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ABSTRACT. This article is a contribution to the study of the automorphism
groups of 2 — (v, k, 1) designs. Let D be 2 — (v,17,1) design, G < Aut(D) be
block transitive and point primitive. If G is unsolvable, then Soc(G), the socle
of G, is not 2G2(q).
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1. Introduction

A 2 —(v,k,1) design D = (P, B) is a pair consisting of a finite set P of v points
and a collection B of k—subsets of P, called blocks, such that any 2-subsets of P is
contained in exactly one block. We will always assume that 2 < k£ < v.

Let G < Aut(D) be a group of automorphisms of a 2 — (v, k, 1) design D. Then
G is said to be block transitive on D if G is transitive on B and is said to be point
transitive(point primitive on D if G is transitive (primitive) on P. A flag of D is a
pair consisting of a point and a block through that point. Then G is flag transitive
on D if G is transitive on the set of flags.

The classification of block transitive 2 — (v,3,1) designs was completed about
thirty years ago (see [2]). In [3], Camina and Siemons classified 2 — (v, 4, 1) designs
with a block transitive, solvable group of automorphisms. Li classified 2 — (v, 4, 1)
designs admitting a block transitive, unsolvable group of automorphisms (see [7]).
Tong and Li [11] classified 2 — (v,5,1) designs with a block transitive, solvable
group of automorphisms. Han and Li [4] classified 2 — (v, 5,1) designs with a block
transitive, unsolvable group of automorphisms. Liu [9] classified 2 — (v, k, 1)(where
k=16,7,8,9,10) designs with a block transitive, solvable group of automorphisms.
In [5], Han and Ma classified 2 — (v,11,1) designs with a block transitive classical

Simple groups of automorphisms.
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This article is a contribution to the study of the automorphism groups of 2 —
(v, k,1) designs. Let D be 2— (v,17,1) design, G < Aut(D) be block transitive and

point primitive. We prove that following theorem.

Main Theorem. Let D be 2 — (v,17,1) design, G < Aut(D) be block transitive
and point primitive. If G is unsolvable, then Soc(G) % 2Ga(q).

2. Preliminary Results

Let D be a 2 — (v, k,1) design defined on the point set P and suppose that G
is an automorphism group of D that acts transitively on blocks. For a 2 — (v, k, 1)
design, as usual, b denotes the number of blocks and r denotes the number of blocks
through a given point. If B is a block, G denotes the setwise stabilizer of B in G
and G (p) is the pointwise stabilizer of B in G. Also, GPB denotes the permutation
group induced by the action of Gz on the points of B, and so GP = GB/G By

The Ree groups Gz (q) form an infinite family of simple groups of Lie type, and
were defined in [10] as subgroups of GL(7,q). Let GF(q) be finite finite field of ¢
elements, where ¢ = 32"*! for some positive integer n > 1. Set t = 3"*! so that
t? = 3q. We give the following information about subgroups of 2G(q). For each [
dividing 2n + 1, 2G(3") denotes the subgroup of 2Gy(q) consisting of all matrices
in 2G5(q) with entries in subfield of 3!. We use the symbols @ and K to note a
Sylow 3-subgroup and a cyclic subgroup of order ¢ — 1 of 2G2(q), respectively.

Lemma 2.1. ([6]) Let T < 2G2(q) and T be mazimal in 2G2(q). Then either T is
conjugate to Ps(l) = 2G2(3!) for some divisor | of 2n+1, or T is conjugate to one
of the subgroups P; in Table 1.

Table 1: Group conjugate to T

Group Structure Remarks

Py Q: K The normaliser of Q in 2G(q)
Py (Z3 X D(g41y/2) : Z3  The normaliser of a fours-group
P Zy x PSL(2,q) An involution centraliser

Py Zgtt+1 : Zs The normaliser of Zgyi+1

Py Zg—i41: Zs The normaliser of Zq_411

Lemma 2.2. ([8]) Let T = 2G1(q) be an exceptional simple group of Lie type over
GF(q), and let G be a group with T <G < Aut(T'). Suppose that M is a maximal
subgroup of G not containing T, then one of the following holds:

(1) M| < 4G : T);

(2) TN M is a parabolic subgroup of T'.
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Lemma 2.3. ([5]) Let G and D = (P, B) be a group and a design, and G < Aut(D)
be block transitive, point-primitive but not flag-transitive. Let Soc(G) =T. Then

T < 5T+ 16 T,
where o € P, X is the length of the longest suborbit of G on P.

3. Proof of the Main Theorem

Proposition 3.1. Let D be 2 — (v,17,1) design, G be block transitive, point prim-
itive but not flag transitive, then v = 272by + 1.

Proof. Let by = (b,v), by = (byv — 1), k1 = (k,v), ko = (k,v — 1). Obviously,
k = kiko. Since k = 17, we get ky = 1. Otherwise, k | v, by [8], G is flag transitive,
a contradiction. Thus v = k(k — 1)ba + 1 = 272by + 1. O

Proposition 3.2. Let D be 2 — (v,17,1) design, G be block transitive, point prim-
itive but not flag transitive and |T| be even. If G be unsolvable, then |T| <
137|T.|%|G : T).

Proof. Let B = {1,2,---,17} € B. Since G is unsolvable, then the structure of

GPB, the rank and subdegree of G' do not occur:

Type of GB Rank of G Subdegree of G
272

—
<1> 273 laan"' ab2
Otherwise, G is odd and G is also odd, a contradiction with |T'| be even. Thus
A > 2by. By Lemma 2.3 and Proposition 3.1,

|T| v 272bs + 1
< - |G: T < —
[Tul?2 = A | = 20y

|G :T| <137|G : T).

Now we may prove our main theorem.

Suppose that Soc(G) = 2Ga(q) = T, then 2G2(q) < G < Aut(*G2(q)). We have
G =T : (x), where x € Out(T), the outer automorphisms group of 7' which may be
generated by an automorphism of field. We may assume that x is an automorphism
of field. Set o(z) = m, then m | (2n + 1). Obviously, |?G2(q)| = ¢*(¢> + 1)(g — 1).
By [1] and k = 17, G is not flag transitive. Since G is point primitive, G, («a € P)
is the maximal subgroup of G, T is block transitive in D. Hence M = G, satisfies

one of the two cases in Lemma 2.2. We will rule out these cases one by one.
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Case (1) |[M| < ¢3|G:T].
By Proposition 3.2, we have an upper bound of |7,

|T| < 137|T,*|G : T| < 137¢°%|G : T| = 137¢°m.
We get
q—1<137(2n + 1).

Let 2n+1 = s> 3, then 3° < 138s. Thus s = 3,5.
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If s = 3, then |?Go(3%)| =3-23.7-13-19-37. Since v = 272by + 1 is odd, then

23 | |T,|. Clearly T, is contained in some maximal subgroups of 7. By Lemma 2.1,

T, =2 2G5(3), (22 x Dq41y/2) : Z3 or Zy x PSL(2,q), where q = 33
(i) To = 2Go(3). We have

|T| 39.23.7.13-19-37
—1l=—-1= —1 = 6662330.
v T, | 33.93.7
By Proposition 3.1, 156by = 6662330, a contradiction.
(Z’L) Ta = (Z22 X D(q+1)/2) : Z3. We have
IT| 39.2%.7.13.19-37
—1l=—-1= — 1 =59960978.
Y T 3.23.7
By Proposition 3.1, 156by = 59960978, a contradiction.
(131) T = Zy x PSL(2,q). We have
|T| 39.23.7.13-19-37
1=l _1= — 1 =512486.
v T, | 33.23.7.13

By Proposition 3.1, 156by = 512486, a contradiction.

If s = 5, then [2G2(3%)| = 31° . (315 + 1)) - (3° — 1). Since v = 272by + 1 is

odd, then 23 | |T,|. Clearly T, is contained in some maximal subgroups of 7. By

Lemma 2.1,
Ta = 2Ga(3), (23  Digy1y2) : Zs ov Zo x PSL(2,0),

where ¢ = 35. It is not difficult to exclude them by Proposition 3.1.
Case (2) TN M is a parabolic subgroup of T

By Lemma 2.1, the parabolic subgroup of ?Gs(q) is conjugate to QK. Then the

order of parabolic subgroup is ¢3(¢ — 1) and v = ¢> + 1. By Proposition 3.1, we

have ¢3 = v — 1 = 272b, and so 272 | ¢, a contradiction.

This completes the proof the Main Theorem.
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