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Abstract. We determine the commutant of homogeneous subrings in strongly

groupoid graded rings in terms of an action on the ring induced by the grading.

Thereby we generalize a classical result of Miyashita from the group graded

case to the groupoid graded situation. In the end of the article we exemplify

this result. To this end, we show, by an explicit construction, that given a

finite groupoid G, equipped with a nonidentity morphism t : d(t) → c(t), there

is a strongly G-graded ring R with the properties that each Rs, for s ∈ G, is

nonzero and Rt is a nonfree left Rc(t)-module.
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1. Introduction

Let R be an associative ring. If R is unital, then the identity element of R is

denoted 1R. We say that a subset R′ of R is a subring of R if it is itself a ring under

the binary operations of R; note that even if R and R′ are unital it may happen

that 1R′ ̸= 1R. However, we always assume that ring homomorphisms R → R′′

between unital rings R and R′′ map 1R to 1R′′ . The group of ring automorphisms

of R is denoted Aut(R).

By the commutant of a subset X of R, denoted CR(X), we mean the set of

elements of R that commute with each element of X. If Y is another subset of R,

then XY denotes the set of all finite sums of products xy, for x ∈ X and y ∈ Y .

The task of calculating CR(X) is in general a difficult problem. However, if R is

strongly group graded and X belongs to a certain class of subrings of R, then, by a

classical result of Miyashita [12] (see Theorem 1.1), there is an elegant solution to
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this problem formulated in terms of a group action defined by the grading. Namely,

recall that R is said to be graded by the group G, or G-graded, if there is a set of

additive subgroups, Rs, for s ∈ G, of R such that R =
⊕

s∈G Rs and RsRt ⊆ Rst,

for s, t ∈ G. If H is a subgroup of G, then we let RH denote the subring
⊕

s∈H Rs

of R; in particular, Re is a subring of R, where e denotes the identity element

of G. If R is graded by G and RsRt = Rst, for s, t ∈ G, then R is said to be

strongly graded. If in addition R is unital, then there is a unique group action

G ∋ s 7→ σs ∈ Aut(CR(Re)) of G on CR(Re) satisfying rsx = σs(x)rs, for s ∈ G,

rs ∈ Rs and x ∈ CR(Re). Indeed, σs(x) =
∑n

i=1 aixbi, for x ∈ Re, where ai ∈ Rs

and bi ∈ Rs−1 are chosen so that
∑n

i=1 aibi = 1R. If H ⊆ G and Y ⊆ CR(Re), then

we let Y H denote the set of y ∈ Y which are fixed by all σs, for s ∈ H.

Theorem 1.1 (Miyashita [12]). Let R be a unital ring strongly graded by the group

G. If H is a subgroup of G, then CR(RH) = CR(Re)
H .

In fact, Miyashita proves a more general statement concerning G-actions on

module endomorphisms (see Theorems 2.12 and 2.13 in [12]). For more details

concerning this and related results, see e.g. [1, Section I.2], [2, Theorem (2.1)], [14,

Section 3.4] and [16]. For more details about group graded rings in general, see e.g.

[13] or [14].

The purpose of this article is to generalize Theorem 1.1 from groups to groupoids

(see Theorem 1.2). To be more precise, suppose that G is a small category, that

is such that mor(G) is a set. The family of objects of G is denoted by ob(G);

we will often identify an object in G with its associated identity morphism. The

family of morphisms in G is denoted by mor(G); by abuse of notation, we will

often write s ∈ G when we mean s ∈ mor(G). The domain and codomain of a

morphism s in G is denoted by d(s) and c(s) respectively. We let G(2) denote the

collection of composable pairs of morphisms in G, that is all (s, t) in mor(G) ×
mor(G) satisfying d(s) = c(t). For e, f ∈ ob(G), we let Gf,e denote the collection

of s ∈ G with c(s) = f and d(s) = e and Ge denotes the monoid Ge,e. A category

is called cancellative (a groupoid) if all its morphisms are both monomorphisms

and epimorphisms (isomorphisms). A subcategory of a groupoid is said to be a

subgroupoid if it is closed under inverses. For more details concerning categories in

general and groupoids in particular, see e.g. [11] and [5] respectively. Let R be a

ring. We say that a set of additive subgroups, Rs, for s ∈ G, of R is a G-filter in

R if for all s, t ∈ G, we have RsRt ⊆ Rst if (s, t) ∈ G(2) and RsRt = {0} otherwise.

We say that a G-filter is strong if RsRt = Rst for (s, t) ∈ G(2). Furthermore, we say

that the ring R is graded by the category G if there is a G-filter, Rs, for s ∈ G, in R
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such that R =
⊕

s∈G Rs. If R is graded by a strong G-filter, then we say that it is

strongly graded. Analogously to the group graded situation, if H is a subcategory

of G, then we let RH denote the subring
⊕

s∈H Rs of R. We say that R is locally

unital if for each e ∈ ob(G) the ring Re is unital, making every Rs, for s ∈ G,

a unital Rc(s)-Rd(s)-bimodule. For more details concerning category graded rings,

see e.g. [8], [9], [10] and [15].

In Section 3, we show that if R is a ring which is strongly graded by a groupoid

G, then for each s ∈ G there is a ring isomorphism σs from CRGd(s)
(Rd(s)) to

CRGc(s)
(Rc(s)) (see Definition 3.3) with properties similar to the ones in the group

case above (see Proposition 3.4). In the end of Section 3, we use this fact to show

the following result.

Theorem 1.2. Let R be a locally unital ring strongly graded by the groupoid G,

and let H be a subgroupoid of G. If F denotes the set of elements in R of the form∑
e∈ob(H) xe, where xe ∈ CRGe

(Re), for e ∈ ob(H), and σs(xd(s)) = xc(s) for all

s ∈ H, and T denotes
⊕

s∈G⊖H Rs, where G ⊖ H is the set of morphisms s ∈ G

satisfying d(s), c(s) /∈ H, then CR(RH) = F ⊕ T .

There is a well-developed theory for invertible bimodules of unital rings (see [1],

[7] and [12]). However, in order to be able to generalize this theory to locally unital

groupoid graded rings, and in particular in order to show Theorem 1.2, we need to

extend the theory slightly (see Section 2). Namely, given unital subrings A and B

of a (not necessarily unital) ring R we say that a unital A-B-submodule X of R is

invertible if there is a unital B-A-submodule X−1 of R such that XX−1 = A and

X−1X = B. The collection of invertible submodules of R forms a groupoid (see

Definition 2.1 for the details).

In Section 4, we illustrate Theorem 1.1 and Theorem 1.2 in two cases (see Ex-

ample 4.2). To this end, we make an explicit construction (see Proposition 4.1) of

graded rings, which is inspired by [3]. A particular case of our construction implies

the following result.

Theorem 1.3. Given a finite groupoid G, equipped with a nonidentity morphism

t : d(t) → c(t), there is a unital strongly G-graded ring R with the properties that

each Rs, for s ∈ G, is nonzero and Rt is nonfree as a left Rc(t)-module.

We find that Theorem 1.3 is interesting in its own right since, in general, every

component Rs, for s ∈ G, of a strongly groupoid graded and locally unital ring R,

is finitely generated and projective as a left Rc(s)-module (see Proposition 3.1(b)).
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2. Miyashita Action

Throughout this section, let A, B, C, R and S be rings such that A, B and

C are unital subrings of R. Furthermore, let M , N and P be R-S-bimodules; we

let HomR,S(M,N) denote the collection of simultaneously left R-linear and right

S-linear maps M → N .

Definition 2.1. We say that a unital A-B-submodule X of R is invertible in R if

there is a unital B-A-submodule X−1 of R such that XX−1 = A and X−1X = B.

Let Grd(R) denote the groupoid having subrings of R as objects and invertible

A-B-submodules X of R as morphisms, for subrings A and B of R; in that case we

will write X : B → A. If Y : C → B is an invertible B-C-submodule of R, then the

composition of X and Y is defined as the A-C-submodule XY of R. The identity

morphism A → A is A itself.

Proposition 2.2. Every X : B → A in Grd(R) is finitely generated and projective

both as a left A-module and a right B-module.

Proof. By the assumptions A = XX−1 and hence there is a positive integer n

and xi ∈ X and yi ∈ X−1, for i ∈ {1, . . . , n}, such that 1A =
∑n

i=1 xiyi. For each

i ∈ {1, . . . , n} define a right B-linear fi : X → B by fi(x) = yix, for x ∈ X. If

x ∈ X, then x = 1Ax =
∑n

i=1 xiyix =
∑n

i=1 xifi(x). Hence, by the dual basis

lemma (see e.g [6, p. 23]), we get that X is a projective right B-module generated

by x1, . . . , xn. Analogously, one can prove that X is a finitely generated projective

left A-module. �

Proposition 2.3. If X : B → A is in Grd(R) and f ∈ HomB,S(BM,BN), then

there is a unique fX ∈ HomA,S(AM,AN) satisfying

fX(xm) = xf(1Bm) (1)

for all x ∈ X and all m ∈ M . Moreover, the following properties hold:

(a) 0X = 0 and idXBM = idAM ;

(b) if g ∈ HomB,S(BM,BN), then (f + g)X = fX + gX ;

(c) if g ∈ HomB,S(BN,BP ), then (g ◦ f)X = gX ◦ fX ;

(d) if g ∈ HomA,S(AM,AN), then gA = g;

(e) if Y : C → B in Grd(R) and g ∈ HomC,S(CM,CN), then (gY )X = gXY .

Proof. Fix X : B → A in Grd(R) and f ∈ HomB,S(BM,BN). Since 1A ∈ A =

XX−1, there is a positive integer n and xi ∈ X, yi ∈ X−1, for i ∈ {1, . . . , n}, such
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that
∑n

i=1 xiyi = 1A. If a map fX ∈ HomA,S(AM,AN) satisfying (1) exists, then

it is unique, since

fX(am) = fX(a1Am) = fX

(
a

n∑
i=1

xiyim

)
=

=
n∑

i=1

fX(axiyim) = a
n∑

i=1

xif(yim) (2)

for all a ∈ A and all m ∈ M ; define fX(am) by the last part of (2). We must show

that fX does not depend on the choice of the xi’s and yi’s. To this end, suppose

that p is a positive integer and x′
j ∈ X and y′j ∈ X−1, for j ∈ {1, . . . , p}, are chosen

so that
∑p

j=1 x
′
jy

′
j = 1A. Take a ∈ A and m ∈ M . Then, since yix

′
j ∈ B, we get

that

a

p∑
j=1

x′
jf(y

′
jm) = a

p∑
j=1

1Ax
′
jf(y

′
jm) = a

p∑
j=1

n∑
i=1

xiyix
′
jf(y

′
jm) =

= a

p∑
j=1

n∑
i=1

xif(yix
′
jy

′
jm) = a

n∑
i=1

p∑
j=1

xif(yix
′
jy

′
jm) =

= a
n∑

i=1

xif

yi

p∑
j=1

x′
jy

′
jm

 = a
n∑

i=1

xif(yi1Am) = a
n∑

i=1

xif(yim).

Now we show that (1) holds. If x ∈ X and m ∈ M , then, since yix ∈ X−1X = B

for i ∈ {1, . . . , n}, we get that

fX(xm) =
n∑

i=1

xif(yixm) =
n∑

i=1

xif(yix1Bm) =

=
n∑

i=1

xiyixf(1Bm) = 1Axf(1Bm) = xf(1Bm).

Next we show that fX ∈ HomA,S(AM,AN). It is clear that fX respects addition

and right S-multiplication. Now we show that fX respects left A-multiplication.

To this end, suppose that m ∈ M and a, a′ ∈ A. Since axi ∈ X, for i ∈ {1, . . . , n},
we get, by (1), that

fX(aa′m) = fX(a1Aa
′m) = fX

(
a

n∑
i=1

xiyia
′m

)
=

n∑
i=1

fX(axiyia
′m) =

=
n∑

i=1

axif(1Byia
′m) = a

(
n∑

i=1

xif(yia
′m)

)
= afX(1Aa

′m) = afX(a′m).

(a) and (b) follow immediately.
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(c) It is clear that both (g ◦ f)X and gX ◦ fX belong to HomA,S(AM,AP ).

Moreover, if x ∈ X and m ∈ M , then we get that

(gX ◦ fX)(xm) = gX(fX(xm)) = gX(xf(1Bm)) =

= xg(f(1Bm)) = x(g ◦ f)(1Bm).

By uniqueness of the map hX in HomA,S(AM,AP ) satisfying hX(xm) = xh(1Bm),

for x ∈ X and m ∈ M , it follows that (g ◦ f)X = gX ◦ fX .

(d) This follows if we let x1 = y1 = 1A and xi = yi = 0, for i ∈ {2, . . . , n}.
(e) Suppose that g ∈ HomC,S(CM,CN) and that Y : C → B. Take a positive

integer p and x′
j ∈ Y , y′j ∈ Y −1, for j ∈ {1, . . . , p}, such that

∑p
j=1 x

′
jy

′
j = 1B . If

a ∈ A and m ∈ M , then

(gY )X(am) = a
n∑

i=1

xig
Y (yim) = a

n∑
i=1

p∑
j=1

xix
′
jg(y

′
jyim) = gXY (am)

since for each i and j we have xix
′
j ∈ XY , y′jyi ∈ Y −1X−1 = (XY )−1 and

n∑
i=1

p∑
j=1

xix
′
jy

′
jyi =

n∑
i=1

xi

 p∑
j=1

x′
jy

′
j

 yi =

n∑
i=1

xi1Byi =

n∑
i=1

xiyi = 1A.

�

Definition 2.4. Suppose that G and H are categories. Recall that an action of G

on H is a functor ̂ : G → H. If H is a category of abelian categories, then we say

that an action ̂ of G on H is additive if for each morphism g in G, the functor ĝ

respects the additive structures on the hom-sets.

Remark 2.5. For each subring A of R, we let HomA,S denote the abelian category

having A-S-bimodules AM as objects, for R-S-bimodules M , and A-S-bimodule

maps f : AM → AN as morphisms, for R-S-bimodules M and N . Furthermore,

we let HomS denote the category having HomA,S as objects, for subrings A of

R, and functors HomB,S → HomA,S as morphisms, for subrings A and B of R.

Then Proposition 2.3 can be formulated by saying that there is a unique additive

action ̂ of Grd(R) on HomS subject to the condition that for any X : B → A in

Grd(R), any R-S-bimodules M and N , and any f ∈ HomB,S(BM,BN), we have

that X̂(f)(xm) = xf(1Bm) for all x ∈ X and all m ∈ M .

Proposition 2.6. For any X : B → A in Grd(R) there is a unique ring iso-

morphism σX : CBR(B) → CAR(A) with the property that σX(r)x = xr, for

r ∈ CBR(B) and x ∈ X. If we choose a positive integer n and xi ∈ X and

yi ∈ X−1, for i ∈ {1, . . . , n}, satisfying
∑n

i=1 xiyi = 1A, then σX(r) =
∑n

i=1 xiryi,



52 JOHAN ÖINERT AND PATRIK LUNDSTRÖM

for r ∈ CBR(B). Moreover, σA = idCAR(A) and if X : B → A and Y : C → B

belong to Grd(R), then σXY = σX ◦ σY .

Proof. For each subring A of R, define maps hA : EndA,R(AR) → CAR(A) and

hA : CAR(A) → EndA,R(AR) by hA(f) = f(1A), for f ∈ EndA,R(AR), respectively

hA(c)(ar) = car, for c ∈ CAR(A), a ∈ A and r ∈ R. It is clear that hA and hA

are well-defined ring homomorphisms satisfying hA ◦ hA = idCAR(A) and hA ◦ hA =

idEndA,R(AR). Suppose that X : B → A is in Grd(R) and that there is a ring

isomorphism σX : CBR(B) → CAR(A) with the property that σX(r)x = xr, for

r ∈ CBR(B) and x ∈ X. By the above, it follows that for each f ∈ EndB,R(BR)

the map (hA ◦ σX ◦ hB)(f) ∈ EndA,R(AR) satisfies

(hA ◦ σX ◦ hB)(f)(xr) = hA(σ
X(hB(f)))(xr) =

= σX(hB(f))xr = xhB(f)r = xf(1B)r

for all x ∈ X and all r ∈ R; by uniqueness, we get that (hA ◦ σX ◦ hB)(f) = fX .

Hence, if r ∈ CBR(B), then we get that

σX(r) = (hA ◦ hA ◦ σX ◦ hB ◦ hB)(r) = (hA ◦ (·)X ◦ hB)(r) =

= hA(hB(r)
X) = hB(r)

X(1A) =

n∑
i=1

xiryi.

By Proposition 2.3(a)-(e), it follows that σX is a ring isomorphism satisfying σA =

idCAR(A) and σXY = σX ◦ σY . �

Remark 2.7. If we for each subring A of R, consider the ring CAR(A) to be an

abelian category with one object AR, then the disjoint union C(R) :=
⊎
CAR(A),

where the union runs over all subrings A of R, has an induced structure of an abelian

category. Therefore, Proposition 2.6 can be formulated by saying that the action of

Grd(R) on HomS defined in Remark 2.5 induces a unique additive action ̂ of

Grd(R) on C(R) subject to the condition that for each X : B → A in Grd(R), the

equality X̂(r)x = xr holds for all r ∈ CBR(B) and all x ∈ X.

The commutant CA(A) is called the center of A and is denoted by Z(A).

Proposition 2.8. For any X : B → A in Grd(R) there is a unique ring isomor-

phism σX : Z(B) → Z(A) with the property that σX(r)x = xr, for r ∈ Z(B)

and x ∈ X. If we choose a positive integer n and xi ∈ X and yi ∈ X−1, for

i ∈ {1, . . . , n}, satisfying
∑n

i=1 xiyi = 1A, then σX(r) =
∑n

i=1 xiryi, for r ∈ Z(B).

Moreover, σA = idZ(A) and if X : B → A and Y : C → B belong to Grd(R), then

σXY = σX ◦ σY .
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Proof. This follows immediately from Proposition 2.6. �

Remark 2.9. If we for each subring A of R, consider the ring Z(A) to be an

abelian category with one object A, then the disjoint union ZR :=
⊎
Z(A), where

the union runs over all subrings A of R, has an induced structure of an abelian

category. Therefore, Proposition 2.8 can be formulated by saying that the action

of Grd(R) on HomS defined in Remark 2.5 induces a unique additive action ̂ of

Grd(R) on ZR subject to the condition that for each X : B → A in Grd(R), the

equality X̂(r)x = xr holds for all r ∈ Z(B) and all x ∈ X.

3. Graded Rings

At the end of this section, we prove Theorem 1.2. To achieve this, we first

show three propositions concerning rings graded by categories and, in particular,

groupoids.

Proposition 3.1. Let R be a locally unital ring graded by a category G.

(a) If s ∈ G is an isomorphism, then RsRs−1 = Rc(s) if and only if RsRt = Rst

for all t ∈ G with d(s) = c(t). In particular, if G is a groupoid (or group), then

R is strongly graded if and only if RsRs−1 = Rc(s), for all s ∈ G.

(b) Suppose that R is strongly graded. If s ∈ G is an isomorphism, then Rs is

finitely generated and projective, both as a left Rc(s)-module and a right Rd(s)-

module. In particular, if G is a groupoid then the same conclusion holds for

each s ∈ G.

(c) The ring R is unital if and only if R = RH =
⊕

s∈H Rs for a subcategory H of

G with finitely many objects. The subcategory H may be chosen so that 1Re is

nonzero for all e ∈ ob(H).

Proof. (a) The ”if” statement is clear. Now we show the ”only if” statement.

Take (s, t) ∈ G(2) and suppose that RsRs−1 = Rc(s). Then, by the assumptions

we get that RsRt ⊆ Rst = Rc(s)Rst = RsRs−1Rst ⊆ RsRs−1st = RsRt. Therefore,

RsRt = Rst. The last part follows immediately.

(b) This follows from Proposition 2.2.

(c) The ”if” statement is clear since if ob(H) is finite, then
∑

e∈ob(H) 1Re is an

identity element of R. Now we show the ”only if” statement of the claim. Suppose

that R has an identity element 1R =
∑

s∈G rs for some rs ∈ Rs, for s ∈ G, such

that rs = 0 for all but finitely many s ∈ G. Take e, f ∈ ob(G). If e ̸= f , then

0 = 1Re1Rf
= 1Re1R1Rf

=
∑

s∈G 1Rers1Rf
=
∑

s∈Ge,f
rs. This implies that rs = 0

for all s ∈ G with d(s) ̸= c(s). Also 1Re = 1Re1Re = 1Re1R1Re =
∑

s∈G 1Rers1Re =
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∑
s∈Ge

rs. This implies that re = 1Re
and that rs = 0 for all nonidentity s ∈ G

with d(s) = c(s). Therefore 1R =
∑

e∈ob(G) 1Re which in turn implies that 1Re = 0

for all but finitely many e ∈ ob(G). Put H = {s ∈ G | 1Rd(s)
= 1Rc(s)

̸= 0}. Then
H is a finite object subcategory of G satisfying R = RH . �

In general there is not any obvious connection between local unitality and uni-

tality of a graded ring. This is illustrated by the following remark.

Remark 3.2. (a) If R is a unital ring graded by a cancellative category, then R

is also a locally unital ring. Indeed, let us write 1R =
∑

s∈G 1s where 1s ∈ Rs

for s ∈ G. If t ∈ G, then 1t = 1R1t =
∑

s∈G 1s1t. Since G is cancellative, this

implies that 1s1t = 0 whenever s ∈ G \ ob(G). Therefore, if s ∈ G \ ob(G), then

1s = 1s1R =
∑

t∈G 1s1t = 0. It is clear that {1e}e∈ob(G) is a set of local units for

R.

(b) The conclusion in (a) does not hold if G is not cancellative. Indeed, let

G = {e, s} be the monoid with e2 = e, s2 = s and es = se = s. Define

R =


C C 0

C C 0

0 0 C

 Re =


0 0 0

0 0 0

0 0 C

 Rs =


C C 0

C C 0

0 0 0

 .

Then R = Re

⊕
Rs is a unital G-graded ring which is not a locally unital ring.

(c) There are examples of G-graded rings R which are non-unital, but locally

unital. Indeed, suppose that G is a category with ob(G) infinite and that K is a

nontrivial ring which is unital. Let R = KG be the category algebra of G over K

(this is sometimes called a quiver algebra of G over K, see e.g. [4]). Recall that

KG is the set of formal sums
∑

s∈G ksus where ks ∈ K, for s ∈ G, and ks = 0

for all but finitely many s ∈ G. The addition on KG is defined by
∑

s∈G ksus +∑
s∈G k′sus =

∑
s∈G(ks + k′s)us and the multiplication is defined as the bilinear

extension of the rule (ksus)(k
′
tut) = ksk

′
tust for s, t ∈ G and ks, k

′
t ∈ K if c(t) = d(s)

and (ksus)(k
′
tut) = 0 otherwise. If we put Rs = Kus, for s ∈ G, then R =

⊕
s∈G Rs

is a (strongly) G-graded ring. For each e ∈ ob(G), it is clear that Re is a unital ring

with identity 1Kue. This makes R a locally unital ring. However, from Proposition

3.1(c) and the fact that ob(G) is infinite, it follows that R is non-unital.

Definition 3.3. Suppose that R is a locally unital ring strongly graded by a

groupoid G. By Proposition 2.6 we can use the invertible Rc(s)-Rd(s)-bimodules

Rs, for s ∈ G, to define a subgroupoid C(R,G) of Grd(R) with CRGe
(Re), for

e ∈ ob(G), as objects, and the ring isomorphisms CRGd(s)
(Rd(s)) → CRGc(s)

(Rc(s)),

for s ∈ G, as morphisms. In the sequel, these will be denoted by σs.
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Proposition 3.4. Suppose that R is a locally unital ring strongly graded by a

groupoid G. Then the association of each e ∈ ob(G) and each s ∈ G to the

ring CRGe
(Re) and the function σs : CRGd(s)

(Rd(s)) → CRGc(s)
(Rc(s)), respectively,

defines a functor of groupoids σ : G → C(R,G). Moreover, σ is uniquely de-

fined on morphisms given that the relation σs(x)rs = rsx holds for all s ∈ G, all

x ∈ CR(Rd(s)) and all rs ∈ Rs.

Proof. This follows immediately from Proposition 2.6 (or Remark 2.7). �

Remark 3.5. Suppose that R is a locally unital ring strongly graded by a groupoid

G. Take s ∈ G. By Proposition 3.1(a) and the equalities Rc(s) = RsRs−1 and

Rd(s) = Rs−1Rs it follows that Rd(s) = 0 if and only if Rc(s) = 0; in that case σs is

of course the zero map. If one wants to avoid such maps one may, by Proposition

3.1(c), assume that all components of R are nonzero and in particular that each

ring Re, for e ∈ ob(G), has a nonzero identity element.

Definition 3.6. Suppose that R is a locally unital ring strongly graded by a

groupoid G. By abuse of notation, we let Z(R,G) denote the subcategory of

C(R,G) having Z(Re), for e ∈ ob(G), as objects, and the ring isomorphisms

Z(Rd(s)) → Z(Rc(s)), for s ∈ G, as morphisms.

Proposition 3.7. Suppose that R is a locally unital ring strongly graded by a

groupoid G. Then the association of each e ∈ ob(G) and each s ∈ G to the ring

Z(Re) and the function σs : Z(Rd(s)) → Z(Rc(s)), respectively, defines a functor of

groupoids σ : G → Z(R,G). Moreover, σ is uniquely defined on morphisms given

that the relation σs(x)rs = rsx holds for all s ∈ G, all x ∈ Z(Rd(s)) and all rs ∈ Rs.

Proof. This follows immediately from Proposition 2.8 (or Remark 2.9). �

Proof of Theorem 1.2. First we show that CR(RH) ⊇ F ⊕ T . From Proposition

3.4 it follows that CR(RH) ⊇ F . By the definition of T it follows that RHT =

TRH = {0}. In particular this implies that CR(RH) ⊇ T .

Now we show that CR(RH) ⊆ F ⊕ T . Suppose that y =
∑

s∈G ys ∈ CR(RH)

where ys ∈ Rs, for s ∈ G, and ys = 0 for all but finitely many s ∈ G. Note that, for

an arbitrary s ∈ G exactly one of the following three cases occur; (1): c(s) ∈ ob(H)

or d(s) ∈ ob(H), and c(s) ̸= d(s), (2): s ∈ G⊖H, (3): s ∈ Ge for some e ∈ ob(H).

Since 1ey = y1e, for e ∈ ob(H), we get that ys = 0 whenever case (1) holds for

s. By case (2) and case (3) there is some t ∈ T such that y = t +
∑

e∈ob(H) xe

where xe :=
∑

s∈Ge
ys ∈ RGe , for e ∈ ob(G). Since y − t ∈ CR(RH) ⊆ CR(Re), for

e ∈ ob(H), we get that xe ∈ CRGe
(Re), for e ∈ ob(H). Take an arbitrary s ∈ H.
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By the last part of Proposition 3.4 and the fact that the equality rsy = yrs holds

for all rs ∈ Rs, we get that σs(xd(s)) = xc(s). Therefore CR(RH) ⊆ F ⊕ T . �

4. Examples

In this section, we show Theorem 1.3 and illustrate it in two cases (see Example

4.2). Our method will be to generalize, to category graded rings (see Proposition

4.1), the construction given in [3] for the group graded situation. In order to do

this, we first need to introduce some additional notation. Let K be a commutative

ring with 1K ̸= 0 and suppose that G is a category. Fix a positive integer n and

choose si ∈ G, for 1 ≤ i ≤ n. Put S = {si | 1 ≤ i ≤ n}. If 1 ≤ i, j ≤ n,

then let eij ∈ Mn(K) be the matrix with 1K in the ij:th position and 0 elsewhere.

For s ∈ G, we let Rs be the left K-submodule of Mn(K) spanned by the set

{eij | 1 ≤ i, j ≤ n, (si, s) ∈ G(2), sis = sj}. With the above notation, the following

result holds.

Proposition 4.1. If we put R :=
∑

s∈G Rs, then

(a) the collection of left K-modules Rs, for s ∈ G, of R is a G-filter in R;

(b) if sis ∈ S, for all (si, s) ∈ (S × G) ∩ G(2), then Rs, for s ∈ G, is a strong

G-filter in R;

(c) if G = S, then Rs ̸= {0} for s ∈ G;

(d) if d(si) ∈ S, for i ∈ {1, . . . , n}, then R has an identity element given by∑
f∈ob(G) 1f , where for each f ∈ ob(G), the element 1f ∈ Rf is the sum of

all eii satisfying d(si) = f ;

(e) if G is cancellative, then the collection of left K-modules Rs, for s ∈ G, of R

makes R a graded ring;

(f) if G is a groupoid and G = S, then Rs, for s ∈ G, makes R a unital strongly

graded ring with Rs ̸= {0}, for s ∈ G.

Proof. (a) Suppose that (s, t) ∈ G(2). Take eij ∈ Rs and elk ∈ Rt. If j ̸= l, then

eijelk = 0 ∈ Rst. Now let j = l. Then, since sis = sj and sjt = sk, we get that

sist = sjt = sk. Hence, eijejk = eik ∈ Rst.

(b) Take (s, t) ∈ G(2) and eik ∈ Rst. Then sist = sk. Since sis ∈ S there is

sj ∈ S with sis = sj . This means that eij ∈ Rs. Moreover, sjt = sist = sk which

yields ejk ∈ Rt. Hence eik = eijejk ∈ RsRt.

(c) Take s ∈ G. Since G = S, there is si, sj ∈ S with si = c(s) and sj = s.

Therefore sis = c(s)s = s = sj . Hence eij ∈ S which, in turn, implies that

Rs ̸= {0}.
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(d) Take s ∈ G and suppose that ejk ∈ Rs for some j, k ∈ {1, . . . , n}. By the as-

sumptions we get that d(sj) ∈ S. Therefore ejj ∈ Rd(sj) and hence
∑

f∈ob(G) 1fejk =

ejjejk = ejk. In the same way
∑

f∈ob(G) ejk1f = ejk.

(e) Let Xs denote the collection of pairs (i, j), where 1 ≤ i, j ≤ n, such that

(si, s) ∈ G(2) and sis = sj . Suppose that s ̸= t. Seeking a contradiction suppose

that Xs ∩ Xt ̸= ∅. Then there are integers k and l, with 1 ≤ k, l ≤ n, such that

sks = sl = skt. By the cancellability of G this implies that s = t which is a

contradiction. Therefore, the sets Xs, for s ∈ G, are pairwise disjoint. The claim

now follows from (a) and the fact that Rs =
∑

(i,j)∈Xs
Keij for all s ∈ G.

(f) This follows immediately from (a), (b), (c), (d) and (e). If we use Proposition

3.1(a) the strongness condition can be proven directly in the following way. Take

s ∈ G and si ∈ S. Since G = S there is sj ∈ S with sis = sj . This means that

eij ∈ Rs. Since G is a groupoid we get that sjs
−1 = si, i.e. eji ∈ Rs−1 . Therefore

eii = eijeji ∈ RsRs−1 . �

Proof of Theorem 1.3. We first consider the case when G is connected. If G

only has one object, then it is a group in which case it has already been treated in

[3]. Therefore, from now on, we assume that we can choose two different objects

e and f from G. We denote the morphisms of G by t1, t2, . . . , tn. For technical

reasons, we suppose that d(t1) = f , c(t1) = e and tn = e. Let us now choose n+ 1

morphisms s1, s2, . . . , sn+1 from G in the following way; si = ti, when 1 ≤ i ≤ n,

and sn+1 = tn. Now we define R according to the beginning of this section. By

Proposition 4.1(f), the ring R is strongly G-graded and each Rs, for s ∈ G, is

nonzero.

We shall now show that the morphism t := t1 has the desired property. Let m

denote the cardinality of the set of s ∈ G with d(s) = e. The component Re is

the left K-module spanned by the collection of eij with sie = sj , that is, such that

si = sj and d(sj) = e. By the construction of S it follows that the K-dimension

of Re equals m+3. Analogously, the component Rt1 is the left K-module spanned

by the collection of eij with sit1 = sj . Since d(t1) = f ̸= e, this implies that

the K-dimension of Rt1 equals m + 1. Seeking a contradiction, suppose that Rt1

is free on some generators ul, 1 ≤ l ≤ d, as a left Re-module. Then the map

θ : Rd
e → Rt1 , defined by θ(x1, . . . , xd) =

∑d
l=1 xlul, for xl ∈ Re, for l ∈ {1, . . . , d},

is, in particular, an isomorphism of left K-modules. Since dimK(Rd
e) = d(m+3) >

m+ 1 = dimK(Rt1), this is impossible.

We shall now show that our groupoid G, in the general case, is the disjoint union

of connected groupoids. Define an equivalence relation ∼ on ob(G) by saying that
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e ∼ f , for e, f ∈ ob(G), if there is a morphism in G from e to f . Choose a set

E of representatives for the different equivalence classes defined by ∼. For each

e ∈ E, let [e] denote the equivalence class to which e belongs. Let G[e] denote

the subgroupoid of G with [e] as set of objects and morphisms s ∈ G with the

property that c(s), d(s) ∈ [e]. Then each G[e], for e ∈ E, is a connected groupoid

and G =
⊎

e∈E G[e].

For each e ∈ E, we now wish to define a strongly G[e]-graded ring R[e]. We

consider three cases. If G[e] = {e}, then let R[e] = K. If [e] = {e} but the group

G[e] contains a nonidentity morphism t, then let R[e] be any strongly G[e]-graded

ring with the desired property (following [3]). If [e] has more than one element, let

R[e] denote the strongly G[e]-graded ring constructed in the first part of the proof.

We may define a new ring to be the direct sum
⊕

e∈E R[e] which is strongly graded

by G and has the desired property. �

Example 4.2. We have chosen nontrivial examples of graded rings R in the sense

that not all graded components Rs are free left Rc(s)-modules. In the free case the

groupoid action is defined by a single conjugation which makes the analysis easier;

in the general case the action is a sum of such maps.

(a) Suppose that G is the cyclic additive group Z4 = {0, 1, 2, 3}. Using the

notation from the proof of Theorem 1.3 above, we put

s1 = 0 s2 = 1 s3 = 2 s4 = s5 = 3

Then R := M5(K) is a strongly Z4-graded ring with components defined by

R0 = Ke11 +Ke22 +Ke33 +Ke44 +Ke45 +Ke54 +Ke55

R1 = Ke12 +Ke23 +Ke34 +Ke35 +Ke41 +Ke51

R2 = Ke13 +Ke24 +Ke25 +Ke31 +Ke42 +Ke52

R3 = Ke14 +Ke15 +Ke21 +Ke32 +Ke43 +Ke53

By a straightforward calculation, we get that

CR(R0) = Ke11 +Ke22 +Ke33 +K(e44 + e55).

It is easy to see that

σ1(x) = e12xe21 + e23xe32 + e34xe43 + e41xe14 + e51xe15

and hence that

σ2(x) = σ2
1(x) = e13xe31 + e24xe42 + e31xe13 + e42xe24 + e52xe25
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for all x ∈ CR(R0). If we put H = {0, 2}, then, by Theorem 1.1, we get that

CR(RH) = CR(R0)
H = CR(R0)

{2} = K(e11 + e33) +K(e22 + e44 + e55)

and

Z(R) = CR(R) = CR(R0)
Z4 = CR(R0)

{1} = K1R.

(b) Now suppose that G is the groupoid with two objects e and f and nonidentity

morphisms α : e → e, β : f → f , u0 : f → e, u1 : f → e, t0 : e → f and t1 : e → f

with composition given by the following relations

α2 = e αu0 = u1 αu1 = u0 u0β = u1 u1β = u0

β2 = f βt0 = t1 βt1 = t0 t0α = t1 t1α = t0

u0t0 = e u1t0 = α u0t1 = α u1t1 = e

t0u0 = f t0u1 = β t1u0 = β t1u1 = f

Using the notation from the proof of Theorem 1.3 above, we put

s1 = f s2 = β s3 = u0 s4 = u1

s5 = t0 s6 = t1 s7 = α s8 = s9 = e

Now we define the strongly G-graded subring R of M9(K) according to the beginning

of this section. A straightforward calculation shows that

Re = Ke55 +Ke66 +Ke77 +Ke88 +Ke89 +Ke98 +Ke99

Rα = Ke56 +Ke65 +Ke78 +Ke79 +Ke87 +Ke97

Rt0 = Ke15 +Ke26 +Ke38 +Ke39 +Ke47

Rt1 = Ke16 +Ke25 +Ke37 +Ke48 +Ke49

Rf = Ke11 +Ke22 +Ke33 +Ke44

Rβ = Ke12 +Ke21 +Ke34 +Ke43

Ru0 = Ke51 +Ke62 +Ke74 +Ke83 +Ke93

Ru1 = Ke52 +Ke61 +Ke73 +Ke84 +Ke94

By a straightforward calculation we get that

CRGe
(Re) = Ke55 +Ke66 +Ke77 +K(e88 + e99)

and

CRGf
(Rf ) = Ke11 +Ke22 +Ke33 +Ke44.

It is easy to see that

σα(x) = e56xe65 + e65xe56 + e78xe87 + e87xe78 + e97xe79
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for all x ∈ CRGe
(Re) and that

σβ(y) = e12xe21 + e21xe12 + e34xe43 + e43xe34

for all y ∈ CRGf
(Rf ). Now we use this and Theorem 1.2 to compute CR(RH) for

all eleven subgroupoids H of G:

H1 = {e} H2 = {f} H3 = {e, f} H4 = Ge H5 = Gf

H6 = {e, f, α} H7 = {e, f, β} H8 = {e, f, α, β}

H9 = {e, f, t0, u0} H10 = {e, f, t1, u1} H11 = G

We immediately get that

CR(RH1) = CR(Re) = CRGe
(Re) +RGf

=

= Ke55 +Ke66 +Ke77 +K(e88 + e99) +Ke11 +Ke22 +Ke33 +Ke44+

+Ke12 +Ke21 +Ke34 +Ke43

and similarly that

CR(RH2) = CR(Rf ) = CRGf
(Rf ) +RGe =

= Ke11 +Ke22 +Ke33 +Ke44 +Ke55 +Ke66 +Ke77 +Ke88+

+Ke89 +Ke98 +Ke99 +Ke56 +Ke65 +Ke78 +Ke79 +Ke87 +Ke97.

Furthermore, we get that

CR(RH3) = CRGf
(Rf ) + CRGe

(Re) =

= Ke11 +Ke22 +Ke33 +Ke44 +Ke55 +Ke66 +Ke77 +K(e88 + e99).

Next we get that

CR(RH4) = CRGe
(Re)

Ge +RGf
= CRGe

(Re)
{α} +RGf

=

= (Ke55 +Ke66 +Ke77 +K(e88 + e99))
{α} +RGf

=

= K(e55 + e66) +K(e77 + e88 + e99)+

+Ke11 +Ke22 +Ke33 +Ke44 +Ke12 +Ke21 +Ke34 +Ke43

and

CR(RH5) = CRGf
(Rf )

Gf +RGe =

= (Ke11 +Ke22 +Ke33 +Ke44)
{β} +RGe =

= K(e11+ e22)+K(e33+ e44)+Ke55+Ke66+Ke77+Ke88+Ke89+Ke98+Ke99

+Ke56 +Ke65 +Ke78 +Ke79 +Ke87 +Ke97.
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By the above calculations, we get that

CR(RH6) = CRGe
(Re)

Ge + CRGf
(Rf ) =

= K(e55 + e66) +K(e77 + e88 + e99) +Ke11 +Ke22 +Ke33 +Ke44

and

CR(RH7) = CRGf
(Rf )

Gf + CRGe
(Re) =

= K(e11 + e22) +K(e33 + e44) +Ke55 +Ke66 +Ke77 +K(e88 + e99)

and

CR(RH8) = CRGe
(Re)

Ge + CRGf
(Rf )

Gf =

= K(e55 + e66) +K(e77 + e88 + e99) +K(e11 + e22) +K(e33 + e44).

By a straightforward calculation, we get that

σt0(x) = e15xe51 + e26xe62 + e39xe93 + e47xe74

and

σt1(x) = e16xe61 + e25xe52 + e37xe73 + e48xe84

for all x ∈ CRGe
(Re). By the above calculations, we get that

CR(RH9) = {x+ σt0(x) | x ∈ CRGe
(Re)} =

= K(e11 + e55) +K(e22 + e66) +K(e44 + e77) +K(e33 + e88 + e99)

and

CR(RH10) = {x+ σt1(x) | x ∈ CRGe
(Re)} =

= K(e22 + e55) +K(e11 + e66) +K(e33 + e77) +K(e44 + e88 + e99)

and

CR(RH11) = Z(R) = {x+ σt0(x) | x ∈ CRGe
(Re)

Ge} =

= K(e11 + e22 + e55 + e66) +K(e33 + e44 + e77 + e88 + e99).
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