SEMISTAR OPERATIONS ON ALMOST PSEUDO-VALUATION DOMAINS

Ryûki Matsuda
Received: 21 February 2010; Revised: 29 March 2011
Communicated by Abdullah Harmancı

Abstract

We characterize when an almost pseudo-valuation domain has a finite number of semistar operations.

Mathematics Subject Classification (2010): 13A15
Keywords: star operation, semistar operation, pseudo-valuation domain, almost pseudo-valuation domain

1. Introduction

The notion of a star operation is classical, and that of a Kronecker function ring which arises by a star operation is also classical. The notions of star operations, semistar operations, and their Kronecker function rings of integral domains have been well-known. Let D be an integral domain, K be its quotient field, and $\mathrm{F}(D)$ be the set of non-zero fractional ideals of D. A mapping $I \longmapsto I^{\star}$ from $\mathrm{F}(D)$ to $\mathrm{F}(D)$ is called a star operation on D if, for every $x \in K \backslash\{0\}$ and $I, J \in \mathrm{~F}(D)$, the following conditions are satisfied: (1) $(x)^{\star}=(x) ;(2) \quad(x I)^{\star}=x I^{\star} ; ~(3) ~ I \subseteq I^{\star}$; (4) $\left(I^{\star}\right)^{\star}=I^{\star} ; ~(5) ~ I \subseteq J$ implies $I^{\star} \subseteq J^{\star}$. The Kronecker function ring of D with respect to a star operation \star on D was first defined by L.Kronecker [7] and further investigated by W.Krull [8]. Let $\mathrm{F}^{\prime}(D)$ be the set of non-zero D-submodules of K. A mapping $I \longmapsto I^{\star}$ from $\mathrm{F}^{\prime}(D)$ to $\mathrm{F}^{\prime}(D)$ is called a semistar operation on D if, for every $x \in K \backslash\{0\}$ and $I, J \in \mathrm{~F}^{\prime}(D)$, the following conditions are satisfied: (1) $(x I)^{\star}=x I^{\star} ; \quad(2) \quad I \subseteq I^{\star} ; \quad(3) \quad\left(I^{\star}\right)^{\star}=I^{\star} ; \quad$ (4) $I \subseteq J$ implies $I^{\star} \subseteq J^{\star}$. We refer to M.Fontana and K.Loper [2] and [3] and F.Halter-Koch [5] for notions of star operations, semistar operations, and their Kronecker function rings.

Let $\Sigma(D)$ (resp., $\left.\Sigma^{\prime}(D)\right)$ be the set of star operations (resp., semistar operations) on D. In this paper, we are interested in the cardinalities $|\Sigma(D)|$ and $\left|\Sigma^{\prime}(D)\right|$, especially, when $\left|\Sigma^{\prime}(D)\right|<\infty$.

Let D be an integrally closed domain. Then D has only a finite number of semistar operations if and only if D is a finite dimensional Prüfer domain with only a finite number of maximal ideals $[11,(5.2)]$.

Let V be a valuation domain with dimension n, v be a valuation belonging to V, and Γ be its value group. Let $M=P_{n} \supsetneqq P_{n-1} \supsetneqq \cdots \cdots P_{1} \supsetneqq(0)$ be the prime ideals of V, let $\{0\} \varsubsetneqq H_{n-1} \varsubsetneqq \cdots \varsubsetneqq H_{1} \varsubsetneqq \Gamma$ be the convex subgroups of Γ, and let m be an integer with $n+1 \leq m \leq 2 n+1$. Then the following conditions are equivalent: (1) $\left|\Sigma^{\prime}(V)\right|=m$; (2) The maximal ideal of $V_{P_{i}}$ is principal for exactly $2 n+1-m$ of i; (3) $\frac{\Gamma}{H_{i}}$ has a least positive element for exactly $2 n+1-m$ of $i[9]$.

In [12], we studied star operations and semistar operations on a pseudo-valuation domain D. We gave conditions for D to have only a finite number of semistar operations, and showed that conditions for $\left|\Sigma^{\prime}(D)\right|<\infty$ reduce to conditions for related fields. In this paper, we will study star operations and semistar operations on almost pseudo-valuation domains, and will prove the following,

Main Theorem Let D be an almost pseudo-valuation domain which is not a pseudo-valuation domain, P its maximal ideal, $V=(P: P), M$ be the maximal ideal of V and set $K=\frac{V}{M}$ and $k=\frac{D}{P}$. Then $\left|\Sigma^{\prime}(D)\right|<\infty$ if and only if one of the following conditions holds:
(1) K is an infinite field, $K=k, \operatorname{dim}(D)<\infty$, and either $P=M^{2}$ or $P=M^{3}$.
(2) K is a finite field, $\operatorname{dim}(D)<\infty$, and $P=M^{n}$ for some integer $n \geq 2$.

The paper consists of six sections. Section 2 contains preliminary results, Section 3 is the case where $K=k$ and $\min v(M)$ exists, Section 4 is the case where $K=k$ and $P=M^{2}$ or $P=M^{3}$, Section 5 is the case where $K=k$ and $P=M^{n}$ with $n \geq 4$, and Section 6 is the case where $K \supsetneqq k$.

2. Preliminary results

For the general ideal theory, especially for star operations on integral domains, we refer to R.Gilmer [4]. Thus, for every $I, J \in \mathrm{~F}(D)$, we set $(I: J)=\{x \in$ $\mathrm{q}(D) \mid x J \subseteq I\}$, where $\mathrm{q}(D)$ denotes the quotient field of D, set $I^{-1}=(D: I)$, and set $I^{\mathrm{v}}=\left(I^{-1}\right)^{-1}$. If $I=I^{\mathrm{v}}$, then I is called divisorial. By [4, Theorem (34.1)], I^{v} is the intersection of principal fractional ideals of D containing I, the mapping $I \longmapsto I^{\mathrm{v}}$ from $\mathrm{F}(D)$ to $\mathrm{F}(D)$ is a star operation on D, and is called the v-operation, and for every star operation \star on D and for every $I \in \mathrm{~F}(D)$, we have $I^{\star} \subseteq I^{\mathrm{v}}$. The identity mapping $I \longmapsto I^{\mathrm{d}}=I$ on $\mathrm{F}(D)$ is a star operation on D, and is called the d-operation.

Let I be an ideal of a domain D. If, for elements $a, b \in \mathrm{q}(D), a b \in I$ and $b \notin I$ imply $a \in I$, then I is called strongly prime. If every prime ideal of D is
strongly prime, then D is called a pseudo-valuation domain (or, a PVD). We refer to J.Hedstrom and E.Houston [6] for a PVD. Thus, every PVD is a local domain, that is, D has only one maximal ideal. If D is a local domain with maximal ideal strongly prime, then D is a PVD.

For elements $a, b \in \mathrm{q}(D)$, if $a b \in I$ and $b \notin I$ imply $a^{n} \in I$ for some positive integer n, then I is called strongly primary. If every prime ideal of D is strongly primary, then D is called an almost pseudo-valuation domain (or, an APVD). We refer to A.Badawi and E.Houston [1] for the notion of an APVD. Thus, every APVD is a local domain. Let P be the maximal ideal of D, then $V=(P: P)$ is a valuation domain, P is a primary ideal of V, and P is primary to the maximal ideal of V. If D is a local domain with maximal ideal strongly primary, then D is an APVD.

In this section, let D be an APVD which is not a PVD, P be the maximal ideal of $D, V=(P: P), M$ be the maximal ideal of V, v be a valuation belonging to the valuation domain V, Γ be the value group of $v, K=\frac{V}{M}$, and $k=\frac{D}{P}$.

We note that P is not strongly prime and hence $P \varsubsetneqq M$. For, if P is strongly prime, then D is a PVD by [6, Theorem 1.4]; a contradiction to our assumption that D is not a PVD.

The following Lemmas 2.1, 2.2 and 2.3 appear in [10, Lemmas 15 and 16 and Theorem 17].

Lemma 2.1. (1) $V=P^{-1}$.
(2) $P=P^{v}$.
(3) The set of non-maximal prime ideals of D coincides with the set of nonmaximal prime ideals of V, and $\operatorname{dim}(V)=\operatorname{dim}(D)$.

Since $\left(\left(I^{-1}\right)^{-1}\right)^{-1}=I^{-1}$ for every $I \in \mathrm{~F}(D), V$ is a divisorial fractional ideal of D.

Lemma 2.2. (1) $\mathrm{F}^{\prime}(D)=\mathrm{F}(D) \cup\{\mathrm{q}(D)\}$.
(2) The integral closure \bar{D} of D is a PVD with maximal ideal M.
(3) Let T be an overring of D, that is, T is a subring of $\mathrm{q}(D)$ containing D. Then either $T \supseteq V$ or $T \subseteq V$.
(4) Let $\Sigma_{1}^{\prime}=\left\{\star \in \Sigma^{\prime}(D) \mid D^{\star} \supseteq V\right\}$. Then there is a canonical bijection from $\Sigma^{\prime}(V)$ onto Σ_{1}^{\prime}.
(5) Let $\Sigma_{2}^{\prime}=\left\{\star \in \Sigma^{\prime}(D) \mid D^{\star} \varsubsetneqq V\right\}$. Then we have $\Sigma^{\prime}(D)=\Sigma_{1}^{\prime} \cup \Sigma_{2}^{\prime}$.
(6) If $\left|\Sigma^{\prime}(D)\right|<\infty$, then $\operatorname{dim}(D)<\infty, V=\bar{D}, V$ is a finitely generated D-module, and K is a simple extension field of k with degree $[K: k]<\infty$.

Every star operation on D can be extended uniquely to a semistar operation on D, since $\mathrm{F}^{\prime}(D) \backslash \mathrm{F}(D)=\{\mathrm{q}(D)\}$.

Lemma 2.3. Assume that $\operatorname{dim}(D)<\infty$, and let $\left\{T_{\lambda} \mid \lambda \in \Lambda\right\}$ be the set of overrings T of D with $T \varsubsetneqq V$.
(1) $\left|\Sigma^{\prime}(V)\right|<\infty$.
(2) $\left|\Sigma_{1}^{\prime}\right|=\left|\Sigma^{\prime}(V)\right|$.
(3) There is a canonical bijection from the disjoint union $\bigcup_{\lambda} \Sigma\left(T_{\lambda}\right)$ onto Σ_{2}^{\prime}.
(4) If $\left|\Sigma_{2}^{\prime}\right|<\infty$, then $\left|\Sigma^{\prime}(D)\right|=\left|\Sigma_{2}^{\prime}\right|+\left|\Sigma^{\prime}(V)\right|$.

Let T be an overring of D. Then there is a canonical injective mapping δ from $\Sigma^{\prime}(T)$ to $\Sigma^{\prime}(D)$, and is called the descent mapping from T to D.

Lemma 2.4. Assume that $\left|\Sigma^{\prime}(D)\right|<\infty$, then $v(M)$ has a least element.
Proof. It is well-known that for any integral domain, each overring induces a semistar operation of finite type. Thus the number of overrings is less than the number of semistar operations of finite type.

Lemma 2.5. Assume that $\left|\Sigma^{\prime}(D)\right|<\infty$, and let $I \in \mathrm{~F}(D)$. If $\inf v(I)$ exists in Γ, then it is $\min v(I)$.

Proof. Choose an element $x \in \mathrm{q}(D) \backslash\{0\}$ such that $\inf v(I)=v(x)$. Then $x^{-1} I \subseteq V$ and $\inf v\left(x^{-1} I\right)=0$. Since $v(M)$ has a least element by Lemma 2.4, we have $0=\min v\left(x^{-1} I\right)$, hence $v(x)=\min v(I)$.

Lemma 2.6. If $P=M^{n}$ for some integer $n \geq 2$, then $v(M)$ has a least element.
Proof. Suppose the contrary, and let $x \in M \backslash P$. We can take elements $x_{1}, \cdots, x_{n} \in$ M such that $v(x)>v\left(x_{1}\right)>\cdots>v\left(x_{n}\right)$. Then we have $x=\frac{x}{x_{1}} \frac{x_{1}}{x_{2}} \cdots \frac{x_{n-1}}{x_{n}} x_{n} \in$ $M^{n}=P ;$ a contradiction.

Lemma 2.7. Let Q be an ideal of V with $M \supsetneqq Q \supseteq P$, and set $D+Q=T$. Then T is an APVD which is not a PVD, Q is the maximal ideal of T, and $V=(Q: Q)$.

Proof. We rely on [1, Theorem 3.4]. Then P is strongry primary, P is an M primary ideal of V, and so is Q. Clearly, Q is the unique maximal ideal of $T=D+Q$, hence T is an APVD, and $W=(Q: Q)$ is a valuation domain with Q primary to the maximal ideal N of W. Since $(Q: Q) \supseteq V, N$ is a prime ideal of V, hence $N=M$, and $W=V$. Finally, T is not a PVD, because Q is not strongly prime.

Lemma 2.8. Let \star be a star operation (resp., a semistar operation) on D.
(1) Let T be an overring of D. Then T^{\star} is an overring of D.
(2) Both D^{\star} and V^{\star} are overrings of D.

Proof. Because $T^{\star}=(T T)^{\star}=\left(T^{\star} T^{\star}\right)^{\star} \supseteq T^{\star} T^{\star}$.
Lemma 2.9. If $\min v(M)$ exists, then we may assume that \boldsymbol{Z} is the rank one convex subgroup of Γ, and $\min v(M)=1 \in \boldsymbol{Z} \subseteq \Gamma$.

Proof. The rank one convex subgroup of Γ is isomorphic with the ordered group \boldsymbol{Z}. Therefore there is an isomorphism compatible with orders from Γ onto an ordered group Γ^{\prime} the rank one convex subgroup of which is \boldsymbol{Z}.

Lemma 2.10. To prove our Theorem, we may assume that $v(M)$ has a least element and $\min v(M)=1 \in \boldsymbol{Z} \subseteq \Gamma$.

The proof follows from Lemmas 2.4, 2.6 and 2.9.

3. The case where $K=k$ and $\min v(M)$ exists

In this section, let D be an APVD which is not a PVD, P be the maximal ideal of $D, V=(P: P), M$ be the maximal ideal of V, v be a valuation belonging to the valuation domain V, Γ be the value group of v, assume that $K=\frac{V}{M}=\frac{D}{P}$, and $\min v(M)$ exists with $\min v(M)=v(\pi)=1 \in \boldsymbol{Z} \subseteq \Gamma$ for some element $\pi \in M$, and let $\left\{\alpha_{i} \mid i \in \mathcal{I}\right\}=\mathcal{K}$ be a complete system of representatives of V modulo M with $\{0,1\} \subseteq \mathcal{K} \subseteq D$.

Lemma 3.1. Let $x \in \mathrm{q}(D) \backslash\{0\}$ with $v(x) \in \boldsymbol{Z}$, and let k be a positive integer with $k>v(x)$. Then x can be expressed uniquely as $x=\alpha_{l} \pi^{l}+\alpha_{l+1} \pi^{l+1}+\cdots+$ $\alpha_{k-1} \pi^{k-1}+a \pi^{k}$, where $l=v(x)$ and each $\alpha_{i} \in \mathcal{K}$ with $\alpha_{l} \neq 0$ and $a \in V$.
Proof. Since $\frac{x}{\pi^{l}}$ is a unit of V, we have $\frac{x}{\pi^{l}} \equiv \alpha_{l}(\bmod M)$ for a unique element $\alpha_{l} \in \mathcal{K} \backslash\{0\}$. Inductively, there are required elements $\alpha_{l+1}, \cdots, \alpha_{k-1} \in \mathcal{K}$ and $a \in V$.

In Lemma 3.1, we may say that α_{i} is the coefficient of π^{i} in x (or, α_{i} is the coefficient of degree i in x).

Lemma 3.2. There is a unique integer $n \geq 2$ such that $P=M^{n}$.
Proof. Set min $\{v(x) \mid x \in P\}=n$, and let $x \in P$ such that $v(x)=n$. There is a unit u of V such that $\pi^{n}=x u$. Since P is an ideal of V, we have $\pi^{n} \in P$, and hence $P=M^{n}$. Since $P \varsubsetneqq M$, we have $n \geq 2$.

For every subset X of $\mathrm{q}(D)$, the D-submodule of $\mathrm{q}(D)$ generated by X is denoted by (X). If $P=M^{n}$, then we have $P=\left(\pi^{n}, \pi^{n+1}, \cdots, \pi^{2 n-2}, \pi^{2 n-1}\right)$ and $V=$ $\left(1, \pi, \cdots, \pi^{n-1}\right)$.

If a_{1}, \cdots, a_{n} is a finite ordered set, and not only a finite set, we denote it by $\left.<a_{1}, \cdots, a_{n}\right\rangle$ if necessary. That is, $\left\langle a_{1}, \cdots, a_{n}\right\rangle=\left\langle b_{1}, \cdots, b_{m}\right\rangle$ if and only if $n=m$ and $a_{i}=b_{i}$ for each i.

Lemma 3.3. Let $I \in \mathrm{~F}(D)$.
(1) If $\inf v(I)$ exists, then it is $\min v(I)$.
(2) If $\inf v(I)$ does not exist, then we have $I=I^{\mathrm{v}}$.

Proof. (1) Then $\min v(M)$ exists by the assumption, and the proof is similar to that of Lemma 2.5.
(2) By Lemma 3.2, there is an integer $n \geq 2$ such that $P=M^{n}$. Since $d I \subseteq D$ for some element $d \in D \backslash\{0\}, v(I)$ is bounded below. Let $\left\{v\left(x_{\lambda}\right) \mid \lambda \in \Lambda\right\}$ be the lower bound of $v(I)$, and let $x \in \bigcap_{\lambda}\left(x_{\lambda}\right)$. Suppose that $v(x)$ is in the lower bound of $v(I)$. Then $v(x)<v\left(x_{\lambda}\right)$ for some element $\lambda \in \Lambda$, hence $x \notin\left(x_{\lambda}\right)$; a contradiction. Therefore there are elements $a_{1}, a_{2}, \cdots, a_{n} \in I$ such that $v\left(a_{n}\right)<$ $\cdots<v\left(a_{2}\right)<v\left(a_{1}\right)<v(x)$. Then $x=\frac{x}{a_{1}} \frac{a_{1}}{a_{2}} \cdots \frac{a_{n-1}}{a_{n}} a_{n} \in M^{n} a_{n} \subseteq I$. Hence we have $\bigcap_{\lambda}\left(x_{\lambda}\right) \subseteq I$. On the other hand, obviously we have $I \subseteq\left(x_{\lambda}\right)$ for every λ. It follows that $I=\bigcap_{\lambda}\left(x_{\lambda}\right)$, and hence $I=I^{\mathrm{v}}$ by $[4$, Theorem (34.1)].

Example 3.4. (1) Assume that $P=M^{2}$, then we have
$\{I \in \mathrm{~F}(D) \mid D \subseteq I \subseteq V\}=\{(1),(1, \pi)\}$.
(2) Assume that $P=M^{3}$. Set $(1)=I_{0},\left(1, \pi^{2}\right)=I_{0,2},\left(1, \pi, \pi^{2}\right)=I_{0,1,2}$, and set $\left(1, \pi+\alpha \pi^{2}\right)=I_{0,1}^{\alpha}$ for every $\alpha \in \mathcal{K}$. Then we have
$\{I \in \mathrm{~F}(D) \mid D \subseteq I \subseteq V\}=\left\{I_{0}, I_{0,2}, I_{0,1,2}\right\} \cup\left\{I_{0,1}^{\alpha} \mid \alpha \in \mathcal{K}\right\}$.
If $I_{0,1}^{\alpha}=I_{0,1}^{\beta}$ for an element $\beta \in \mathcal{K}$, then $\alpha=\beta$.
(3) Assume that $P=M^{4}$. For elements $\alpha_{1}, \alpha_{2} \in \mathcal{K}$, set
(1) $=I_{0}$,
$\left(1, \pi+\alpha_{1} \pi^{2}+\alpha_{2} \pi^{3}\right)=I_{0,1}^{\alpha_{1}, \alpha_{2}}$,
$\left(1, \pi^{2}+\alpha_{1} \pi^{3}\right)=I_{0,2}^{\alpha_{1}}$,
$\left(1, \pi^{3}\right)=I_{0,3}$,
$\left(1, \pi+\alpha_{1} \pi^{3}, \pi^{2}+\alpha_{2} \pi^{3}\right)=I_{0,1,2}^{\alpha_{1}, \alpha_{2}}$,
$\left(1, \pi+\alpha_{1} \pi^{2}, \pi^{3}\right)=I_{0,1,3}^{\alpha_{1}}$,
$\left(1, \pi^{2}, \pi^{3}\right)=I_{0,2,3}$,
$\left(1, \pi, \pi^{2}, \pi^{3}\right)=I_{0,1,2,3}$.
Then we have
$\{I \in \mathrm{~F}(D) \mid D \subseteq I \subseteq V\}=\left\{I_{0}, I_{0,1}^{\alpha_{1}, \alpha_{2}}, I_{0,2}^{\alpha_{1}}, I_{0,3}, I_{0,1,2}^{\alpha_{1}, \alpha_{2}}, I_{0,1,3}^{\alpha_{1}}, I_{0,2,3}, I_{0,1,2,3} \mid\right.$ $\left.\alpha_{1}, \alpha_{2} \in \mathcal{K}\right\}$.

For elements $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathcal{K}$, if $I_{0,2}^{\alpha_{1}}=I_{0,2}^{\beta_{1}}$, then $\alpha_{1}=\beta_{1}$; if $I_{0,1,3}^{\alpha_{1}}=I_{0,1,3}^{\beta_{1}}$, then $\alpha_{1}=\beta_{1}$; if $I_{0,1}^{\alpha_{1}, \alpha_{2}}=I_{0,1}^{\beta_{1}, \beta_{2}}$, then the ordered set $\left\langle\alpha_{1}, \alpha_{2}\right\rangle=\left\langle\beta_{1}, \beta_{2}\right\rangle$; if $I_{0,1,2}^{\alpha_{1}, \alpha_{2}}=I_{0,1,2}^{\beta_{1}, \beta_{2}}$, then $<\alpha_{1}, \alpha_{2}>=<\beta_{1}, \beta_{2}>$.
(4) Assume that $P=M^{5}$. For elements $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \mathcal{K}$, set
(1) $=I_{0}$,
$\left(1, \pi+\alpha_{1} \pi^{2}+\alpha_{2} \pi^{3}+\alpha_{3} \pi^{4}\right)=I_{0,1}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}$,
$\left(1, \pi^{2}+\alpha_{1} \pi^{3}+\alpha_{2} \pi^{4}\right)=I_{0,2}^{\alpha_{1}, \alpha_{2}}$,
$\left(1, \pi^{3}+\alpha_{1} \pi^{4}\right)=I_{0,3}^{\alpha_{1}}$,
$\left(1, \pi^{4}\right)=I_{0,4}$,
$\left(1, \pi+\alpha_{1} \pi^{3}+\alpha_{2} \pi^{4}, \pi^{2}+\alpha_{3} \pi^{3}+\alpha_{4} \pi^{4}\right)=I_{0,1,2}^{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}}$,
$\left(1, \pi+\alpha_{1} \pi^{2}+\alpha_{2} \pi^{4}, \pi^{3}+\alpha_{3} \pi^{4}\right)=I_{0,1,3}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}$,
$\left(1, \pi+\alpha_{1} \pi^{2}+\alpha_{2} \pi^{3}, \pi^{4}\right)=I_{0,1,4}^{\alpha_{1}, \alpha_{2}}$,
$\left(1, \pi^{2}+\alpha_{1} \pi^{4}, \pi^{3}+\alpha_{2} \pi^{4}\right)=I_{0,2,3}^{\alpha_{1}, \alpha_{2}}$,
$\left(1, \pi^{2}+\alpha_{1} \pi^{3}, \pi^{4}\right)=I_{0,2,4}^{\alpha_{1}}$,
$\left(1, \pi^{3}, \pi^{4}\right)=I_{0,3,4}$,
$\left(1, \pi+\alpha_{1} \pi^{4}, \pi^{2}+\alpha_{2} \pi^{4}, \pi^{3}+\alpha_{3} \pi^{4}\right)=I_{0,1,2,3}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}$,
$\left(1, \pi+\alpha_{1} \pi^{3}, \pi^{2}+\alpha_{2} \pi^{3}, \pi^{4}\right)=I_{0,1,2,4}^{\alpha_{1}, \alpha_{2}}$,
$\left(1, \pi+\alpha_{1} \pi^{2}, \pi^{3}, \pi^{4}\right)=I_{0,1,3,4}^{\alpha_{1}}$,
$\left(1, \pi^{2}, \pi^{3}, \pi^{4}\right)=I_{0,2,3,4}$,
$\left(1, \pi, \pi^{2}, \pi^{3}, \pi^{4}\right)=I_{0,1,2,3,4}$.
Then we have
$\{I \in \mathrm{~F}(D) \mid D \subseteq I \subseteq V\}=\left\{I_{0}, I_{0,1}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}, I_{0,2}^{\alpha_{1}, \alpha_{2}}, I_{0,3}^{\alpha_{1}}, I_{0,4}, I_{0,1,2}^{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}}, I_{0,1,3}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}\right.$, $I_{0,1,4}^{\alpha_{1}, \alpha_{2}}, I_{0,2,3}^{\alpha_{1}, \alpha_{2}}, I_{0,2,4}^{\alpha_{1}}, I_{0,3,4}, I_{0,1,2,3}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}, I_{0,1,2,4}^{\alpha_{1}, \alpha_{2}}, I_{0,1,3,4}^{\alpha_{1}}, I_{0,2,3,4}, I_{0,1,2,3,4} \mid$ each $\alpha_{i} \in$ $\mathcal{K}\}$.

For elements $\alpha_{1}, \cdots, \alpha_{4}, \beta_{1}, \cdots, \beta_{4} \in \mathcal{K}$, if $I_{0,3}^{\alpha_{1}}=I_{0,3}^{\beta_{1}}$, then $\alpha_{1}=\beta_{1}$; if $I_{0,2}^{\alpha_{1}, \alpha_{2}}=$ $I_{0,2}^{\beta_{1}, \beta_{2}}$, then $<\alpha_{1}, \alpha_{1}>=<\beta_{1}, \beta_{2}>$; if $I_{0,1}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}=I_{0,1}^{\beta_{1}, \beta_{2}, \beta_{3}}$, then $<\alpha_{1}, \alpha_{2}, \alpha_{3}>$ $=<\beta_{1}, \beta_{2}, \beta_{3}>;$ etc.

Proof. (4) Let I be a fractional ideal of D such that $D \subseteq I \subseteq V$. Let $\tau=$ $\{v(x) \mid x \in I \backslash P\}$, and let, for instance, $\tau=\{0,1,3\}$. Then I contains elements a, b of the form $a=\pi+\alpha_{2} \pi^{2}+\alpha_{3} \pi^{3}+\alpha_{4} \pi^{4}$ and $b=\pi^{3}+\beta \pi^{4}$, where $\alpha_{2}, \alpha_{3}, \alpha_{4}, \beta \in \mathcal{K}$. Exchanging a by $a-\alpha_{3} b$, we may assume that $\alpha_{3}=0$. Let $x=\beta_{0}+\beta_{1} \pi+$ $\beta_{2} \pi^{2}+\beta_{3} \pi^{3}+\beta_{4} \pi^{4}+p \in I$, where each $\beta_{i} \in \mathcal{K}$ and $p \in P$. We have $x=$ $\beta_{0}+\beta_{1} a+\beta_{3} b+\beta_{1}^{\prime} \pi^{2}+\beta_{2}^{\prime} \pi^{4}+p^{\prime}$ for some elements $\beta_{i}^{\prime} \in \mathcal{K}$ and $p^{\prime} \in P$. Since $\tau=\{0,1,3\}$, we have $\beta_{1}^{\prime}=\beta_{2}^{\prime}=0$, hence $I=(1, a, b)$.

For the second assertion, say $I_{0,2,3}^{\alpha_{1}, \alpha_{2}}=I_{0,2,3}^{\beta_{1}, \beta_{2}}$. Then $\pi^{2}+\beta_{1} \pi^{4}=d_{0}+d_{1}\left(\pi^{2}+\right.$ $\left.\alpha_{1} \pi^{4}\right)+d_{2}\left(\pi^{3}+\alpha_{2} \pi^{4}\right)$ for some elements $d_{0}, d_{1}, d_{2} \in D$. Comparing coefficients
of $1, \pi^{2}, \pi^{3}$ in both sides, we have $d_{0} \equiv 0(P), d_{1} \equiv 1(P)$ and $d_{2} \equiv 0(P)$. Then $\pi^{2}+\beta_{1} \pi^{4}=\pi^{2}+\alpha_{1} \pi^{4}+p$ for some element $p \in P$, hence $\beta_{1}=\alpha_{1}$.

Similarly, we have $\pi^{3}+\beta_{2} \pi^{4}=d_{0}+d_{1}\left(\pi^{2}+\alpha_{1} \pi^{4}\right)+d_{2}\left(\pi^{3}+\alpha_{2} \pi^{4}\right)$ for some elements $d_{0}, d_{1}, d_{2} \in D$. Comparing coefficients of $1, \pi^{2}, \pi^{3}$ in both sides, we have $d_{0} \equiv 0, d_{1} \equiv 0$ and $d_{2} \equiv 1$. Then $\pi^{3}+\beta_{2} \pi^{4}=\pi^{3}+\alpha_{2} \pi^{4}+p$ for some element $p \in P$. Hence $\beta_{2}=\alpha_{2}$, and hence $\left\langle\alpha_{1}, \alpha_{2}\right\rangle=\left\langle\beta_{1}, \beta_{2}>\right.$.

The proofs for (1), (2) and (3) are similar and simpler.
Lemma 3.5. Assume that $P=M^{n}$ with $n \geq 2$, and let $I \in \mathrm{~F}(D)$ with $D \subseteq I \subseteq$ V. Then there is a set of generators $f_{0}, f_{1}, \cdots, f_{m}$ for I satisfying the following conditions:
(1) Each f_{i} has the following form: $f_{0}=1$, and
$f_{i}=\pi^{k_{i}}+\sum_{j=1}^{l(i)} \alpha_{i, j} \pi^{e_{i, j}}$ for each $1 \leq i \leq m$, where $\alpha_{i, j} \in \mathcal{K}$ for each i, j.
(2) In (1), the set $\left\{0, k_{1}, \cdots, k_{m}\right\}$ is a subset of $\{0,1,2, \cdots, n-1\}$ with $0<$ $k_{1}<\cdots<k_{m}$.
(3) $\left\{k_{i}+1, k_{i}+2, \cdots, n-1\right\} \backslash\left\{k_{i+1}, \cdots, k_{m}\right\}=\left\{e_{i, 1}, \cdots, e_{i, l(i)}\right\}$ with $e_{i, 1}<$ $e_{i, 2}<\cdots<e_{i, l(i)}$ for each $1 \leq i \leq m$.

Proof. We have $\{v(x) \mid x \in I \backslash P\}=\left\{1, k_{1}, \cdots, k_{m}\right\}$, where $1<k_{1}<\cdots<$ $k_{m} \leq n-1$. By Lemma 3.1, there are elements $f_{0}, f_{1}, \cdots, f_{m} \in I$ which have the following form: $f_{0}=1$, and
$f_{i}=\pi^{k_{i}}+\sum_{j=1}^{n-1-k_{i}} \beta_{i, k_{i}+j} \pi^{k_{i}+j}$ for each $1 \leq i \leq m$, where $\beta_{i, j} \in \mathcal{K}$ for each i, j.
For each $1 \leq i \leq m$, exchanging f_{i} by $f_{i}-\beta_{i, k_{j}} f_{j}$ for each $j>i$, we may assume that $\beta_{i, k_{i+1}}=\beta_{i, k_{i+2}}=\cdots=\beta_{i, k_{m}}=0$. Then $f_{0}, f_{1}, \cdots, f_{m}$ satisfy the conditions (1), (2) and (3).

Suppose that $\left(f_{0}, f_{1}, \cdots, f_{m}\right) \varsubsetneqq I$, and let $x \in I \backslash\left(f_{0}, f_{1}, \cdots, f_{m}\right)$. Then $v(x) \in$ $\left\{1, k_{1}, \cdots, k_{m}\right\}$. Let $k_{i}=\max \left\{v(x) \mid x \in I \backslash\left(f_{0}, f_{1}, \cdots, f_{m}\right)\right\}$, where we put $1=k_{0}$, and let $y \in I \backslash\left(f_{0}, f_{1}, \cdots, f_{m}\right)$ such that $v(y)=k_{i}$. Then there is an element $\alpha \in \mathcal{K}$ such that $v\left(y-\alpha f_{i}\right)>k_{i}$. It follows that $y-\alpha f_{i} \in\left(f_{0}, f_{1}, \cdots, f_{m}\right)$, and hence $y \in\left(f_{0}, f_{1}, \cdots, f_{m}\right)$; a contradiction. The proof is complete.

Lemma 3.6. Assume that $P=M^{n}$ with $n \geq 2$, and let $I \in \mathrm{~F}(D)$ with $D \subseteq I \subseteq$ V. Then the system of generators $f_{0}, f_{1}, \cdots, f_{m}$ for I satisfying the conditions in Lemma 3.5 is determined uniquely.

Proof. Let $f_{0}^{\prime}, \cdots, f_{m^{\prime}}^{\prime}$ be generators for I satisfying the conditions in Lemma 3.5. Then each f_{i}^{\prime} has the following form: $f_{0}^{\prime}=1$, and
$f_{i}^{\prime}=\pi^{k_{i}^{\prime}}+\sum_{j=1}^{l^{\prime}(i)} \alpha_{i, j}^{\prime} \pi^{e_{i, j}^{\prime}}$ for each $1 \leq i \leq m^{\prime}$, where $\alpha_{i, j}^{\prime} \in \mathcal{K}$ for each i and j, $\left\{0, k_{1}^{\prime}, \cdots, k_{m^{\prime}}^{\prime}\right\}$ is a subset of $\{0,1,2, \cdots, n-1\}$ with $0<k_{1}^{\prime}<\cdots<k_{m^{\prime}}^{\prime}$, and $\left\{k_{i}^{\prime}+1, k_{i}^{\prime}+2, \cdots, n-1\right\} \backslash\left\{k_{i+1}^{\prime}, \cdots, k_{m}^{\prime}\right\}=\left\{e_{i, 1}^{\prime}, \cdots, e_{i, l^{\prime}(i)}^{\prime}\right\}$ with $e_{i, 1}^{\prime}<e_{i, 2}^{\prime}<$ $\cdots<e_{i, l^{\prime}(i)}^{\prime}$ for each $1 \leq i \leq m^{\prime}$.

Suppose that $k_{i}=k_{i}^{\prime}$ for each $i<j$ and $k_{j}^{\prime}<k_{j}$ for some j. Then $f_{j}^{\prime} \notin$ $\left(f_{0}, f_{1}, \cdots, f_{m}\right)$; a contradiction.

It follows that $m=m^{\prime}, k_{i}=k_{i}^{\prime}$ for each $i, l(i)=l^{\prime}(i)$ for each i, and $e_{i, j}=e_{i, j}^{\prime}$ for each i, j.

Suppose that $f_{i}=f_{i}^{\prime}$ for each $i<j$ and that $f_{j} \neq f_{j}^{\prime}$. We have $f_{j}^{\prime}=$ $f_{j}+d_{j+1} f_{j+1}+\cdots+d_{m} f_{m}+p$ for some elements $d_{j+1}, \cdots, d_{m} \in D$ and $p \in P$. If $d_{j+1}, \cdots, d_{m} \in P$, there is a contradiction to the uniqueness in Lemma 3.1. Otherwise, there is an integer $k>j$ and an element $\alpha \in \mathcal{K} \backslash\{0\}$ such that $f_{j}^{\prime}=f_{j}+\alpha f_{k}+d_{k+1}^{\prime} f_{k+1}+\cdots+d_{m}^{\prime} f_{m}+p^{\prime}$ for some elements $d_{k+1}^{\prime}, \cdots, d_{m}^{\prime} \in D$ and for some element $p^{\prime} \in P$. The coefficient of π^{k} in the left side f_{j}^{\prime} is zero and that in the right side is $\alpha \neq 0$; a contradiction. The proof is complete.

Assume that $P=M^{n}$ for an integer $n \geq 2$. Let $\left\{0, k_{1}, \cdots, k_{m}\right\}$ be a subset of $\{0,1,2, \cdots, n-1\}$ containing 0 with $0<k_{1}<\cdots<k_{m}$. Then the ordered set $<0, k_{1}, \cdots, k_{m}>$ with order $0<k_{1}<\cdots<k_{m}$ is called a type on D. There are 2^{n-1} types on D. Let $\tau=<0, k_{1}, \cdots, k_{m}>$ be a type on D. Set
$\left\{k_{i}+1, k_{i}+2, \cdots, n-1\right\} \backslash\left\{k_{i+1}, \cdots, k_{m}\right\}=\left\{e_{i, 1}, \cdots, e_{i, l(i)}\right\}$ with $e_{i, 1}<e_{i, 2}<$ $\cdots<e_{i, l(i)}$ for each $1 \leq i \leq m$.

Then an ordered set $\bar{p}=<\alpha_{1,1}, \cdots, \alpha_{1, l(1)}, \cdots, \alpha_{m, 1}, \cdots, \alpha_{m, l(m)}>$ of elements in \mathcal{K} is called a system of parameters on D belonging to τ. The ordered set $\sigma=<0, k_{1}, \cdots, k_{m}, \alpha_{1,1}, \cdots, \alpha_{1, l(1)}, \cdots, \alpha_{m, 1}, \cdots, \alpha_{m, l(m)}>$ is called a data on D belonging to τ. We denote the data by $<0, k_{1}, \cdots, k_{m} ; \alpha_{1,1}, \cdots, \alpha_{1, l(1)}$, $\cdots, \alpha_{m, 1}, \cdots, \alpha_{m, l(m)}>. \tau$ (resp., \bar{p}) is said to belong to σ, and is denoted by $\tau(\sigma)$ (resp., $\bar{p}(\sigma))$. A system of parameters belonging to τ may be empty. In this case, the data belonging to τ is τ itself. Set $f_{0}^{\sigma}=1$, and

$$
f_{i}^{\sigma}=\pi^{k_{i}}+\sum_{j=1}^{l(i)} \alpha_{i, j} \pi^{e_{i, j}} \text { for each } 1 \leq i \leq m
$$

Then $<f_{0}^{\sigma}, f_{1}^{\sigma}, \cdots, f_{m}^{\sigma}>$ is called a canonical system of generators on D belonging to σ. And the fractional ideal $\left(f_{0}^{\sigma}, f_{1}^{\sigma}, f_{2}^{\sigma}, \cdots, f_{m}^{\sigma}\right)$ is said to be associated to σ, and is denoted by $I_{\tau}^{\bar{p}}$ or, by $I(\sigma)$.

Let I be a fractional ideal of D with $D \subseteq I \subseteq V$. Lemmas 3.5 and 3.6 show that there are a type τ, a system of parameters \bar{p}, a data σ uniquely such that $I=I(\sigma)$
on D. Then τ (resp., \bar{p}, σ) is called the type (resp., the system of parameters, the data) of I. The system of generators $<f_{0}^{\sigma}, f_{1}^{\sigma}, \cdots, f_{m}^{\sigma}>$ for I is called the canonical system of generators for I.

Lemma 3.7. Assume that $P=M^{n}$ with $n \geq 2$. Then we have $\{I \in \mathrm{~F}(D) \mid D \subseteq$ $I \subseteq V\}=\{I(\sigma) \mid \sigma$ is a data on $D\}$.

Let $I, J \in \mathrm{~F}(D)$. If there is an element $x \in \mathrm{q}(D) \backslash\{0\}$ such that $x J=I$, then I and J are said similar, and is denoted by $I \sim J$.

Lemma 3.8. Assume that $P=M^{n}$ with $n \geq 2$. Let σ, σ^{\prime} be two datas on D such that $\tau(\sigma) \neq \tau\left(\sigma^{\prime}\right)$. Then $I(\sigma)$ is not similar to $I\left(\sigma^{\prime}\right)$.

Proof. Suppose that $x I(\sigma)=I\left(\sigma^{\prime}\right)$ for some element $x \in \mathrm{q}(D) \backslash\{0\}$. Then $v(x)=0$. Let $\tau(\sigma)=\left\{0, k_{1}, k_{2}, \cdots, k_{m}\right\}$ with $0<k_{1}<k_{2}<\cdots<k_{m}$, and let $\tau\left(\sigma^{\prime}\right)=\left\{0, k_{1}^{\prime}, k_{2}^{\prime}, \cdots, k_{m^{\prime}}^{\prime}\right\}$ with $0<k_{1}^{\prime}<k_{2}^{\prime}<\cdots<k_{m^{\prime}}^{\prime}$. We may assume that $k_{i}=k_{i}^{\prime}$ for each $i<j$ and $k_{j}<k_{j}^{\prime}$ for some positive integer j. Then we have $x f_{j}^{\sigma} \notin I\left(\sigma^{\prime}\right)$, and hence $x I(\sigma) \nsubseteq I\left(\sigma^{\prime}\right)$; a contradiction.
Lemma 3.9. Assume that K is a finite field. Then $\{I \in \mathrm{~F}(D) \mid D \subseteq I \subseteq V\}$ is a finite set.

The proof follows from Lemma 3.7.
Lemma 3.10. Assume that K is a finite field, and let l be a negative integer. Then $\{I \in \mathrm{~F}(D) \mid I$ has $\min v(I)$, and $l \leq \min v(I) \leq 0\}$ is a finite set.

Proof. Let $P=M^{n}$. By Lemma 3.9, the set $\{I \in \mathrm{~F}(D) \mid D \subseteq I \subseteq V\}=X$ is a finite set. Let I be a fractional ideal of D such that $\min v(I)=l_{0}$ exists with $l \leq l_{0} \leq 0$. We have $v\left(a_{0}\right)=l_{0}$ for some element $a_{0} \in I$. We may assume that $a_{0}=\pi^{l_{0}}\left(1+\alpha_{1} \pi+\alpha_{2} \pi^{2}+\cdots+\alpha_{n-1} \pi^{n-1}+p\right)$ for some element $p \in P$. Since $D \subseteq \frac{1}{a_{0}} I \subseteq V$, we have $\frac{1}{a_{0}} I \in X$, completing the proof.
Lemma 3.11. Assume that K is a finite field. Then $\{T \mid T$ is an overring of D with $D \subseteq T \subseteq V\}$ is a finite set.

Proof. Because each overring T with $T \subseteq V$ has some type, and each type has only a finite number of systems of parameters.

Lemma 3.12. Assume that K is a finite field. Let T be an overring of D with $T \subseteq V$, and let l be a negative integer.
(1) $\{I \in \mathrm{~F}(T) \mid T \subseteq I \subseteq V\}$ is a finite set.
(2) $\{I \in \mathrm{~F}(T) \mid \min v(I)$ exists, and $l \leq \min v(I) \leq 0\}$ is a finite set.

Proof. Since $\mathrm{F}(T) \subseteq \mathrm{F}(D)$, the proof follows from Lemmas 3.9 and 3.10.
4. The case where $K=k$ and $P=M^{2}$ or $P=M^{3}$

In this section, let $D, P, V, M, K, v, \Gamma, \pi$ and \mathcal{K} be as in Section 3. We will prove the following,

Proposition 4.1. (1) If K is a finite field, then $|\Sigma(D)|<\infty$.
(2) If $P=M^{2}$, then $|\Sigma(D)|=1$.
(3) If $P=M^{2}$, and if $\operatorname{dim}(D)<\infty$, then $\left|\Sigma^{\prime}(D)\right|=1+\left|\Sigma^{\prime}(V)\right|$.
(4) If $P=M^{3}$, then $|\Sigma(D)|=3$.
(5) If $P=M^{3}$, and if $\operatorname{dim}(D)<\infty$, then $\left|\Sigma^{\prime}(D)\right|=4+\left|\Sigma^{\prime}(V)\right|$.

We note that if $\operatorname{dim}(D)=\infty$, then $\left|\Sigma^{\prime}(D)\right|=\left|\Sigma^{\prime}(V)\right|=\infty$. For, $\operatorname{Spec}(D)=$ $\left\{P_{\lambda} \mid \lambda \in \Lambda\right\}$ is an infinite set. And, for every λ, there is a semistar operation $I \longmapsto I D_{P_{\lambda}}$. Furthermore, if we have an infinite number of overrings of D, then $\left|\Sigma^{\prime}(D)\right|=\infty$. For, for every overring T, there is a semistar operation $I \longmapsto I T$.

Lemma 4.2. If K is a finite field, then we have $|\Sigma(D)|<\infty$.
Proof. Then $\{I \in \mathrm{~F}(D) \mid D \subseteq I \subseteq V\}=X$ is a finite set by Lemma 3.9. Let \star be a star operation on D, and let $I \in X$. Since V is a divisorial fractional ideal of D, we have $D \subseteq I^{\star} \subseteq V^{\star} \subseteq V^{\mathrm{v}}=V$, and hence $I^{\star} \in X$.

If we set $I^{\star}=g_{\star}(I)$, then the element $\star \in \Sigma(D)$ gives an element $g_{\star} \in X^{X}$, where X^{X} is the set of mappings from X to X. And the mapping $g: \star \longmapsto g_{\star}$ from $\Sigma(D)$ to X^{X} is injective by the definition.

Lemma 4.3. Assume that $P=M^{2}$. Then $\{T \mid T$ is an overring of D with $T \varsubsetneqq V\}=\{D\}$.

Proof. Because $\{I \in \mathrm{~F}(D) \mid D \subseteq I \subseteq V\}=\{(1),(1, \pi)\}$ by Example 3.4 (1).
Lemma 4.4. Assume that $P=M^{2}$. Then we have $|\Sigma(D)|=1$, and if $\operatorname{dim}(D)<$ ∞, then $\left|\Sigma^{\prime}(D)\right|=1+\left|\Sigma^{\prime}(V)\right|$.

Proof. If $\inf v(I)$ does not exist, then $I=I^{\mathrm{v}}$ by Lemma 3.3. Hence every member $I \in \mathrm{~F}(D)$ is divisorial. It follows that $|\Sigma(D)|=1$, and Lemma 2.3 completes the proof.

A mapping \star from $\mathrm{F}(D)$ to $\mathrm{F}(D)$ is said to satisfy condition (C) if it satisfies the following three conditions: (1) $D^{\star}=D$ and $V^{\star}=V ;(2) \quad(x I)^{\star}=x I^{\star}$ for every element $x \in \mathrm{q}(D) \backslash\{0\}$ and $I \in \mathrm{~F}(D)$; (3) If $\inf v(I)$ does not exist, then $I^{\star}=I$. Obviously, every star operation satisfies the condition (C).

Throughout the rest of this section, assume that $P=M^{3}$.
Lemma 4.5. We have $\{T \mid T$ is an overring of D with $T \varsubsetneqq V\}=\left\{D, D+M^{2}\right\}$.
Proof. We have that $\{I \in \mathrm{~F}(D) \mid D \subseteq I \subseteq V\}=\left\{I_{0}, I_{0,2}, I_{0,1,2}\right\} \cup\left\{I_{0,1}^{\alpha} \mid \alpha \in \mathcal{K}\right\}$ by Example 3.4 (2), and that $I_{0}=D, I_{0,2}=D+M^{2}, I_{0,1,2}=V$, and $I_{0,1}^{\alpha}$ is not a subring of $\mathrm{q}(D)$ for every $\alpha \in \mathcal{K}$.

Lemma 4.6. (1) For elements $\alpha, \beta \in \mathcal{K}$, we have $I_{0,1}^{\alpha} \subseteq I_{0,1}^{\beta}$ if and only if $\alpha=\beta$.
(2) $I_{0,2}$ and $I_{0,1}^{\alpha}$ are not comparable for every $\alpha \in \mathcal{K}$.
(3) $I_{0,1}^{\alpha}$ and $I_{0,1}^{\beta}$ are similar for every $\alpha, \beta \in \mathcal{K}$.

Proof. (3) Set $1+\alpha \pi+\alpha^{2} \pi^{2}=x$. Then we have $x(1, \pi)=\left(1, \pi+\alpha \pi^{2}\right)$.
The proofs for (1) and (2) are similar.
Lemma 4.7. Let \star be a star operation on D. Then $\left(I_{0,2}\right)^{\star}$ is either $I_{0,2}$ or V, and $\left(I_{0,1}^{0}\right)^{\star}$ is either $I_{0,1}^{0}$ or V.

Proof. Since V is a divisorial fractional ideal of D, we have $\left(I_{0,2}\right)^{\star} \subseteq V$ and $\left(I_{0,1}^{0}\right)^{\star} \subseteq V$. Then the assertion follows from Lemma 4.6.

Lemma 4.8. (1) Set $I_{0,2}=\left(I_{0,2}\right)^{\star}$ and $I_{0,1}^{0}=\left(I_{0,1}^{0}\right)^{\star}$. Then \star can be extended uniquely to a mapping \star_{1} from $\mathrm{F}(D)$ to $\mathrm{F}(D)$ with condition (C).
(2) Set $I_{0,2}=\left(I_{0,2}\right)^{\star}$ and $V=\left(I_{0,1}^{0}\right)^{\star}$. Then \star can be extended uniquely to a mapping \star_{2} from $\mathrm{F}(D)$ to $\mathrm{F}(D)$ with condition (C).
(3) Set $V=\left(I_{0,2}\right)^{\star}$ and $I_{0,1}^{0}=\left(I_{0,1}^{0}\right)^{\star}$. Then \star can be extended uniquely to a mapping \star_{3} from $\mathrm{F}(D)$ to $\mathrm{F}(D)$ with condition (C).
(4) Set $V=\left(I_{0,2}\right)^{\star}$ and $V=\left(I_{0,1}^{0}\right)^{\star}$. Then \star can be extended uniquely to a mapping \star_{4} from $\mathrm{F}(D)$ to $\mathrm{F}(D)$ with condition (C).

Proof. We confer Example 3.4 (2) and Lemma 3.3. Let $I \in \mathrm{~F}(D)$, then Lemma 3.8 implies that either I is similar to one and only one in $\left\{I_{0}, I_{0,2}, I_{0,1,2}, I_{0,1}^{0}\right\}$, or $\inf v(I)$ does not exist. If $\inf v(I)$ does not exist, then we set $I=I^{\star_{i}}$ for each i.

Lemma 4.9. In Lemma 4.8, we have the following:
(1) \star_{1} is a star operation on D, and $\star_{1}=\mathrm{d}$.
(2) \star_{2} is a star operation on D.
(3) \star_{3} is not a star operation on D.
(4) \star_{4} is a star operation on D, and $\star_{4}=\mathrm{v}$.

Proof. We confer Lemma 4.6.
(2) For elements $x \in \mathrm{q}(D) \backslash\{0\}$ and $I \in \mathrm{~F}(D)$, we have $(x)^{\star_{2}}=(x),(x I)^{\star_{2}}=$ $x I^{\star_{2}}, I \subseteq I^{\star_{2}}$, and $\left(I^{\star_{2}}\right)^{\star_{2}}=I^{\star_{2}}$.

Let $I_{1}, I_{2} \in \mathrm{~F}(D)$ with $I_{1} \subseteq I_{2}$. The proof for $I_{1}^{\star_{2}} \subseteq I_{2}^{\star_{2}}$ follows from the following two facts:
(i) Let $(1, \pi) \subseteq I \in \mathrm{~F}(D)$ such that $\inf v(I)$ does not exist. Then $V \subseteq I$.
(ii) For elements $x \in \mathrm{q}(D) \backslash\{0\}$ and $I \in\left\{I_{0}, I_{0,2}\right\}$, if $x I_{0,1}^{0} \subseteq I$, then $x V \subseteq I$.
(3) Set $\pi+\pi^{2}=x$. Then $x\left(1, \pi^{2}\right) \subseteq\left(1, \pi+\pi^{2}\right)$ and $x V \nsubseteq\left(1, \pi+\pi^{2}\right)$.

The proofs for (1) and (4) are similar.
Lemma 4.10. Assume that $P=M^{3}$. Then $|\Sigma(D)|=3$, and, if $\operatorname{dim}(D)<\infty$, then $\left|\Sigma^{\prime}(D)\right|=4+\left|\Sigma^{\prime}(V)\right|$.

Proof. By Lemma 4.9, $\Sigma(D)=\left\{\mathrm{d}, \mathrm{v}, \star_{2}\right\}$, and hence $|\Sigma(D)|=3$.
Assume that $\operatorname{dim}(D)<\infty$. By Lemma 2.7, we can apply Lemma 4.4 for $D^{\prime}=$ $D+M^{2}$. Then, in Lemma 2.3, we have $\left|\Sigma_{2}^{\prime}\right|=|\Sigma(D)|+\left|\Sigma\left(D+M^{2}\right)\right|=3+1=4$. It follows that $\left|\Sigma^{\prime}(D)\right|=\left|\Sigma_{1}^{\prime}\right|+\left|\Sigma_{2}^{\prime}\right|=4+\left|\Sigma^{\prime}(V)\right|$.

The proof for Proposition 4.1 is complete.

5. The case where $K=k$ and $P=M^{n}$ with $n \geq 4$

In this section, let $D, P, V, M, K, v, \Gamma, \pi$ and \mathcal{K} be as in Section 3. We will prove the following,

Proposition 5.1. (1) Assume that K is an infinite field and $P=M^{n}$ with $n \geq 4$. Then $|\Sigma(D)|=\infty$.
(2) Assume that K is a finite field and $\operatorname{dim}(D)<\infty$. Then $\left|\Sigma^{\prime}(D)\right|<\infty$.

Lemma 5.2. Let T be an overring of D with $T \subseteq V$, and let $I \in \mathrm{~F}(T)$.
(1) If $\inf v(I)$ exists, then it is $\min v(I)$.
(2) If $\inf v(I)$ does not exist, then I is a divisorial fractional ideal of T.

The proof is similar to that of Lemma 3.3.
Lemma 5.3. Assume that K is a finite field, and let T be an overring of D with $T \subseteq V$. Then $|\Sigma(T)|<\infty$.

Proof. Let $P=M^{n}$. Set $\{I \in \mathrm{~F}(T) \mid T \subseteq I \subseteq V\}=X$, and set $\{I \in \mathrm{~F}(T) \mid$ $\min v(I)$ exists, and $-n \leq \min v(I) \leq 0\}=Y$. Then X and Y are finite sets by Lemma 3.12. Let $I \in \mathrm{~F}(T)$. Then either min $v(I)$ exists or $\inf v(I)$ does not exist, and, if $\inf v(I)$ does not exist, then I is a divisorial fractional ideal of T by Lemma 5.2.

Let \star be a star operation on T, and let $I \in X$. Since $\pi^{n} I \subseteq T$, we have $\pi^{n} I^{\star} \subseteq T$. Hence $\min v\left(I^{\star}\right)$ exists, and $-n \leq \min v\left(I^{\star}\right) \leq 0$, that is, $I^{\star} \in Y$. If we set $I^{\star}=g_{\star}(I)$, there is a canonical mapping $g: \Sigma(T) \longrightarrow Y^{X}$, where Y^{X} is the set of mappings from X to Y. Moreover, g is injective by the definition, and hence $|\Sigma(T)|<\infty$.

Lemma 5.4. Assume that K is a finite field and $\operatorname{dim}(D)<\infty$. Then $\left|\Sigma^{\prime}(D)\right|<$ ∞.

Proof. By Lemmas 3.11 and 5.3, we have $\left|\Sigma_{2}^{\prime}\right|<\infty$ and $\left|\Sigma^{\prime}(D)\right|<\infty$ in Lemma 2.3.

Lemma 5.5. Let $\left\langle\tau ; \alpha_{1}, \cdots, \alpha_{k}>,\left\langle\tau ; \beta_{1}, \cdots, \beta_{k}>\right.\right.$ be two datas on D with the same type τ and with $k \geq 1$. Then $I\left(\tau ; \alpha_{1}, \cdots, \alpha_{k}\right) \subseteq I\left(\tau ; \beta_{1}, \cdots, \beta_{k}\right)$ if and only if $\alpha_{i}=\beta_{i}$ for each i.

Proof. For instance, assume that $P=M^{5}$ and that $I_{0,1,2}^{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}} \subseteq I_{0,1,2}^{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}}$. Then we have $\pi+\alpha_{1} \pi^{3}+\alpha_{2} \pi^{4}=\left(\pi+\beta_{1} \pi^{3}+\beta_{2} \pi^{4}\right)+\left(\pi^{2}+\beta_{3} \pi^{3}+\beta_{4} \pi^{4}\right) p_{1}+p_{2}$ for some elements $p_{1}, p_{2} \in P$. Hence $\alpha_{1}=\beta_{1}$ and $\alpha_{2}=\beta_{2}$. Similarly, we have $\pi^{2}+\alpha_{3} \pi^{3}+\alpha_{4} \pi^{4}=\left(\pi^{2}+\beta_{3} \pi^{3}+\beta_{4} \pi^{4}\right)+p_{3}$ for some element $p_{3} \in P$. Hence $\alpha_{3}=\beta_{3}$ and $\alpha_{4}=\beta_{4}$.

Lemma 5.6. Assume that $P=M^{n}$ with $n \geq 4$ and that K is an infinite field.
(1) The set $\{T \mid T$ is an overring of D with $T \subseteq V\}$ is an infinite set.
(2) $\left|\Sigma^{\prime}(D)\right|=\infty$.

Proof. (1) $I_{0, n-2}^{\alpha}$ is an overring of D with $I_{0, n-2}^{\alpha} \subseteq V$ for every $\alpha \in \mathcal{K}$. Since $|\mathcal{K}|=\infty$, the assertion holds by Lemma 5.5.
(2) follows from (1).

Lemma 5.7. Assume that $P=M^{n}$ with $n \geq 3$. Let $I \in \mathrm{~F}(D)$ such that $D \subseteq I \subseteq$ V with type τ, let $J \in \mathrm{~F}(D)$, and let $x \in \mathrm{q}(D) \backslash\{0\}$.
(1) If $I \subseteq J$, and if $\inf v(J)$ does not exist, then $V \subseteq J$.
(2) If $x I \subseteq I_{0}$, and if $\tau \notin\{<0>,<0, n-1>\}$, then $x V \subseteq I_{0}$.
(3) If $x I \subseteq I_{0, n-1}$, and if $\tau \notin\{<0>,<0, n-1>\}$, then $x V \subseteq I_{0, n-1}$.
(4) If $x I \subseteq I_{0,1}^{\alpha_{1}, \cdots, \alpha_{n-2}}$, and if $\tau \notin\{<0>,<0,1>,<0, n-1>\}$, then $x V \subseteq I_{0,1}^{\alpha_{1}, \cdots, \alpha_{n-2}}$.

Proof. (3) Suppose that $v(x)=0$. Since $\tau \notin\{<0>,<0, n-1>\}, I$ contains an element a such that $0<v(a)<n-1$. We have $x a \in I_{0, n-1}$ and $0<v(x a)<n-1$; a contradiction.
(4) We have $v(x I) \subseteq\{0,1, n, n+1, \cdots\}$. Since $x \in I_{0,1}^{\alpha_{1}, \cdots, \alpha_{n-2}}$, we have $v(x) \in$ $\{0,1, n, n+1, \cdots\}$.

If $v(x)=0$, then $v(I) \subseteq\{0,1, n, n+1, \cdots\}$. Hence τ is either $<0>$ or $<0,1\rangle$; a contradiction.

If $v(x)=1$, then $v(I) \subseteq\{0, n-1, n, \cdots\}$. Hence τ is either $<0>$ or $\langle 0, n-1\rangle$; a contradiction.

Finally, if $v(x) \geq n$, then $x V \subseteq I_{0,1}^{\alpha_{1}, \cdots, \alpha_{n-2}}$.
The proofs for (1) and (2) are similar.
Lemma 5.8. Assume that $P=M^{n}$ with $n \geq 4$. Then $I(0,1 ; 0, \cdots, 0, \alpha) \sim$ $I(0,1 ; 0, \cdots, 0, \beta)$ if and only if $\alpha=\beta$.

Proof. The necessity: There is an element $x \in \mathrm{q}(D) \backslash\{0\}$ such that $x(1, \pi+$ $\left.\alpha \pi^{n-1}\right)=\left(1, \pi+\beta \pi^{n-1}\right)$. We may assume that $x=1+\left(\pi+\beta \pi^{n-1}\right) \alpha^{\prime}$ for some element $\alpha^{\prime} \in \mathcal{K}$. Since $x\left(\pi+\alpha \pi^{n-1}\right) \in\left(1, \pi+\beta \pi^{n-1}\right)$, we have $\alpha=\beta$.

Example 5.9. Assume that $P=M^{5}$. In the following, let $\alpha_{i}, \beta_{i}, \alpha_{(i)} \in \mathcal{K}$ for each i.
(1) $I_{0,1}^{\alpha_{1}, \alpha_{2}, \alpha_{3}} \sim I_{0,1}^{\beta_{1}, \beta_{2}, \beta_{3}}$ if and only if $\alpha_{2}-\beta_{2} \equiv\left(\alpha_{1}-\beta_{1}\right)\left(\alpha_{1}+\beta_{1}\right)(\bmod P)$ and $\left(\alpha_{3}-\beta_{3}\right) \equiv\left(\alpha_{1}-\beta_{1}\right)\left(\alpha_{2}+\alpha_{1} \beta_{1}+\beta_{2}\right)(\bmod P)$.
(2) Let $x \in \mathrm{q}(D) \backslash\{0\}$. If $x I_{0,1}^{\alpha_{(1)}, \alpha_{(2)}, \alpha_{(3)}} \subseteq I_{0,1}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}$, and if $I_{0,1}^{\alpha_{(1)}, \alpha_{(2)}, \alpha_{(3)}} \nsim$ $I_{0,1}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}$, then $x V \subseteq I_{0,1}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}$.
(3) Fix a data $<0,1 ; \alpha_{(1)}, \alpha_{(2)}, \alpha_{(3)}>$ on D. Let $I \in \mathrm{~F}(D)$ with $D \subseteq I \subseteq V$. If I is either I_{0} or $I_{0,4}$ or $I_{0,1}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}$ with $I_{0,1}^{\alpha_{1}, \alpha_{2}, \alpha_{3}} \nsim I_{0,1}^{\alpha_{(1)}, \alpha_{(2)}, \alpha_{(3)}}$, set $I=I^{\star_{0}}$, and otherwise set $V=I^{\star_{0}}$. Then \star_{0} determines uniquely a star operation \star on D.
(4) If K is an infinite field, then $|\Sigma(D)|=\infty$.

Proof. We confer Example 3.4 (4).
(1) Set $\pi+\alpha_{1} \pi^{2}+\alpha_{2} \pi^{3}+\alpha_{3} \pi^{4}=A$ and set $\pi+\beta_{1} \pi^{2}+\beta_{2} \pi^{3}+\beta_{3} \pi^{4}=B$.

The necessity: There is an element $x \in \mathrm{q}(D) \backslash\{0\}$ such that $x I_{0,1}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}=$ $I_{0,1}^{\beta_{1}, \beta_{2}, \beta_{3}}$. Then we have $v(x)=0$. We may assume that $x=1+B \alpha$ for some element $\alpha \in \mathcal{K}$. Since $x A \in(1, B)$, we have $\alpha \equiv \beta_{1}-\alpha_{1}, \beta_{2}-\alpha_{2} \equiv \alpha\left(\alpha_{1}+\beta_{1}\right)$ and $\beta_{3}-\alpha_{3} \equiv \alpha\left(\alpha_{2}+\alpha_{1} \beta_{1}+\beta_{2}\right)$.

The sufficiency: Let $\beta_{1}-\alpha_{1} \equiv \alpha$ with $\alpha \in \mathcal{K}$, and set $1+B \alpha=x$. We have that $A+A B \alpha=B+p_{1}$ for some element $p_{1} \in P$, and hence $x(1, A) \subseteq(1, B)$. Similarly, let $\alpha_{1}-\beta_{1} \equiv \beta$ with $\beta \in \mathcal{K}, 1+A \beta=y$, and $B+A B \beta=A+p_{2}$ for some element $p_{2} \in P$. Then $y(1, B) \subseteq(1, A)$. On the other hand, since $x y$ is a unit of D, it follows that $x(1, A)=(1, B)$ and $y(1, B)=(1, A)$.
(2) Suppose that $v(x)=0$. Then we may assume that $x=1+\left(\pi+\alpha_{1} \pi^{2}+\alpha_{2} \pi^{3}+\right.$ $\left.\alpha_{3} \pi^{4}\right) \alpha$ for some element $\alpha \in \mathcal{K}$. Then $x\left(\pi+\alpha_{(1)} \pi^{2}+\alpha_{(2)} \pi^{3}+\alpha_{(3)} \pi^{4}\right) \in I_{0,1}^{\alpha_{1}, \alpha_{2}, \alpha_{3}}$ implies that $\alpha_{(2)}-\alpha_{2} \equiv\left(\alpha_{(1)}-\alpha_{1}\right)\left(\alpha_{(1)}+\alpha_{1}\right)$ and $\alpha_{(3)}-\alpha_{3} \equiv\left(\alpha_{(1)}-\alpha_{1}\right)\left(\alpha_{(2)}+\right.$ $\left.\alpha_{(1)} \alpha_{1}+\alpha_{2}\right)$; a contradiction.
(3) We introduced the condition (C) in Section 4. Then \star_{0} can be extended uniquely to a mapping \star from $\mathrm{F}(D)$ to $\mathrm{F}(D)$ with condition (C). Let $I_{1}, I_{2} \in \mathrm{~F}(D)$ with $I_{1} \subseteq I_{2}$, then we have $I_{1}^{\star} \subseteq I_{2}^{\star}$ by Lemma 5.7 and (2).
(4) Let $\star_{\alpha_{(1)}, \alpha_{(2)}, \alpha_{(3)}}$ be the star operation on D determined in (3). If $I_{0,1}^{\alpha_{1}, \alpha_{2}, \alpha_{3}} \nsim$ $I_{0,1}^{\beta_{1}, \beta_{2}, \beta_{3}}$, then $\star_{\alpha_{1}, \alpha_{2}, \alpha_{3}} \neq \star_{\beta_{1}, \beta_{2}, \beta_{3}}$. By Lemma 5.8, we have $|\Sigma(D)|=\infty$.

Lemma 5.10. Assume that $P=M^{n}$ with $n \geq 4$.
(1) Then $I\left(0,1 ; \alpha_{1}, \cdots, \alpha_{n-2}\right) \sim I\left(0,1 ; \beta_{1}, \cdots, \beta_{n-2}\right)$ if and only if $\alpha_{k}-\beta_{k} \equiv$ $\left(\alpha_{1}-\beta_{1}\right)\left(\sum_{0}^{k-1} \beta_{i} \alpha_{k-1-i}\right)(\bmod P)$ for each $2 \leq k \leq n-2$.
(2) Let $x \in \mathrm{q}(D) \backslash\{0\}$. If $x I\left(0,1 ; \alpha_{1}, \cdots, \alpha_{n-2}\right) \subseteq I\left(0,1 ; \beta_{1}, \cdots, \beta_{n-2}\right)$ with $I\left(0,1 ; \alpha_{1}, \cdots, \alpha_{n-2}\right) \nsim I\left(0,1 ; \beta_{1}, \cdots, \beta_{n-2}\right)$, then $x V \subseteq I\left(0,1 ; \beta_{1}, \cdots, \beta_{n-2}\right)$.

Proof. We confer Lemma 5.9, where $n=5$.
(1) Set $\pi+\alpha_{1} \pi^{2}+\cdots+\alpha_{n-2} \pi^{n-1}=A$, and set $\pi+\beta_{1} \pi^{2}+\cdots+\beta_{n-2} \pi^{n-1}=B$.

The necessity: There is an element $x \in \mathrm{q}(D) \backslash\{0\}$ such that $x I_{0,1}^{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n-2}}=$ $I_{0,1}^{\beta_{1}, \beta_{2}, \cdots, \beta_{n-2}}$. Since $v(x)=0$, we may assume that $x=1+B \alpha$ for some element $\alpha \in \mathcal{K}$. Since $x A \in(1, B)$, we have $\alpha \equiv \beta_{1}-\alpha_{1}$ and $\beta_{k}-\alpha_{k} \equiv \alpha\left(\sum_{0}^{k-1} \beta_{i} \alpha_{k-1-i}\right)$ for each $2 \leq k \leq n-2$.

The sufficiency is similar to the proof for Lemma 5.9 (1).
(2) Suppose that $v(x)=0$. Then we may assume that $x=1+\left(\pi+\beta_{1} \pi^{2}+\right.$ $\left.\cdots+\beta_{n-2} \pi^{n-1}\right) \alpha$ for some element $\alpha \in \mathcal{K}$. Then $x\left(\pi+\alpha_{1} \pi^{2}+\cdots+\alpha_{n-2} \pi^{n-1}\right) \in$ $I_{0,1}^{\beta_{1}, \cdots, \beta_{n-2}}$ implies that $\beta_{k}-\alpha_{k} \equiv\left(\beta_{1}-\alpha_{1}\right)\left(\sum_{0}^{k-1} \alpha_{i} \beta_{k-1-i}\right)$ for each $2 \leq k \leq n-2$; a contradiction.

Lemma 5.11. Assume that $P=M^{n}$ with $n \geq 4$. Fix a data $<0,1 ; \alpha_{(1)}, \alpha_{(2)}, \cdots$, $\alpha_{(n-2)}>$ on D, and let $I \in \mathrm{~F}(D)$ with $D \subseteq I \subseteq V$. If I is either I_{0} or $I_{0, n-1}$ or $I\left(0,1 ; \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n-2}\right)$ with $I\left(0,1 ; \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n-2}\right) \nsim I\left(0,1 ; \alpha_{(1)}, \alpha_{(2)}, \cdots\right.$, $\left.\alpha_{(n-2)}\right)$, set $I=I^{\star_{0}}$, and otherwise set $V=I^{\star_{0}}$. Then \star_{0} determines uniquely a star operation \star on D.

Proof. We confer Lemma 5.9 (3). Then \star_{0} can be extended uniquely to a mapping \star from $\mathrm{F}(D)$ to $\mathrm{F}(D)$ with condition (C). Let $I_{1}, I_{2} \in \mathrm{~F}(D)$ with $I_{1} \subseteq I_{2}$. Then, by Lemma 5.7 and Lemma 5.10 (2), we have $I_{1}^{\star} \subseteq I_{2}^{\star}$.

Lemma 5.12. Assume that K is an infinite field and $P=M^{n}$ with $n \geq 4$. Then $|\Sigma(D)|=\infty$.

Proof. Let $\star_{\alpha_{(1)}, \alpha_{(2)}, \cdots, \alpha_{(n-2)}}$ be the star operation on D determined in Lemma 5.11. If $I_{0,1}^{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n-2}} \not \nsim I_{0,1}^{\beta_{1}, \beta_{2}, \cdots, \beta_{n-2}}$, then $\star_{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n-2}} \neq \star_{\beta_{1}, \beta_{2}, \cdots, \beta_{n-2}}$. By Lemma 5.8 , we have $|\Sigma(D)|=\infty$.

The proof for Proposition 5.1 is complete, and the proof for the case where $K=k$ in our Theorem is complete.
6. The case where $K \supsetneqq k$

In this final section, let D be an APVD which is not a PVD, P be the maximal ideal of $D, V=(P: P), M$ be the maximal ideal of $V, K=\frac{V}{M}, k=\frac{D}{P}, v$ be a valuation belonging to V, Γ be the value group of $v,\left\{\alpha_{i} \mid i \in \mathcal{I}\right\}=\mathcal{K}$ be a complete system of representatives of V modulo M with $\{0,1\} \subseteq \mathcal{K}$, and assume that $K \supsetneqq k$, and that $\min v(M)$ exists with $\min v(M)=v(\pi)=1 \in \boldsymbol{Z} \subseteq \Gamma$ for some element $\pi \in M$. We will prove the following,

Proposition 6.1. The following conditions are equivalent.
(1) $\left|\Sigma^{\prime}(D)\right|<\infty$.
(2) K is a finite field, $\operatorname{dim}(D)<\infty$, and $P=M^{n}$ for some $n \geq 2$.

Lemma 6.2. (1) Let $x \in \mathrm{q}(D) \backslash\{0\}$ with $v(x) \in \boldsymbol{Z}$, and let k be a positive integer with $k>v(x)$. Then x can be expressed uniquely as $x=\alpha_{l} \pi^{l}+\alpha_{l+1} \pi^{l+1}+\cdots+$ $\alpha_{k-1} \pi^{k-1}+a \pi^{k}$, where $l=v(x)$ and each $\alpha_{i} \in \mathcal{K}$ with $\alpha_{l} \neq 0$ and $a \in V$.
(2) There is a unique integer $n \geq 2$ such that $P=M^{n}$.
(3) Let $I \in \mathrm{~F}(D)$ such that $\inf v(I)$ exists. Then $\inf v(I)=\min v(I)$.
(4) Let $I \in \mathrm{~F}(D)$ such that $\inf v(I)$ does not exist. Then $I=I^{\mathrm{v}}$.

The proofs are similar to those for Lemmas 3.1, 3.2 and 3.3.
Lemma 6.3. Assume that $P=M^{n}$ for some $n \geq 2$. Let T be an overring of D with $T \subseteq V$ and let $I \in \mathrm{~F}(T)$.
(1) If $\inf v(I)$ exists, then it is $\min v(I)$.
(2) If $\inf v(I)$ does not exist, then I is a divisorial fractional ideal of T.

The proof is similar to that for Lemma 3.3.
Lemma 6.4. Assume that K is a finite field and $P=M^{n}$ for some $n \geq 2$.
(1) The set $\{I \in \mathrm{~F}(D) \mid D \subseteq I \subseteq V\}$ is a finite set.
(2) Let l be a negative integer. Then the set $\{I \in \mathrm{~F}(D) \mid \min v(I)$ exists, and $l \leq \min v(I) \leq 0\}$ is a finite set.
(3) The set $\{T \mid T$ is an overring of D with $D \subseteq T \subseteq V\}$ is a finite set.
(4) The set $\{I \in \mathrm{~F}(T) \mid T \subseteq I \subseteq V\}$ is a finite set.
(5) Let T be an overring of D with $T \subseteq V$, and let l be a negative integer. Then the set $\{I \in \mathrm{~F}(T) \mid \min v(I)$ exists, and $l \leq \min v(I) \leq 0\}$ is a finite set.

The proofs are similar to those for Lemmas 3.9, 3.10, 3.11 and 3.12.

Lemma 6.5. Assume that k is an infinite field and $P=M^{n}$ for some $n \geq 2$. Then there is an infinite number of intermediate rings between D and V.

Proof. Let $u \in V$ such that $\bar{u}=u+M \in K \backslash k$. Let $a \in D \backslash P$, and set $\left(1,(1+a u) \pi^{n-1}\right)=D_{a}$. Then D_{a} is an overring of D with $D_{a} \subseteq V$.

Let $a, b \in D \backslash P$ such that $D_{a}=D_{b}$. Then we have $\bar{a}=\bar{b}$. For, we have $(1+a u) \pi^{n-1}=(1+b u) \pi^{n-1} d+p$ for some elements $d \in D$ and $p \in P$. It follows that $1-d=(b d-a) u+m$ for some element $m \in M$. If $b d-a \equiv 0$, then $1-d \equiv 0$, hence $\bar{b}=\bar{b} \bar{d}=\bar{a}$. Suppose that $\overline{b d-a} \neq \overline{0}$. Since $\overline{1-d}=\overline{b d-a} \bar{u}$, we have $\bar{u} \in k$; a contradiction. It follows that $\left\{D_{a} \mid a \in D \backslash P\right\}$ is an infinite set, since k is an infinite field. The proof is complete.

Proof for Proposition 6.1. (1) $\Longrightarrow(2)$: By Lemma 2.2 (6), we have $\operatorname{dim}(D)<\infty$ and $[K: k]<\infty$. We may apply Lemma 6.2. Then we have $P=M^{n}$ for some $n \geq 2$. Suppose that K is an infinite field. Since $[K: k]<\infty, k$ is an infinite field. By Lemma 6.5, there is an infinite number of intermediate rings between D and V. It follows that $\left|\Sigma^{\prime}(D)\right|=\infty$; a contradiction.
$(2) \Longrightarrow(1):$ We can apply Lemma 6.4. The set $\{I \in \mathrm{~F}(D) \mid D \subseteq I \subseteq V\}=X$ is a finite set. Let \star be a star operation on D, and let $I \in X$. We note that V is a divisorial fractional ideal of D. Since $D \subseteq I^{\star} \subseteq V$, we have $I^{\star} \in X$.

If we set $I^{\star}=g_{\star}(I)$, then the element $\star \in \Sigma(D)$ gives an element $g_{\star} \in X^{X}$. By Lemma 6.2 (3), the mapping $g: \star \longmapsto g_{\star}$ from $\Sigma(D)$ to X^{X} is an injection. It follows that $|\Sigma(D)|<\infty$.

Let T be an overring of D with $T \subseteq V$. Set $\{I \in \mathrm{~F}(T) \mid T \subseteq I \subseteq V\}=X$, and set $\{I \in \mathrm{~F}(T) \mid \min v(I)$ exists, and $-n \leq \min v(I) \leq 0\}=Y$. Then X and Y are finite sets. For every $I \in \mathrm{~F}(T)$, either min $v(I)$ exists or $\inf v(I)$ does not exist by Lemma 6.3 (1). Let \star be a star operation on T, and let $I \in X$. Since $\pi^{n} I \subseteq T$, we have $\pi^{n} I^{\star} \subseteq T$. Hence $\min v\left(I^{\star}\right)$ exists, and $-n \leq \min v\left(I^{\star}\right) \leq 0$, that is, $I^{\star} \in Y$. If we set $I^{\star}=g_{\star}(I)$, there is a canonical mapping $g: \Sigma(T) \longrightarrow Y^{X}$. Lemma 6.3 implies that g is an injection, hence $|\Sigma(T)|<\infty$. By Lemma 6.4 (3) and Lemma 2.3, we have $\left|\Sigma_{2}^{\prime}\right|<\infty$, and $\left|\Sigma^{\prime}(D)\right|<\infty$.

The proof for our Theorem is complete by Propositions 5.1 and 6.1.

Ackowledgement The author is grateful to Professor Toshitaka Terasaka for his collaboration in writing this paper.

References

[1] A. Badawi and E. Houston, Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains, Comm. Alg., 30 (2002), 1591-1606.
[2] M. Fontana and K. Loper, Kronecker function rings: a general approach, Ideal Theoretic Methods in Commutative Algebra, Lecture Notes in Pure and Appl. Math., 220, M. Dekker, New York, 2001, 189-205.
[3] M. Fontana and K. Loper, An historical overview of Kronecker function rings, Nagata rings, and related star and semistar operations, Multiplicative Ideal Theory in Commutative Algebra, Springer, New York, 2006, 169-187.
[4] R. Gilmer, Multiplicative Ideal Theory, M. Dekker, New York, 1972.
[5] F. Halter-Koch, Ideal Systems: An Introduction to Multiplicative Ideal Theory, M. Dekker, New York, 1998.
[6] J. Hedstrom and E. Houston, Pseudo-valuation domains, Pacific J. Math., 75 (1978), 137-147.
[7] L. Kronecker, Grundzüge einer arithmetischen Theorie der algebraischen Grössen, J. Reine Angew. Math., 92 (1882), 1-122.
[8] W. Krull, Beiträge zur Arithmetik kommutativer Integritätesbereiche, Math. Zeit., 41 (1936), 545-577.
[9] R. Matsuda, Note on the number of semistar-operations, Math. J. Ibaraki Univ., 31 (1999), 47-53.
[10] R. Matsuda, Note on the number of semistar operations, VIII, Math. J. Ibaraki Univ., 37 (2005), 53-79.
[11] R. Matsuda, Commutative Semigroup Rings, 2nd. ed., Kaisei, Tokyo, 2006.
[12] R. Matsuda, Semistar operations on pseudo-valuation domains, JP J. Algebra Number Theory Appl., 17 (2010), 163-172.

Ryûki Matsuda

2241-42 Hori, Mito, Ibaraki 310-0903, JAPAN
e-mail: rmazda@adagio.ocn.ne.jp

