmas and a technical theorem to show that

the eigenvalues of Pk and −Qk are distinct. This result will be applied in Section 4

to “count” the eigenvalues of the graph Γ(Z2). Given any i ∈ {0, . . . , k− 2}, it was

proved in [8] that if (x − ϕ)i(x − ξ)k−2−i =
∑k−2

r=0 vrx
r, then v = [v0, . . . , vk−2]

T

is a ϕk−2−iξi-eigenvector of QT
k . In the next result, the eigenvectors of Qk are

computed.

Lemma 3.5. Let 2 ≤ k ∈ Z. Define Dk as in Theorem 3.3, and let v =

[v0, . . . , vk−2]
T such that (x − ϕ)i(x − ξ)k−2−i =

∑k−2
r=0 vrx

r. Then D−2
k v is a

ϕk−2−iξi-eigenvector of Qk.

Proof. The equalities DkQkD−1
k = (DkQkD−1

k )T = D−1
k QT

k Dk hold by Theorem

3.3. Hence QkD−2
k v = D−2

k QT
k v = ϕk−2−iξiD−2

k v, where the last equality holds

since [8] shows that v is a ϕk−2−iξi-eigenvector of QT
k . �
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Lemma 3.6. Let 2 ≤ k ∈ Z and suppose that w is an eigenvector of Qk. Then

w(1) 6= 0.

Proof. Note that the vectors v defined prior to Lemma 3.5 satisfy the equalities

v(1) = v0 = (−1)kϕiξk−2−i 6= 0. Then D−2
k v(1) 6= 0 since D−2

k is a diagonal

matrix with nonzero diagonal entries. Therefore, since the eigenspaces of Qk are

1-dimensional, it follows from Lemma 3.5 that w(1) 6= 0 for every eigenvector w of

Qk. �

Theorem 3.7. Let 2 ≤ k ∈ Z. If λ is an eigenvalue of Pk, then λ is not an

eigenvalue of Qk+2 (and hence λ is not an eigenvalue of −Qk). Furthermore, every

eigenvalue of Pk is simple.

Proof. Let RT = [0 Ik−1 0] be a (k − 1) × (k + 1) matrix, and define Dk+2 as in

Theorem 3.3. Set S = Dk+2Qk+2D
−1
k+2. Then equation (1) in Lemma 3.1 together

with Theorem 3.3 implies that Pk is similar to the principal submatrix RT SR of

the symmetric matrix S.

Suppose that λ is an eigenvalue of both RT SR and S (equivalently, λ is an

eigenvalue of both Pk and Qk+2). Then, as noted earlier in this section, there

exists a λ-eigenvector u of RT SR such that Ru is a λ-eigenvector of S ([11, Theorem

9.5.1(b)] or [12, Theorem 2.1(ii)]). Thus D−1
k+2Ru is a λ-eigenvector of Qk+2 whose

first and last coordinates are both 0, which contradicts Lemma 3.6. Therefore, the

matrices S and RT SR have no eigenvalues in common. In particular, if λ is an

eigenvalue of Pk, then λ is not an eigenvalue of Qk+2. The first statement of the

theorem now follows since every eigenvalue of −Qk is also an eigenvalue of Qk+2.

For the last statement of the theorem, observe that the k × k matrix P =
[

0 0

0 Pk

]

is a principal submatrix of the (k + 1)× (k + 1) matrix Qk+2 (obtained

by deleting the last row and column of Qk+2). By Lemma 3.1 and Theorem 3.3,

the eigenvalues of P and Qk+2 alternate; that is,

λi+1(Qk+2) ≤ λi(P) ≤ λi(Qk+2)

for every i ∈ {1, . . . , k}. In particular, if λi(P) = λi+1(P) for some i ∈ {1, . . . , k−1}
then λi(P) = λi+1(Qk+2).

If x and y are linearly independent λ-eigenvectors of Pk, then

[

0

x

]

and

[

0

y

]

are linearly independent λ-eigenvectors of P. Hence λi(P) = λi+1(P) = λ for

some i, which implies that λ is an eigenvalue of Qk+2. But the proof of the first

statement of this theorem shows that none of the eigenvalues of Pk are eigenvalues

of Qk+2. Thus, no such x and y exist. It follows that the eigenvalues of Pk are

simple (Remark 3.4 is used here). �
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4. The spectrum of Γ(Zk
2)

Let R be a commutative ring with 1 6= 0. Define the unrestricted zero-divisor

graph of R to be the graph whose vertices are the elements of R such that two

(not necessarily distinct) vertices r and s are adjacent if and only if rs = 0. For

example, the unrestricted zero-divisor graph of Z
2
2 is given in Figure 1. Note that

Beck’s zero-divisor graph (defined in [5]) is obtained if all of the loops on vertices

of the unrestricted zero-divisor graph are removed. In this section, the spectrum

of Γ(Zk
2) is determined in terms of the spectra of Pk and Qk by interlacing the

eigenvalues of Ak := A(Γ(Zk
2)) with those of the unrestricted zero-divisor graph of

Z
k
2 .

(1, 0)

(0, 0)

(1, 1)

(0, 1)

Figure 1. The unrestricted zero-divisor graph of Z
2
2.

Note that the ring Z
k
2 has 2k − 2 nonzero zero-divisors. In particular, Ak is a

(2k − 2) × (2k − 2) matrix for every 2 ≤ k ∈ Z. Let v be a vertex of Γ(Zk
2). Then

v is incident with precisely 2j − 1 edges, where j ∈ {1, . . . , k − 1} is the number

of 0-coordinates of v in the ring Z
k
2 . In this case, v is said to have degree equal to

2j − 1.

For the remainder of this paper, the adjacency matrix of the unrestricted zero-

divisor graph of Z
k
2 will be denoted by Bk. Also, the set of all vertices of Γ(Zk

2)

having degree 2j − 1 is denoted by Dj . Furthermore, the usual inner product of

two vectors x,y ∈ R
n will be given by 〈x,y〉 :=

∑n

i=1 x(i)y(i).

In [13], the spectrum of the unrestricted zero-divisor graph is determined for

every finite commutative ring without nonzero nilpotents. In particular, for any

1 ≤ k ∈ Z, it is shown that the eigenvalues of the unrestricted zero-divisor graph of

Z
k
2 (that is, of Bk) are given by ϕiξk−i (i = 0, 1, . . . , k). Moreover, the multiplicity

of the eigenvalue ϕiξk−i of Bk is
(

k

i

)

. For the sake of completeness, a proof of these

facts is outlined in the following remark.

Remark 4.1. ([13, Remark 7.2]) The Kronecker product M ⊗ N of two matrices

M and N is the matrix obtained by replacing the (i, j)-entry of M by the block
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M(i, j)N . It is an associative operation, and one can check that Bk is the Kronecker

product of k-copies of B1; that is, Bk = B1 ⊗ · · · ⊗ B1 (this observation can also

be verified using [9, Theorem 2.5.3]). If M and N are square matrices, then [9,

Theorem 2.5.4] shows that the spectrum of M ⊗N consists precisely of all products

µν, where µ is an eigenvalue of M and ν is an eigenvalues of N (in fact, if v1 is a

µ-eigenvector of M and v2 is a ν-eigenvector of N , then v1⊗v2 is a µν-eigenvector

of M ⊗ N). Therefore, the above comments follow since the eigenvalues of B1 are

ϕ and ξ. For more on Kronecker products of matrices, see [9, Section 2.5] or [11,

Section 9.7].

The following proposition provides a generalization of [16, Theorem 3.1], which

shows that every eigenvalue of Pk is an eigenvalue of Ak.

Proposition 4.2. Let λ be a real number. Given any u ∈ R
k−1, suppose that

v ∈ R
2k

−2 is defined by v(r) = u(j) for every vr ∈ Dj and j ∈ {1, . . . , k − 1}.
Then Pku = λu if and only if Akv = λv. In particular, every eigenvalue of Pk is

an eigenvalue of Ak.

Proof. Fix a vt ∈ Di for some i ∈ {1, . . . , k−1}, and denote the vector representing

the ith row of Pk by pi. Let k − i ≤ j ≤ k − 1. By counting the combinations of

nonzero coordinates (of elements in Z
k
2) that yield vertices that are adjacent to vt,

it follows that vt is adjacent to precisely
( i

k − j

)

vertices in Dj . If j < k− i (i.e.,

if j is less than the number of nonzero coordinates in vt), then vt is not adjacent

to any elements of Dj . Thus

〈rt,v〉 =

k−1
∑

j=k−i

( i

k − j

)

u(j) =

k−1
∑

j=k−i

Pk(i, j)u(j) = 〈pi,u〉.

Since u(i) = v(t), it follows that 〈pi,u〉 = λu(i) if and only if 〈rt,v〉 = λv(t).

Hence, Pku = λu if and only if Akv = λv.

The ‘in particular’ statement is clear since v is nonzero whenever u is nonzero.

�

In [14, Theorem 2.5], it is proved that det(Ak) = −1 for every 2 ≤ k ∈ Z.

In particular, the eigenvalues of Ak are nonzero. Also, note that Bk and Qk+2

have the same eigenvalues (not counting multiplicities) by the comments prior to

Remark 4.1. Namely, these eigenvalues are ϕiξk−i (i = 0, 1, . . . , k), which are the

eigenvalues of −Qk except when i ∈ {0, k}. Now the main result of this paper can

be proved.

Theorem 4.3. Let 2 ≤ k ∈ Z. The eigenvalues of Γ(Zk
2) are precisely the eigenval-

ues of Pk together with the eigenvalues of −Qk. Furthermore, every eigenvalue of
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Pk is a simple eigenvalue of Γ(Zk
2), and every eigenvalue ϕiξk−i (i = 1, . . . , k − 1)

of −Qk has multiplicity
(

k

i

)

− 1 as an eigenvalue of Γ(Zk
2).

Proof. Let Ck be the (2k − 1)× (2k − 1) matrix obtained by deleting the row and

column of Bk corresponding to the additive identity (0, . . . , 0) of Z
k
2 . Equivalently,

Ck can be constructed by introducing a (2k − 1)th row and column of 0’s to the

matrix Ak. Then it is straightforward to check that the eigenvalues of Ak (counting

multiplicities) are precisely the nonzero eigenvalues of Ck (because if v is a λ-

eigenvector of the (2k − 2)× (2k − 2) matrix Ak then

[

v

0

]

is λ-eigenvector of the

(2k − 1)× (2k − 1) matrix Ck). Since Ck is a principal submatrix of the symmetric

matrix Bk that is obtained by deleting a single row and column, it follows that the

eigenvalues of Bk and Ck alternate; more precisely,

λi+1(Bk) ≤ λi(Ck) ≤ λi(Bk)

for every i ∈ {1, . . . , 2k − 1}. In particular, the equality λi(Ck) = λi(Bk) holds

anytime λi+1(Bk) = λi(Bk). By the comments prior to Remark 4.1, it follows that

ϕiξk−i is an eigenvalue of Ck (and hence of Ak) having multiplicity at least
(

k

i

)

− 1

for every i ∈ {0, . . . , k}. Furthermore, by Proposition 4.2 and Theorem 3.7, the

eigenvalues of Pk yield an additional k − 1 distinct eigenvalues of Ak. Altogether,

these account for at least
∑k

i=0(
(

k

i

)

− 1) + (k − 1) = 2k − 2 eigenvalues of the

(2k − 2) × (2k − 2) matrix Ak. This completes the proof since
(

k

i

)

− 1 = 0 for

i ∈ {0, k}. �
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