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Abstract. Let p a be prime number. Using algebraic methods from the

factorization theory of abelian groups we will prove a result about the structure

of the 1-error correcting t-shift integer codes over the alphabet Zp in the special

case when t is a prime. The algorithms to construct such codes can take

advantage of this extra structural information in a straightforward manner

and the search for these codes can be speed up dramatically.
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1. Introduction

In this section we describe the concepts of 1-error correcting t-shift codes over

the alphabet {0, 1, . . . ,m− 1}, splittings and factorizations of abelian groups. For

more on t-shift codes see [3] and [11]. Further material on splitting groups can be

found in [1], [2] and [5]. Some of the history of the factorization theory of abelian

groups is presented in [7].

Let f : A → B be an injective function. The set C = Imf is called a code.

Intuitively an element a ∈ A is coded by the element f(a) ∈ B. In the most

commonly encountered situation A, B are chosen to be F k, Fn respectively, where

F is the Galois field of order 2. In this case a 0, 1 sequence of length k is coded by

a 0, 1 sequence of length n. When f is a linear map it is customary to consider the

exact sequence

{0} −→ F k f−→ Fn g−→ Fn−k −→ {0}

associated with a code. For us in this paper a similar exact sequence

{0} −→ Zk
m

f−→ Zn
m

g−→ Zn−k
m −→ {0}

will be relevant, where Zm is the ring of integers modulo m. The code C = Imf

can be equivalently described as C = Kerg. In other words an a ∈ Zn
m is a code
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word if g(a) = 0. In general g(a) is not equal to 0. Customarily g(a) is called the

syndrome of a. In order to further particularize the construction let k = n− 1 and

let us fix the sequence of elements s1, . . . , sn of Zm \ {0} and define the function g

by

g(a) =
n∑

i=1

siai,

where a = (a1, . . . , an). The sequence s1, . . . , sn is called a weight sequence. The

choice of the weights leads to various codes. For example when

(s1, s2, . . . , sn) = (1, 2, . . . , n)

we get the Varshamov-Tenengolts code. This code is capable of correcting one

asymmetric error. For more on the Varshamov-Tenengolts code see [10].

Suppose that a single substitution error occurs, say the letter ai is replaced by

a letter a′i = ai + ei in the code word a = (a1, . . . , an), where ei is coming from a

fixed error set E. Then we receive the new word

a′ = (a1, . . . , ai−1, a
′
i, ai+1, . . . , an)

instead of a. The set of elements

a′ = (a1, . . . , ai−1, ai + e, ai+1, . . . , an),

where i and e vary over the elements of the sets {1, . . . , n}, E∪{0} independently, is

defined to be the substitution error sphere centered at a and is denoted by S(a,E).

Clearly S(a,E) has n|E|+1 elements. A perfect single substitution error correcting

code is a subset C of Zn
m if the error spheres

S(c, E), c ∈ C

form a partition of Zn
m.

Let us compute the syndrome of the word a′.

g(a′) = s1a1 + · · ·+ si−1ai−1 + sia
′
i + si+1ai+1 + · · ·+ snan

= s1a1 + · · ·+ snan + si(a
′
i − ai)

= g(a) + si(a
′
i − ai)

= si(a
′
i − ai)

= siei.

If all the possible syndromes are pair-wise distinct, then the distortion can be

corrected. In other words a single substitution error can be corrected if

siei = sjej , ei, ej ∈ E
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imply that si = sj and ei = ej . When the error set is E = {±1,±2, . . . ,±t}, then
the error correcting code is called a t-substitution code. The 1-error correcting

t-substitution code is perfect if each element of Zm \ {0} is uniquely expressible in

the form

isj , 1 ≤ |i| ≤ t, 1 ≤ j ≤ n.

Let G be a finite abelian group written additively, let S be a subset of G, and

let M be a set of integers. If each g ∈ G \ {0} is uniquely expressible in the form

g = µs, µ ∈ M, s ∈ S,

then we say that the equation G \ {0} = MS is a splitting of G \ {0}. Here M is

called the multiplier set and S is called the splitting set. The reader can verify that

the multiplier setM = {±1,±2} splits Z13\{0} with the multiplier set S = {1, 3, 4}.
Here of course Z13 is the additive group of the ring of integers modulo 13. The

concept of splitting was introduced by S. K. Stein. There is a large body of results

about splitting but our reference is merely the tip of the iceberg.

Let A and B be subsets of the finite abelian group G. If each g ∈ G is uniquely

expressible in the form

g = a+ b, a ∈ A, b ∈ B,

then we say that the equation G = A+B is a factorization of G. In the most well-

known situation the factors A, B are subgroups of G. However, in our definition

nothing is assumed about the subsets A and B. In the special case when G is the

cyclic group of order m, we simply identify G with the additive part of Zm, the ring

of integers modulo m. Now a multiplier set M can be viewed as a subset of G. It is

a well-know fact that if p is a prime, then the nonzero elements of Zp form a cyclic

group Z∗
p = Zp \ {0} under multiplication. Note that the splitting Zp \ {0} = MS

of Zp \ {0} corresponds to the multiplicative factorization Z∗
p = MS of Z∗

p .

We may sum up our previous considerations as follows. Let p be a prime and

let M = {±1,±2, . . . ,±t}. If there is a subset S of Z∗
p such that Z∗

p = MS

is a multiplicative factorization of Z∗
p , then there is a perfect 1-error correcting

t-substitution code word of length |S| over the alphabet Zp.

Let d, n, k be nonnegative integers such that d ≤ k. The sequence a =

(a1, . . . , an) is called an (n, d, k)-sequence if d ≤ ai ≤ k holds for each i, 1 ≤ i ≤ n.

Plainly, if a = (a1, . . . , an) is an (n, d, k)-sequence, then b = (a1 − d, . . . , an − d) is

an (n, 0, k − d)-sequence, that is, b can be viewed as a word of length n over the
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alphabet {0, 1, . . . , k − d} = Z(m), where m = k − d + 1. The set of all (n, d, k)-

sequences is denoted by T (n, d, k). It can be checked that T (n, d, k) has (k−d+1)n

elements.

To an (n, d, k)-sequence a = (a1, . . . , an) we assign the 0, 1 sequence

h(a) = (0, . . . , 0︸ ︷︷ ︸
a1

, 1, 0, . . . , 0︸ ︷︷ ︸
a2

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
an

, 1).

The sequence h(a) has

a1 + 1 + · · ·+ an + 1 = n+ a1 + · · ·+ an

components. The 1’s in h(a) are called peaks and consecutive 0’s are called runs.

If the first peak is shifted to the right by j digits, then we get the sequence

(0, . . . , 0︸ ︷︷ ︸
a1+j

, 1, 0, . . . , 0︸ ︷︷ ︸
a2−j

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
an

, 1)

from h(a), provided of course that a2 − j ≥ 0 holds. If the first peak is shifted to

the left by j digits, then we get the sequence

(0, . . . , 0︸ ︷︷ ︸
a1−j

, 1, 0, . . . , 0︸ ︷︷ ︸
a2+j

, 1, . . . , 0, . . . , 0︸ ︷︷ ︸
an

, 1)

from h(a). Naturally, we must assume that a1 − j ≥ 0. Similarly, we can speak

of shifting the ith peak to the left or to the right by j digits in h(a) for each i,

1 ≤ i ≤ n− 1.

Let a = (a1, . . . , an) be an (n, d, k)-sequence and let the error set E be

{±1,±2, . . . ,±t}.

Suppose that a single shift error occurs in h(a), say the letter ai is replaced by

a′i = ai− j and ai+1 is replaced by a′i+1 = ai+1+ j, where j ∈ E and 1 ≤ i ≤ n− 1.

We get a new sequence

a′ = (a1, . . . , ai−1, a
′
i, a

′
i+1, ai+2, . . . , an).

The set of elements

(a1, . . . , ai−1, ai − e, ai+1 + e, ai+2, . . . , an),

where i, e ranges over the elements of {1, . . . , n − 1}, E ∪ {0} is called a single

shift error sphere with radius t centered at a. We denote it by S(a, t). Clearly, if

a is of length n, then S(a, t) has 2nt + 1 elements. Note that if a is an (n, d, k)-

sequence, then the elements of S(a, t) are (n, d− t, k+ t) sequences. A subset C of
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T (n, d − t, k + t) is called a perfect single t-shift error correcting code if the shift

error spheres

S(c, t), a ∈ C

form a partition of T (n, d− t, k + t).

Next we show that the existence of shift error correcting codes is related to

splitting of abelian groups. The syndrome of a′ is

g(a′) = s1a1 + · · ·+ sia
′
i + si+1a

′
i+1 + · · ·+ snan

= s1a1 + · · ·+ snan − sij + si+1j

= g(a) + j(si+1 − si)

= j(si+1 − si).

If all the possible syndromes are pair-wise distinct, then the distortion can be

corrected. Let W = {w1, . . . , wn−1} be a subset of Z(m). If each element of

Z(m) \ {0} is uniquely expressible in the form

jwi, 1 ≤ |j| ≤ t, 1 ≤ i ≤ n− 1,

that is if Z(m) \ {0} = EW is a splitting, then there is a 1-error correcting perfect

t-shift code. We just have to choose

s2 − s1, s3 − s2, . . . , sn − sn−1

to be w1, . . . , wn−1 respectively.

2. The complementer factor problem

The complementer factor problem is the following.

Problem 2.1. Given a finite abelian group G and a subset A of G such that |A|
divides |G|. Decide if there is a subset B of G such that G = A+B is a factorization

of G.

Let us introduce a graph Γ. The nodes of Γ are the elements of G and two nodes

g, g′ are connected with an undirected edge if g′ − g ̸∈ A− A. Here A− A stands

for {a′ − a : a′, a ∈ A}. Let l = |G|/|A|. We claim that if Γ has a clique of size

l, then there is a B ⊂ G such that G = A+ B is a factorization of G. In order to

prove the claim assume that Γ has a clique of size l and that B is the set of vertices

of this clique. Now (A−A) ∩ (B −B) = {0} and so from

a+ b = a′ + b′, a, a′ ∈ A, b, b′ ∈ B
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it follows that a− a′ = b′ − b. Therefore a− a′ = b′ − b = 0 and so a = a′, b = b′.

On the other hand the equation |G| = |A||B| clearly holds which implies that each

g ∈ G can be represented in the form

g = a+ b, a ∈ A, b ∈ B.

Therefore G = A+B is a factorization of G.

One can see that the graph Γ has no clique of size larger than l. So the com-

plementer factor problem can be reduced to finding a maximum clique in Γ. It

is known that the maximum clique problem belongs to the NP complete class. If

one could reduce the maximal clique problem to the complementer factor problem

then this would prove that the complementer factor problem is also in the NP com-

plete complexity class. We do not have such reduction at our disposal. On the

other hand, numerical experiments indicate that the complementer factor problem

is computationally hard. We will show that in fact it is hard.

Let A be an alphabet of q elements and let Sr(a) be the Hamming sphere in An

centered at a with radius r. A subset C ∈ An is a called a perfect error correcting

code with parameters (n, e, q) if the Hamming spheres

Se(c), c ∈ C

form a partition of An. The problem of deciding if a perfect error correcting code

with given parameters (n, e, q) exist is indeed computationally hard. We claim that

the existence problem of the perfect error correcting codes is an instance of the

complementer factor problem. In order to verify the claim note that the alphabet

A can be equipped with the structure of an abelian group. Then An becomes the

direct sum of n copies of A. The problem now is if there is a subset C ⊂ An such

that An = Se(0) + C is a factorization of An. Here 0 is the zero element of An.

The complementer subgroup problem is the following.

Problem 2.2. Given a finite abelian group G and a subset A of G such that |A|
divides |G|. Decide if there is a subgroup H of G such that G = A + H is a

factorization of G.

The complementer subgroup problem is computationally less demanding than

the complementer factor problem, but still can be hard ifG has too many subgroups.

However, for cyclic groups it is definitely easy since there is only one subgroup of

each given order. For a given subgroup H of G it is straightforward to check if

G = A+H is a factorization of G. Say one checks if the elements of A are pair-wise

incongruent modulo H.



INTEGER t-SHIFT CODES AND FACTORING ABELIAN GROUPS 31

3. Coset splittings

Let p be a prime. S. K. Stein [6] calls a splitting Zp \{0} = MS a coset splitting

if S is a multiplicative subgroup of Z∗
p and consequently M is a complete set of

representatives modulo S which explains the name. We saw in the previous section

that deciding if a given M coset splits Zp \ {0} is computationally simpler than to

decide if M splits Zp \ {0}.
Let G be a finite abelian group. A subset A of G is called normalized if 0 ∈ A.

The factorization G = A + B is defined to be normalized if both A and B are

normalized. For a subset A of G the span of A in G is denoted by ⟨A⟩. In other

words ⟨A⟩ is the smallest subgroup of G that contains A. We will prove the following

theorem.

Theorem 3.1. Let G = A + B be a normalized factorization of the finite cyclic

group G. If |A| = q is a prime, ⟨A⟩ = G, then B is a subgroup of G.

The message in Theorem 3.1 is that in a class of splitting problems we may focus

our attention to coset splittings. For the details of the proof of Theorem 3.1 we

need two lemmas.

Lemma 3.2. Let G = A + B be a factorization of the abelian group G and let

H = ⟨A⟩. Then H = A+ (B ∩H) is a factorization H.

Proof. Choose a h ∈ H. Since h ∈ G and G = A + B is a factorization of G it

follows that h can be represented uniquely in the form

h = a+ b, a ∈ A, b ∈ B.

From b = h − a, h ∈ H, a ∈ H we get that b ∈ H and so b ∈ B ∩ H. Therefore

each h can be represented uniquely in the form

h = a+ b, a ∈ A, b ∈ B ∩H

which completes the proof. �

We will refer to the result in Lemma 3.2 by saying that the factorization G =

A+B can be restricted to H to get the factorization H = A+ (B ∩H).

Lemma 3.3. Let G = A+B be a normalized factorization of the abelian group G.

If A = C +H is a factorization of A, where H is a subgroup G, then

G/H = (C +H)/H + (B +H)/H
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is a normalized factorization of the factor group G/H, where

(C +H)/H = {c+H : c ∈ C},

(B +H)/H = {b+H : b ∈ B}.

Proof. Choose a g ∈ G. Since G = A + B is a factorization of G, a can be

represented in the form

g = a+ b, a ∈ A, b ∈ B.

Since A = C +H is a factorization of A, a can be represented in the form

a = c+ h, c ∈ C, h ∈ H.

Consequently, g = c+ h+ b and so

g +H = (c+ h+ b) +H

= (c+H) + (b+H).

Thus g +H can be represented in the required form. Now assume that

(c+H) + (b+H) = (c′ +H) + (b′ +H), c, c′ ∈ C, b, b′ ∈ B,

that is (c+b)+H = (c′+b′)+H. So there are h, h′ ∈ H such that c+b+h = c′+b′+h′.

As G = A+B is a factorization of G, from

( c+ h )︸ ︷︷ ︸
∈A

+( b )︸︷︷︸
∈B

= ( c′ + h′ )︸ ︷︷ ︸
∈A

+( b′ )︸ ︷︷ ︸
∈B

it follows that c + h = c′ + h′, b = b′. Now using the fact that A = C + H is a

factorization we can conclude that c = c′ which completes the proof. �

We will refer to the result in Lemma 3.3 by saying that considering the factor

group G/H the factorization G = (C +H) +B gives the factorization

G/H = (C +H)/H + (B +H)/H

of the factor group G/H.

Theorem 3.1 greatly simplifies the search for the 1-error correcting t-substitution

and t-shift codes in the case when t is a prime. To see how letM = {±1,±2, . . . ,±t}
and let Zp\{0} = MS be a splitting. The splitting corresponds to the multiplicative

factorization Z∗
p = MS. Note that L = {−1, 1} is a subgroup of Z∗

p . Set A =

{1, 2, . . . , t}. Clearly, M = AL is a multiplicative factorization of M . Considering

the factor group G = Z∗
p/L from Z∗

p = (AL)S we get the factorization G = AB,

where B = {sL : s ∈ S}. By our assumption, |A| = t is a prime. Choose a ∈ A,
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b ∈ B. Multiplying the factorization G = AB by a−1b−1 we get the normalized

factorization

G = Ga−1b−1 = (Aa−1)(Bb−1).

By renaming we may assume that the original factorization G = AB is normalized.

Set H = ⟨A⟩. If H ̸= G, then restricting the factorization G = AB to H we get the

factorization H = G ∩ H = A(B ∩ H). Choose a complete set of representatives

c1, . . . , cs in G modulo H. Set C = {c1, . . . , cs}. It is clear that G = HC is a

factorization of G. Then

G = [A(B ∩H)]C = A[(B ∩H)C]

is a factorization of G. From this we can read off that the problem to decide if A

has a complementer factor in G can be reduced to the problem to decide if A has

a complementer factor in H = ⟨A⟩.
By Theorem 3.1, from the normalized factorization H = AD it follows that D

is a subgroup of H. This means that A can have only a subgroup complementer

factor in H.

4. Proof of Theorem 3.1

We say that in the factorization G = A+B the factor A can be replaced by A′

if G = A′ +B is also a factorization of G. A subset A of G is called a cyclic subset

if its elements are in the form

0, a, 2a, . . . , (q − 1)a

for some element a ∈ G \ {0} and some integer q. We assume that q ≥ 2 and the

order of a is at least q. In the |a| = q case A is equal to ⟨a⟩. A subset A of G is

called periodic if there is an element g ∈ G \ {0} such that A+ g = A. We also say

that g is a period of A. Clearly if g is a period of A then so is mg for each integer

m unless mg = 0. The periods of A together with the zero form a subgroup H of

G. We refer to H as the subgroup of periods of A. We can partition G into cosets

modulo H. The subset A is a union of complete cosets. In other words there is a

subset D of G such that A = D +H is a factorization of A. The subset D here is

not necessarily unique.

We are ready to prove Theorem 3.1.

Proof. In order to prove Theorem 3.1 assume on the contrary that there is a finite

cyclic group G such that G = A + B is a normalized factorization, |A| = q is a
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prime, ⟨A⟩ = G, and B is not a subgroup of G. We choose such a counter-example

for which |G| is minimal.

We claim that in a minimal counter-example none of the factors is periodic. To

verify the claim assume on the contrary that A or B is periodic. If A is periodic,

then since |A| = q is a prime and 0 ∈ A it follows that A is a subgroup of G of

order q. As ⟨A⟩ = G, we get that B = {0}. This contradicts to our assumption

that B is not a subgroup of G. Thus we may assume that B is periodic. Let H be

the subgroup of periods of B. There is a subset C of B such that B = C + H is

a factorization of B. From the factorization G = A + (C +H) by considering the

factor group G/H we get the factorization

G/H = (A+H)/H + (C +H)/H.

Note that the factor (A + H)/H spans the whole of G/H. Indeed as ⟨A⟩ = G,

for each g ∈ G there are elements a1, . . . , ar ∈ A and integers α1, . . . , αr such that

g = α1a1 + · · ·+ αrar. This means

g +H = (α1a1 + · · ·+ αrar) +H

= (α1a1 +H) + · · ·+ (αrar +H)

= α1(a1 +H) + · · ·+ αr(ar +H)

and so (A+H)/H spans the whole of G/H. The minimality of the counter-example

G = A+B implies that (C +H)/H is a subgroup of G/H. So for each c1, c2 ∈ C

there is a c3 ∈ C such that (c1+H)− (c2+H) = c3+H. Hence for each c1, c2 ∈ C,

h1, h2 ∈ H there are c3 ∈ C, h3 ∈ H such that (c1 + h1)− (c2 + h2) = c3 + h3. It

follows that B = C +H is a subgroup of G contrary to our assumption.

In the remaining part of the proof we will establish that in the factorization

G = A+B one of the factors is periodic.

We claim that in the factorization G = A + B the factor A can be replaced by

the cyclic subset

C = {0, a, 2a, . . . , (q − 1)a}

for each a ∈ A \ {0}. To verify the claim assume that A = {a0, a1, . . . , aq−1} with

a0 = 0. The factorization G = A+B is equivalent to that the sets

a0 +B, a1 +B, . . . , aq−1 +B

form a partition of G. We would like to show that the sets

0 +B, a+B, 2a+B, . . . , (q − 1)a+B
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form a partition of G. For the sake of definiteness we suppose that a = a1. By

Proposition 3 of [4], in the factorization G = A + B the factor A can be replaced

by tA = {ta : a ∈ A} to get the factorization G = tA+B for each integer t which

is relatively prime to q. This means that the sets

ta0 +B, ta1 +B, . . . , taq−1 +B

form a partition of G for each t, 1 ≤ t ≤ q−1. In particular (0+B)∩ (ta1+B) = ∅.
If (ia1 +B) ∩ (ja1 +B) ̸= ∅ for some i, j, 1 ≤ i < j ≤ q − 1, then we get the

(0 +B) ∩ [(j − i)a1 +B] ̸= ∅, 1 ≤ i < j ≤ q − 1

contradiction. Therefore G = C +B is a factorization of G.

We claim that if G = C +B is a factorization of G, where C is the cyclic subset

C = {0, a, 2a, . . . , (q − 1)a},

then B + qa = B. In particular if qa ̸= 0, then B is periodic. In order to prove the

claim note that the factorization G = C +B is equivalent to that the sets

0 +B, a+B, 2a+B, . . . , (q − 1)a+B

form a partition of G. Adding a to the factorization G = C + B we get the

factorization G = G+ a = (C + a) +B. This is equivalent to that the sets

a+B, 2a+B, . . . , qa+B

form a partition of G. Comparing the two partitions gives that B = qa + B as

claimed.

To complete the proof replace the factor A in a minimal counter-example G =

A + B by the cyclic subset C = {0, a, 2a, . . . , (q − 1)a} to get the factorization

G = C + B. It follows that B + qa = B. If qa ̸= 0, then B is periodic. Thus we

may assume |a| = q for each a ∈ A \ {0}. But in this case A is equal to the unique

subgroup of G of order q and so A is periodic.

This completes the proof. �
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[7] S. K. Stein and S. Szabó, Algebra and Tiling: Homomorphisms in the Service

of Geometry, The Mathematical Association of America, 1994.
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