SEMISTAR OPERATIONS ON ALMOST PSEUDO-VALUATION DOMAINS

Ryûki Matsuda

Received: 21 February 2010; Revised: 29 March 2011 Communicated by Abdullah Harmancı

ABSTRACT. We characterize when an almost pseudo-valuation domain has a finite number of semistar operations.

Mathematics Subject Classification (2010): 13A15

Keywords: star operation, semistar operation, pseudo-valuation domain, almost pseudo-valuation domain

1. Introduction

The notion of a star operation is classical, and that of a Kronecker function ring which arises by a star operation is also classical. The notions of star operations, semistar operations, and their Kronecker function rings of integral domains have been well-known. Let D be an integral domain, K be its quotient field, and F(D) be the set of non-zero fractional ideals of D. A mapping $I \mapsto I^*$ from F(D) to F(D) is called a star operation on D if, for every $x \in K \setminus \{0\}$ and $I, J \in F(D)$, the following conditions are satisfied: (1) $(x)^* = (x)$; (2) $(xI)^* = xI^*$; (3) $I \subseteq I^*$; (4) $(I^*)^* = I^*$; (5) $I \subseteq J$ implies $I^* \subseteq J^*$. The Kronecker function ring of D with respect to a star operation * on D was first defined by L.Kronecker [7] and further investigated by W.Krull [8]. Let F'(D) be the set of non-zero D-submodules of K. A mapping $I \mapsto I^*$ from F'(D) to F'(D) is called a semistar operation on D if, for every $x \in K \setminus \{0\}$ and $I, J \in F'(D)$, the following conditions are satisfied: (1) $(xI)^* = xI^*$; (2) $I \subseteq I^*$; (3) $(I^*)^* = I^*$; (4) $I \subseteq J$ implies $I^* \subseteq J^*$. We refer to M.Fontana and K.Loper [2] and [3] and F.Halter-Koch [5] for notions of star operations, semistar operations, and their Kronecker function rings.

Let $\Sigma(D)$ (resp., $\Sigma'(D)$) be the set of star operations (resp., semistar operations) on D. In this paper, we are interested in the cardinalities $|\Sigma(D)|$ and $|\Sigma'(D)|$, especially, when $|\Sigma'(D)| < \infty$.

Let D be an integrally closed domain. Then D has only a finite number of semistar operations if and only if D is a finite dimensional Prüfer domain with only a finite number of maximal ideals [11, (5.2)].

Let V be a valuation domain with dimension n, v be a valuation belonging to V, and Γ be its value group. Let $M = P_n \supsetneq P_{n-1} \supsetneq \cdots \cdots P_1 \supsetneq (0)$ be the prime ideals of V, let $\{0\} \subsetneq H_{n-1} \subsetneq \cdots \subsetneq H_1 \subsetneq \Gamma$ be the convex subgroups of Γ , and let m be an integer with $n+1 \leq m \leq 2n+1$. Then the following conditions are equivalent: (1) $|\Sigma'(V)| = m$; (2) The maximal ideal of V_{P_i} is principal for exactly 2n+1-m of i; (3) $\frac{\Gamma}{H_i}$ has a least positive element for exactly 2n+1-m of i [9]. In [12], we studied star operations and semistar operations on a pseudo-valuation domain D. We gave conditions for D to have only a finite number of semistar operations, and showed that conditions for $|\Sigma'(D)| < \infty$ reduce to conditions for related fields. In this paper, we will study star operations and semistar operations on almost pseudo-valuation domains, and will prove the following,

Main Theorem Let D be an almost pseudo-valuation domain which is not a pseudo-valuation domain, P its maximal ideal, V=(P:P), M be the maximal ideal of V and set $K=\frac{V}{M}$ and $k=\frac{D}{P}$. Then $|\Sigma'(D)|<\infty$ if and only if one of the following conditions holds:

- (1) K is an infinite field, K = k, $\dim(D) < \infty$, and either $P = M^2$ or $P = M^3$.
- (2) K is a finite field, $\dim(D) < \infty$, and $P = M^n$ for some integer $n \ge 2$.

The paper consists of six sections. Section 2 contains preliminary results, Section 3 is the case where K=k and min v(M) exists, Section 4 is the case where K=k and $P=M^2$ or $P=M^3$, Section 5 is the case where K=k and $P=M^n$ with $n \geq 4$, and Section 6 is the case where $K \supseteq k$.

2. Preliminary results

For the general ideal theory, especially for star operations on integral domains, we refer to R.Gilmer [4]. Thus, for every $I, J \in \mathcal{F}(D)$, we set $(I:J) = \{x \in \mathcal{q}(D) \mid xJ \subseteq I\}$, where $\mathcal{q}(D)$ denotes the quotient field of D, set $I^{-1} = (D:I)$, and set $I^{\mathsf{v}} = (I^{-1})^{-1}$. If $I = I^{\mathsf{v}}$, then I is called divisorial. By [4, Theorem (34.1)], I^{v} is the intersection of principal fractional ideals of D containing I, the mapping $I \longmapsto I^{\mathsf{v}}$ from $\mathcal{F}(D)$ to $\mathcal{F}(D)$ is a star operation on D, and is called the V^{v} -operation, and for every star operation V^{v} on V^{v} on V^{v} on V^{v} on V^{v} is a star operation on V^{v} , we have $V^{\mathsf{v}} \subseteq V^{\mathsf{v}}$. The identity mapping $V^{\mathsf{v}} = V^{\mathsf{v}}$ on V^{v} is a star operation on V^{v} and is called the d-operation.

Let I be an ideal of a domain D. If, for elements $a, b \in q(D)$, $ab \in I$ and $b \notin I$ imply $a \in I$, then I is called strongly prime. If every prime ideal of D is

strongly prime, then D is called a pseudo-valuation domain (or, a PVD). We refer to J.Hedstrom and E.Houston [6] for a PVD. Thus, every PVD is a local domain, that is, D has only one maximal ideal. If D is a local domain with maximal ideal strongly prime, then D is a PVD.

For elements $a, b \in q(D)$, if $ab \in I$ and $b \notin I$ imply $a^n \in I$ for some positive integer n, then I is called strongly primary. If every prime ideal of D is strongly primary, then D is called an almost pseudo-valuation domain (or, an APVD). We refer to A.Badawi and E.Houston [1] for the notion of an APVD. Thus, every APVD is a local domain. Let P be the maximal ideal of D, then V = (P : P) is a valuation domain, P is a primary ideal of V, and P is primary to the maximal ideal of V. If D is a local domain with maximal ideal strongly primary, then D is an APVD.

In this section, let D be an APVD which is not a PVD, P be the maximal ideal of D, V = (P : P), M be the maximal ideal of V, v be a valuation belonging to the valuation domain V, Γ be the value group of v, $K = \frac{V}{M}$, and $k = \frac{D}{P}$. We note that P is not strongly prime and hence $P \subsetneq M$. For, if P is strongly

We note that P is not strongly prime and hence $P \subsetneq M$. For, if P is strongly prime, then D is a PVD by [6, Theorem 1.4]; a contradiction to our assumption that D is not a PVD.

The following Lemmas 2.1, 2.2 and 2.3 appear in [10, Lemmas 15 and 16 and Theorem 17].

Lemma 2.1. (1) $V = P^{-1}$.

- (2) $P = P^{v}$.
- (3) The set of non-maximal prime ideals of D coincides with the set of non-maximal prime ideals of V, and $\dim(V) = \dim(D)$.

Since $((I^{-1})^{-1})^{-1} = I^{-1}$ for every $I \in \mathcal{F}(D)$, V is a divisorial fractional ideal of D.

Lemma 2.2. (1) $F'(D) = F(D) \cup \{q(D)\}.$

- (2) The integral closure \bar{D} of D is a PVD with maximal ideal M.
- (3) Let T be an overring of D, that is, T is a subring of q(D) containing D. Then either $T \supseteq V$ or $T \subseteq V$.
- (4) Let $\Sigma'_1 = \{ \star \in \Sigma'(D) \mid D^{\star} \supseteq V \}$. Then there is a canonical bijection from $\Sigma'(V)$ onto Σ'_1 .
 - (5) Let $\Sigma_2' = \{ \star \in \Sigma'(D) \mid D^\star \subsetneq V \}$. Then we have $\Sigma'(D) = \Sigma_1' \cup \Sigma_2'$.
- (6) If $|\Sigma'(D)| < \infty$, then $\dim(D) < \infty$, $V = \overline{D}$, V is a finitely generated D-module, and K is a simple extension field of k with degree $[K:k] < \infty$.

Every star operation on D can be extended uniquely to a semistar operation on D, since $F'(D) \setminus F(D) = \{q(D)\}.$

Lemma 2.3. Assume that $\dim(D) < \infty$, and let $\{T_{\lambda} \mid \lambda \in \Lambda\}$ be the set of overrings T of D with $T \subsetneq V$.

- (1) $\mid \Sigma'(V) \mid < \infty$.
- (2) $|\Sigma'_1| = |\Sigma'(V)|$.
- (3) There is a canonical bijection from the disjoint union $\bigcup_{\lambda} \Sigma(T_{\lambda})$ onto Σ'_{2} .
- (4) If $|\Sigma'_2| < \infty$, then $|\Sigma'(D)| = |\Sigma'_2| + |\Sigma'(V)|$.

Let T be an overring of D. Then there is a canonical injective mapping δ from $\Sigma'(T)$ to $\Sigma'(D)$, and is called the descent mapping from T to D.

Lemma 2.4. Assume that $|\Sigma'(D)| < \infty$, then v(M) has a least element.

Proof. It is well-known that for any integral domain, each overring induces a semistar operation of finite type. Thus the number of overrings is less than the number of semistar operations of finite type. \Box

Lemma 2.5. Assume that $|\Sigma'(D)| < \infty$, and let $I \in F(D)$. If inf v(I) exists in Γ , then it is min v(I).

Proof. Choose an element $x \in q(D) \setminus \{0\}$ such that $\inf v(I) = v(x)$. Then $x^{-1}I \subseteq V$ and $\inf v(x^{-1}I) = 0$. Since v(M) has a least element by Lemma 2.4, we have $0 = \min v(x^{-1}I)$, hence $v(x) = \min v(I)$.

Lemma 2.6. If $P = M^n$ for some integer $n \ge 2$, then v(M) has a least element.

Proof. Suppose the contrary, and let $x \in M \setminus P$. We can take elements $x_1, \dots, x_n \in M$ such that $v(x) > v(x_1) > \dots > v(x_n)$. Then we have $x = \frac{x}{x_1} \frac{x_1}{x_2} \cdots \frac{x_{n-1}}{x_n} x_n \in M^n = P$; a contradiction. \square

Lemma 2.7. Let Q be an ideal of V with $M \supseteq Q \supseteq P$, and set D + Q = T. Then T is an APVD which is not a PVD, Q is the maximal ideal of T, and V = (Q : Q).

Proof. We rely on [1, Theorem 3.4]. Then P is strongry primary, P is an M-primary ideal of V, and so is Q. Clearly, Q is the unique maximal ideal of T = D + Q, hence T is an APVD, and W = (Q : Q) is a valuation domain with Q primary to the maximal ideal N of W. Since $(Q : Q) \supseteq V$, N is a prime ideal of V, hence N = M, and W = V. Finally, T is not a PVD, because Q is not strongly prime. \square

Lemma 2.8. Let \star be a star operation (resp., a semistar operation) on D.

- (1) Let T be an overring of D. Then T^* is an overring of D.
- (2) Both D^* and V^* are overrings of D.

Proof. Because $T^* = (TT)^* = (T^*T^*)^* \supset T^*T^*$.

Lemma 2.9. If min v(M) exists, then we may assume that \mathbf{Z} is the rank one convex subgroup of Γ , and min $v(M) = 1 \in \mathbf{Z} \subseteq \Gamma$.

Proof. The rank one convex subgroup of Γ is isomorphic with the ordered group \mathbf{Z} . Therefore there is an isomorphism compatible with orders from Γ onto an ordered group Γ' the rank one convex subgroup of which is \mathbf{Z} .

Lemma 2.10. To prove our Theorem, we may assume that v(M) has a least element and min $v(M) = 1 \in \mathbb{Z} \subseteq \Gamma$.

The proof follows from Lemmas 2.4, 2.6 and 2.9.

3. The case where K = k and min v(M) exists

In this section, let D be an APVD which is not a PVD, P be the maximal ideal of D, V = (P : P), M be the maximal ideal of V, v be a valuation belonging to the valuation domain V, Γ be the value group of v, assume that $K = \frac{V}{M} = \frac{D}{P}$, and min v(M) exists with min $v(M) = v(\pi) = 1 \in \mathbb{Z} \subseteq \Gamma$ for some element $\pi \in M$, and let $\{\alpha_i \mid i \in \mathcal{I}\} = \mathcal{K}$ be a complete system of representatives of V modulo M with $\{0,1\} \subseteq \mathcal{K} \subseteq D$.

Lemma 3.1. Let $x \in q(D) \setminus \{0\}$ with $v(x) \in \mathbb{Z}$, and let k be a positive integer with k > v(x). Then x can be expressed uniquely as $x = \alpha_l \pi^l + \alpha_{l+1} \pi^{l+1} + \cdots + \alpha_{k-1} \pi^{k-1} + a \pi^k$, where l = v(x) and each $\alpha_i \in \mathcal{K}$ with $\alpha_l \neq 0$ and $a \in V$.

Proof. Since $\frac{x}{\pi^l}$ is a unit of V, we have $\frac{x}{\pi^l} \equiv \alpha_l \pmod{M}$ for a unique element $\alpha_l \in \mathcal{K} \setminus \{0\}$. Inductively, there are required elements $\alpha_{l+1}, \dots, \alpha_{k-1} \in \mathcal{K}$ and $a \in V$.

In Lemma 3.1, we may say that α_i is the coefficient of π^i in x (or, α_i is the coefficient of degree i in x).

Lemma 3.2. There is a unique integer $n \geq 2$ such that $P = M^n$.

Proof. Set min $\{v(x) \mid x \in P\} = n$, and let $x \in P$ such that v(x) = n. There is a unit u of V such that $\pi^n = xu$. Since P is an ideal of V, we have $\pi^n \in P$, and hence $P = M^n$. Since $P \subsetneq M$, we have $n \geq 2$.

For every subset X of q(D), the D-submodule of q(D) generated by X is denoted by (X). If $P = M^n$, then we have $P = (\pi^n, \pi^{n+1}, \dots, \pi^{2n-2}, \pi^{2n-1})$ and $V = (1, \pi, \dots, \pi^{n-1})$.

If a_1, \dots, a_n is a finite ordered set, and not only a finite set, we denote it by $\langle a_1, \dots, a_n \rangle$ if necessary. That is, $\langle a_1, \dots, a_n \rangle = \langle b_1, \dots, b_m \rangle$ if and only if n = m and $a_i = b_i$ for each i.

Lemma 3.3. Let $I \in F(D)$.

- (1) If inf v(I) exists, then it is min v(I).
- (2) If inf v(I) does not exist, then we have $I = I^{v}$.

Proof. (1) Then min v(M) exists by the assumption, and the proof is similar to that of Lemma 2.5.

(2) By Lemma 3.2, there is an integer $n \geq 2$ such that $P = M^n$. Since $dI \subseteq D$ for some element $d \in D \setminus \{0\}$, v(I) is bounded below. Let $\{v(x_\lambda) \mid \lambda \in \Lambda\}$ be the lower bound of v(I), and let $x \in \bigcap_{\lambda} (x_\lambda)$. Suppose that v(x) is in the lower bound of v(I). Then $v(x) < v(x_\lambda)$ for some element $\lambda \in \Lambda$, hence $x \notin (x_\lambda)$; a contradiction. Therefore there are elements $a_1, a_2, \cdots, a_n \in I$ such that $v(a_n) < \cdots < v(a_2) < v(a_1) < v(x)$. Then $x = \frac{x}{a_1} \frac{a_1}{a_2} \cdots \frac{a_{n-1}}{a_n} a_n \in M^n a_n \subseteq I$. Hence we have $\bigcap_{\lambda} (x_\lambda) \subseteq I$. On the other hand, obviously we have $I \subseteq (x_\lambda)$ for every λ . It follows that $I = \bigcap_{\lambda} (x_\lambda)$, and hence $I = I^v$ by [4, Theorem (34.1)].

Example 3.4. (1) Assume that $P = M^2$, then we have

$$\{I\in\mathcal{F}(D)\ |\ D\subseteq I\subseteq V\}=\{(1),(1,\pi)\}.$$

(2) Assume that $P = M^3$. Set $(1) = I_0, (1, \pi^2) = I_{0,2}, (1, \pi, \pi^2) = I_{0,1,2}$, and set $(1, \pi + \alpha \pi^2) = I_{0,1}^{\alpha}$ for every $\alpha \in \mathcal{K}$. Then we have

$$\{I \in \mathcal{F}(D) \mid D \subseteq I \subseteq V\} = \{I_0, I_{0,2}, I_{0,1,2}\} \cup \{I_{0,1}^{\alpha} \mid \alpha \in \mathcal{K}\}.$$

If $I_{0,1}^{\alpha} = I_{0,1}^{\beta}$ for an element $\beta \in \mathcal{K}$, then $\alpha = \beta$.

- (3) Assume that $P = M^4$. For elements $\alpha_1, \alpha_2 \in \mathcal{K}$, set
- $(1) = I_0,$

$$(1, \pi + \alpha_1 \pi^2 + \alpha_2 \pi^3) = I_{0,1}^{\alpha_1, \alpha_2},$$

$$(1, \pi^2 + \alpha_1 \pi^3) = I_{0,2}^{\alpha_1},$$

$$(1, \pi^3) = I_{0,3},$$

$$(1, \pi + \alpha_1 \pi^3, \pi^2 + \alpha_2 \pi^3) = I_{0,1,2}^{\alpha_1, \alpha_2},$$

$$(1, \pi + \alpha_1 \pi^2, \pi^3) = I_{0.1.3}^{\alpha_1},$$

$$(1, \pi^2, \pi^3) = I_{0,2,3},$$

$$(1, \pi, \pi^2, \pi^3) = I_{0,1,2,3}.$$

Then we have

 $\{I \in \mathcal{F}(D) \mid D \subseteq I \subseteq V\} = \{I_0, I_{0,1}^{\alpha_1, \alpha_2}, I_{0,2}^{\alpha_1}, I_{0,3}, I_{0,1,2}^{\alpha_1, \alpha_2}, I_{0,1,3}^{\alpha_1}, I_{0,2,3}, I_{0,1,2,3} \mid \alpha_1, \alpha_2 \in \mathcal{K}\}.$

For elements $\alpha_1, \alpha_2, \beta_1, \beta_2 \in \mathcal{K}$, if $I_{0,2}^{\alpha_1} = I_{0,2}^{\beta_1}$, then $\alpha_1 = \beta_1$; if $I_{0,1,3}^{\alpha_1} = I_{0,1,3}^{\beta_1}$, then $\alpha_1 = \beta_1$; if $I_{0,1}^{\alpha_1,\alpha_2} = I_{0,1}^{\beta_1,\beta_2}$, then the ordered set $<\alpha_1, \alpha_2> = <\beta_1, \beta_2>$; if $I_{0,1,2}^{\alpha_1,\alpha_2} = I_{0,1,2}^{\beta_1,\beta_2}$, then $<\alpha_1, \alpha_2> = <\beta_1, \beta_2>$.

(4) Assume that
$$P = M^5$$
. For elements $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathcal{K}$, set

$$(1) = I_0,$$

$$(1, \pi + \alpha_1 \pi^2 + \alpha_2 \pi^3 + \alpha_3 \pi^4) = I_{0,1}^{\alpha_1, \alpha_2, \alpha_3},$$

$$(1, \pi^2 + \alpha_1 \pi^3 + \alpha_2 \pi^4) = I_{0,2}^{\alpha_1, \alpha_2},$$

$$(1, \pi^3 + \alpha_1 \pi^4) = I_{0,3}^{\alpha_1},$$

$$(1, \pi^4) = I_{0,4},$$

$$(1, \pi + \alpha_1 \pi^3 + \alpha_2 \pi^4, \pi^2 + \alpha_3 \pi^3 + \alpha_4 \pi^4) = I_{0,1,2}^{\alpha_1, \alpha_2, \alpha_3, \alpha_4},$$

$$(1, \pi + \alpha_1 \pi^2 + \alpha_2 \pi^4, \pi^3 + \alpha_3 \pi^4) = I_{0,1,3}^{\alpha_1,\alpha_2,\alpha_3},$$

$$(1, \pi + \alpha_1 \pi^2 + \alpha_2 \pi^3, \pi^4) = I_{0.1.4}^{\alpha_1, \alpha_2},$$

$$(1, \pi^2 + \alpha_1 \pi^4, \pi^3 + \alpha_2 \pi^4) = I_{0,2,3}^{\alpha_1, \alpha_2},$$

$$(1, \pi^2 + \alpha_1 \pi^3, \pi^4) = I_{0,2,4}^{\alpha_1},$$

$$(1, \pi^3, \pi^4) = I_{0,3,4},$$

$$(1, \pi + \alpha_1 \pi^4, \pi^2 + \alpha_2 \pi^4, \pi^3 + \alpha_3 \pi^4) = I_{0, 1, 2, 3}^{\alpha_1, \alpha_2, \alpha_3},$$

$$(1, \pi + \alpha_1 \pi^3, \pi^2 + \alpha_2 \pi^3, \pi^4) = I_{0,1,2,4}^{\alpha_1, \alpha_2},$$

$$(1, \pi + \alpha_1 \pi^2, \pi^3, \pi^4) = I_{0,1,3,4}^{\alpha_1},$$

$$(1, \pi^2, \pi^3, \pi^4) = I_{0,2,3,4},$$

$$(1, \pi, \pi^2, \pi^3, \pi^4) = I_{0.1, 2, 3, 4}.$$

Then we have

 $\{I \in \mathcal{F}(D) \mid D \subseteq I \subseteq V\} = \{I_0, I_{0,1}^{\alpha_1, \alpha_2, \alpha_3}, I_{0,2}^{\alpha_1, \alpha_2}, I_{0,3}^{\alpha_1}, I_{0,4}, I_{0,1,2}^{\alpha_1, \alpha_2, \alpha_3, \alpha_4}, I_{0,1,3}^{\alpha_1, \alpha_2, \alpha_3}, I_{0,1,2}^{\alpha_1, \alpha_2, \alpha_3}, I_{0,1,2,4}^{\alpha_1, \alpha_2, \alpha_3}, I_{0,1,2,4}^{\alpha_1, \alpha_2}, I_{0,1,3,4}^{\alpha_1, \alpha_2}, I_{0,1,2,3,4}^{\alpha_1, \alpha_2}, I_{0,1,2,3,4}^{\alpha_1, \alpha_2}, I_{0,1,2,3,4}^{\alpha_1, \alpha_2, \alpha_3}, I_{0,1,2,2,4}^{\alpha_1, \alpha_2, \alpha_3}, I_{0,1,2,2,4}^{\alpha_1, \alpha_2, \alpha_3}, I_{0,1,2,2,4}^{\alpha_1, \alpha_2, \alpha_3}, I_{0,1,2,2,4}^{\alpha_1,$

For elements $\alpha_1, \dots, \alpha_4, \beta_1, \dots, \beta_4 \in \mathcal{K}$, if $I_{0,3}^{\alpha_1} = I_{0,3}^{\beta_1}$, then $\alpha_1 = \beta_1$; if $I_{0,2}^{\alpha_1, \alpha_2} = I_{0,2}^{\beta_1, \beta_2}$, then $<\alpha_1, \alpha_1> = <\beta_1, \beta_2>$; if $I_{0,1}^{\alpha_1, \alpha_2, \alpha_3} = I_{0,1}^{\beta_1, \beta_2, \beta_3}$, then $<\alpha_1, \alpha_2, \alpha_3> = <\beta_1, \beta_2, \beta_3>$; etc.

Proof. (4) Let I be a fractional ideal of D such that $D \subseteq I \subseteq V$. Let $\tau = \{v(x) \mid x \in I \setminus P\}$, and let, for instance, $\tau = \{0, 1, 3\}$. Then I contains elements a, b of the form $a = \pi + \alpha_2 \pi^2 + \alpha_3 \pi^3 + \alpha_4 \pi^4$ and $b = \pi^3 + \beta \pi^4$, where $\alpha_2, \alpha_3, \alpha_4, \beta \in \mathcal{K}$. Exchanging a by $a - \alpha_3 b$, we may assume that $\alpha_3 = 0$. Let $x = \beta_0 + \beta_1 \pi + \beta_2 \pi^2 + \beta_3 \pi^3 + \beta_4 \pi^4 + p \in I$, where each $\beta_i \in \mathcal{K}$ and $p \in P$. We have $x = \beta_0 + \beta_1 a + \beta_3 b + \beta_1' \pi^2 + \beta_2' \pi^4 + p'$ for some elements $\beta_i' \in \mathcal{K}$ and $p' \in P$. Since $\tau = \{0, 1, 3\}$, we have $\beta_1' = \beta_2' = 0$, hence I = (1, a, b).

For the second assertion, say $I_{0,2,3}^{\alpha_1,\alpha_2} = I_{0,2,3}^{\beta_1,\beta_2}$. Then $\pi^2 + \beta_1 \pi^4 = d_0 + d_1(\pi^2 + \alpha_1 \pi^4) + d_2(\pi^3 + \alpha_2 \pi^4)$ for some elements $d_0, d_1, d_2 \in D$. Comparing coefficients

of $1, \pi^2, \pi^3$ in both sides, we have $d_0 \equiv 0(P), d_1 \equiv 1(P)$ and $d_2 \equiv 0(P)$. Then $\pi^2 + \beta_1 \pi^4 = \pi^2 + \alpha_1 \pi^4 + p$ for some element $p \in P$, hence $\beta_1 = \alpha_1$.

Similarly, we have $\pi^3 + \beta_2 \pi^4 = d_0 + d_1(\pi^2 + \alpha_1 \pi^4) + d_2(\pi^3 + \alpha_2 \pi^4)$ for some elements $d_0, d_1, d_2 \in D$. Comparing coefficients of $1, \pi^2, \pi^3$ in both sides, we have $d_0 \equiv 0, d_1 \equiv 0$ and $d_2 \equiv 1$. Then $\pi^3 + \beta_2 \pi^4 = \pi^3 + \alpha_2 \pi^4 + p$ for some element $p \in P$. Hence $\beta_2 = \alpha_2$, and hence $\langle \alpha_1, \alpha_2 \rangle = \langle \beta_1, \beta_2 \rangle$.

The proofs for (1), (2) and (3) are similar and simpler.

Lemma 3.5. Assume that $P = M^n$ with $n \ge 2$, and let $I \in F(D)$ with $D \subseteq I \subseteq$ V. Then there is a set of generators f_0, f_1, \dots, f_m for I satisfying the following conditions:

- (1) Each f_i has the following form: $f_0 = 1$, and $f_{i} = \pi^{k_{i}} + \sum_{j=1}^{l(i)} \alpha_{i,j} \pi^{e_{i,j}} \text{ for each } 1 \leq i \leq m, \text{ where } \alpha_{i,j} \in \mathcal{K} \text{ for each } i, j.$ (2) In (1), the set $\{0, k_{1}, \dots, k_{m}\}$ is a subset of $\{0, 1, 2, \dots, n-1\}$ with 0 < m
- $k_1 < \cdots < k_m$.
- (3) $\{k_i+1, k_i+2, \cdots, n-1\} \setminus \{k_{i+1}, \cdots, k_m\} = \{e_{i,1}, \cdots, e_{i, l(i)}\}$ with $e_{i,1} < e_{i,1}$ $e_{i,2} < \cdots < e_{i,l(i)}$ for each $1 \le i \le m$.

 $k_m \leq n-1$. By Lemma 3.1, there are elements $f_0, f_1, \dots, f_m \in I$ which have the

following form: $f_0 = 1$, and $f_i = \pi^{k_i} + \sum_{i=1}^{n-1-k_i} \beta_{i,k_i+j} \pi^{k_i+j} \text{ for each } 1 \leq i \leq m \text{, where } \beta_{i,j} \in \mathcal{K} \text{ for each } i,j.$

For each $1 \le i \le m$, exchanging f_i by $f_i - \beta_{i,k_j} f_j$ for each j > i, we may assume that $\beta_{i,k_{i+1}} = \beta_{i,k_{i+2}} = \cdots = \beta_{i,k_m} = 0$. Then f_0, f_1, \cdots, f_m satisfy the conditions (1), (2) and (3).

Suppose that $(f_0, f_1, \dots, f_m) \subseteq I$, and let $x \in I \setminus (f_0, f_1, \dots, f_m)$. Then $v(x) \in$ $\{1, k_1, \cdots, k_m\}$. Let $k_i = \max \{v(x) \mid x \in I \setminus (f_0, f_1, \cdots, f_m)\}$, where we put $1 = k_0$, and let $y \in I \setminus (f_0, f_1, \dots, f_m)$ such that $v(y) = k_i$. Then there is an element $\alpha \in \mathcal{K}$ such that $v(y - \alpha f_i) > k_i$. It follows that $y - \alpha f_i \in (f_0, f_1, \dots, f_m)$, and hence $y \in (f_0, f_1, \dots, f_m)$; a contradiction. The proof is complete.

Lemma 3.6. Assume that $P = M^n$ with $n \ge 2$, and let $I \in F(D)$ with $D \subseteq I \subseteq$ V. Then the system of generators f_0, f_1, \dots, f_m for I satisfying the conditions in Lemma 3.5 is determined uniquely.

Proof. Let $f'_0, \dots, f'_{m'}$ be generators for I satisfying the conditions in Lemma 3.5. Then each f'_i has the following form: $f'_0 = 1$, and

$$\begin{split} f_i' &= \pi^{k_i'} + \sum_{j=1}^{l'(i)} \alpha_{i,j}' \pi^{e_{i,j}'} \text{ for each } 1 \leq i \leq m', \text{ where } \alpha_{i,j}' \in \mathcal{K} \text{ for each } i \text{ and } j, \\ \{0, k_1', \cdots, k_{m'}' \} \text{ is a subset of } \{0, 1, 2, \cdots, n-1\} \text{ with } 0 < k_1' < \cdots < k_{m'}', \text{ and } \\ \{k_i' + 1, k_i' + 2, \cdots, n-1\} \setminus \{k_{i+1}', \cdots, k_m'\} = \{e_{i,1}', \cdots, e_{i,l'(i)}'\} \text{ with } e_{i,1}' < e_{i,2}' < \cdots < e_{i,l'(i)}' \text{ for each } 1 \leq i \leq m'. \end{split}$$

Suppose that $k_i = k'_i$ for each i < j and $k'_j < k_j$ for some j. Then $f'_j \notin (f_0, f_1, \dots, f_m)$; a contradiction.

It follows that m = m', $k_i = k'_i$ for each i, l(i) = l'(i) for each i, and $e_{i,j} = e'_{i,j}$ for each i, j.

Suppose that $f_i = f'_i$ for each i < j and that $f_j \neq f'_j$. We have $f'_j = f_j + d_{j+1}f_{j+1} + \dots + d_mf_m + p$ for some elements $d_{j+1}, \dots, d_m \in D$ and $p \in P$. If $d_{j+1}, \dots, d_m \in P$, there is a contradiction to the uniqueness in Lemma 3.1. Otherwise, there is an integer k > j and an element $\alpha \in \mathcal{K} \setminus \{0\}$ such that $f'_j = f_j + \alpha f_k + d'_{k+1}f_{k+1} + \dots + d'_mf_m + p'$ for some elements $d'_{k+1}, \dots, d'_m \in D$ and for some element $p' \in P$. The coefficient of π^k in the left side f'_j is zero and that in the right side is $\alpha \neq 0$; a contradiction. The proof is complete.

Assume that $P=M^n$ for an integer $n\geq 2$. Let $\{0,k_1,\cdots,k_m\}$ be a subset of $\{0,1,2,\cdots,n-1\}$ containing 0 with $0< k_1<\cdots< k_m$. Then the ordered set $<0,k_1,\cdots,k_m>$ with order $0< k_1<\cdots< k_m$ is called a type on D. There are 2^{n-1} types on D. Let $\tau=<0,k_1,\cdots,k_m>$ be a type on D. Set

$$\{k_i+1, k_i+2, \cdots, n-1\} \setminus \{k_{i+1}, \cdots, k_m\} = \{e_{i,1}, \cdots, e_{i,l(i)}\}$$
 with $e_{i,1} < e_{i,2} < \cdots < e_{i,l(i)}$ for each $1 \le i \le m$.

Then an ordered set $\bar{p} = \langle \alpha_{1,1}, \cdots, \alpha_{1, \ l(1)}, \cdots, \alpha_{m,1}, \cdots, \alpha_{m, \ l(m)} \rangle$ of elements in \mathcal{K} is called a system of parameters on D belonging to τ . The ordered set $\sigma = \langle 0, k_1, \cdots, k_m, \alpha_{1,1}, \cdots, \alpha_{1, \ l(1)}, \cdots, \alpha_{m,1}, \cdots, \alpha_{m, \ l(m)} \rangle$ is called a data on D belonging to τ . We denote the data by $\langle 0, k_1, \cdots, k_m; \alpha_{1,1}, \cdots, \alpha_{1, \ l(1)}, \cdots, \alpha_{m,1}, \cdots, \alpha_{m, \ l(m)} \rangle$. τ (resp., \bar{p}) is said to belong to σ , and is denoted by $\tau(\sigma)$ (resp., $\bar{p}(\sigma)$). A system of parameters belonging to τ may be empty. In this case, the data belonging to τ is τ itself. Set $f_0^{\sigma} = 1$, and

$$f_i^{\sigma} = \pi^{k_i} + \sum_{j=1}^{l(i)} \alpha_{i,j} \pi^{e_{i,j}}$$
 for each $1 \le i \le m$.

Then $\langle f_0^{\sigma}, f_1^{\sigma}, \cdots, f_m^{\sigma} \rangle$ is called a canonical system of generators on D belonging to σ . And the fractional ideal $(f_0^{\sigma}, f_1^{\sigma}, f_2^{\sigma}, \cdots, f_m^{\sigma})$ is said to be associated to σ , and is denoted by $I_{\tau}^{\bar{p}}$ or, by $I(\sigma)$.

Let I be a fractional ideal of D with $D \subseteq I \subseteq V$. Lemmas 3.5 and 3.6 show that there are a type τ , a system of parameters \bar{p} , a data σ uniquely such that $I = I(\sigma)$

on D. Then τ (resp., \bar{p}, σ) is called the type (resp., the system of parameters, the data) of I. The system of generators $\langle f_0^{\sigma}, f_1^{\sigma}, \cdots, f_m^{\sigma} \rangle$ for I is called the canonical system of generators for I.

Lemma 3.7. Assume that $P = M^n$ with $n \ge 2$. Then we have $\{I \in F(D) \mid D \subseteq I \subseteq V\} = \{I(\sigma) \mid \sigma \text{ is a data on } D\}.$

Let $I, J \in \mathcal{F}(D)$. If there is an element $x \in \mathcal{q}(D) \setminus \{0\}$ such that xJ = I, then I and J are said similar, and is denoted by $I \sim J$.

Lemma 3.8. Assume that $P = M^n$ with $n \ge 2$. Let σ, σ' be two datas on D such that $\tau(\sigma) \ne \tau(\sigma')$. Then $I(\sigma)$ is not similar to $I(\sigma')$.

Proof. Suppose that $xI(\sigma) = I(\sigma')$ for some element $x \in q(D) \setminus \{0\}$. Then v(x) = 0. Let $\tau(\sigma) = \{0, k_1, k_2, \dots, k_m\}$ with $0 < k_1 < k_2 < \dots < k_m$, and let $\tau(\sigma') = \{0, k'_1, k'_2, \dots, k'_{m'}\}$ with $0 < k'_1 < k'_2 < \dots < k'_{m'}$. We may assume that $k_i = k'_i$ for each i < j and $k_j < k'_j$ for some positive integer j. Then we have $xf_j^{\sigma} \notin I(\sigma')$, and hence $xI(\sigma) \nsubseteq I(\sigma')$; a contradiction.

Lemma 3.9. Assume that K is a finite field. Then $\{I \in F(D) \mid D \subseteq I \subseteq V\}$ is a finite set.

The proof follows from Lemma 3.7.

Lemma 3.10. Assume that K is a finite field, and let l be a negative integer. Then $\{I \in F(D) \mid I \text{ has min } v(I), \text{ and } l \leq \min v(I) \leq 0\}$ is a finite set.

Proof. Let $P=M^n$. By Lemma 3.9, the set $\{I \in \mathcal{F}(D) \mid D \subseteq I \subseteq V\} = X$ is a finite set. Let I be a fractional ideal of D such that min $v(I) = l_0$ exists with $l \leq l_0 \leq 0$. We have $v(a_0) = l_0$ for some element $a_0 \in I$. We may assume that $a_0 = \pi^{l_0}(1 + \alpha_1\pi + \alpha_2\pi^2 + \cdots + \alpha_{n-1}\pi^{n-1} + p)$ for some element $p \in P$. Since $D \subseteq \frac{1}{a_0}I \subseteq V$, we have $\frac{1}{a_0}I \in X$, completing the proof.

Lemma 3.11. Assume that K is a finite field. Then $\{T \mid T \text{ is an overring of } D \text{ with } D \subseteq T \subseteq V\}$ is a finite set.

Proof. Because each overring T with $T \subseteq V$ has some type, and each type has only a finite number of systems of parameters.

Lemma 3.12. Assume that K is a finite field. Let T be an overring of D with $T \subseteq V$, and let l be a negative integer.

- (1) $\{I \in F(T) \mid T \subseteq I \subseteq V\}$ is a finite set.
- (2) $\{I \in F(T) \mid \min v(I) \text{ exists, and } l \leq \min v(I) \leq 0\}$ is a finite set.

Proof. Since $F(T) \subseteq F(D)$, the proof follows from Lemmas 3.9 and 3.10.

4. The case where K = k and $P = M^2$ or $P = M^3$

In this section, let $D, P, V, M, K, v, \Gamma, \pi$ and K be as in Section 3. We will prove the following,

Proposition 4.1. (1) If K is a finite field, then $|\Sigma(D)| < \infty$.

- (2) If $P = M^2$, then $|\Sigma(D)| = 1$.
- (3) If $P = M^2$, and if $\dim(D) < \infty$, then $|\Sigma'(D)| = 1 + |\Sigma'(V)|$.
- (4) If $P = M^3$, then $|\Sigma(D)| = 3$.
- (5) If $P = M^3$, and if $\dim(D) < \infty$, then $|\Sigma'(D)| = 4 + |\Sigma'(V)|$.

We note that if $\dim(D) = \infty$, then $|\Sigma'(D)| = |\Sigma'(V)| = \infty$. For, $\operatorname{Spec}(D) = \{P_{\lambda} \mid \lambda \in \Lambda\}$ is an infinite set. And, for every λ , there is a semistar operation $I \longmapsto ID_{P_{\lambda}}$. Furthermore, if we have an infinite number of overrings of D, then $|\Sigma'(D)| = \infty$. For, for every overring T, there is a semistar operation $I \longmapsto IT$.

Lemma 4.2. If K is a finite field, then we have $|\Sigma(D)| < \infty$.

Proof. Then $\{I \in \mathcal{F}(D) \mid D \subseteq I \subseteq V\} = X$ is a finite set by Lemma 3.9. Let \star be a star operation on D, and let $I \in X$. Since V is a divisorial fractional ideal of D, we have $D \subseteq I^{\star} \subseteq V^{\star} \subseteq V^{\mathrm{v}} = V$, and hence $I^{\star} \in X$.

If we set $I^* = g_*(I)$, then the element $* \in \Sigma(D)$ gives an element $g_* \in X^X$, where X^X is the set of mappings from X to X. And the mapping $g : * \longmapsto g_*$ from $\Sigma(D)$ to X^X is injective by the definition.

Lemma 4.3. Assume that $P = M^2$. Then $\{T \mid T \text{ is an overring of } D \text{ with } T \subsetneq V\} = \{D\}$.

Proof. Because $\{I \in F(D) \mid D \subseteq I \subseteq V\} = \{(1), (1, \pi)\}$ by Example 3.4 (1). \square

Lemma 4.4. Assume that $P = M^2$. Then we have $|\Sigma(D)| = 1$, and if $\dim(D) < \infty$, then $|\Sigma'(D)| = 1 + |\Sigma'(V)|$.

Proof. If inf v(I) does not exist, then $I = I^{v}$ by Lemma 3.3. Hence every member $I \in \mathcal{F}(D)$ is divisorial. It follows that $|\Sigma(D)| = 1$, and Lemma 2.3 completes the proof.

A mapping \star from F(D) to F(D) is said to satisfy condition (C) if it satisfies the following three conditions: (1) $D^{\star} = D$ and $V^{\star} = V$; (2) $(xI)^{\star} = xI^{\star}$ for every element $x \in q(D) \setminus \{0\}$ and $I \in F(D)$; (3) If v(I) does not exist, then $I^{\star} = I$. Obviously, every star operation satisfies the condition (C).

Throughout the rest of this section, assume that $P = M^3$.

Lemma 4.5. We have $\{T \mid T \text{ is an overring of } D \text{ with } T \subsetneq V\} = \{D, D + M^2\}.$

Proof. We have that $\{I \in F(D) \mid D \subseteq I \subseteq V\} = \{I_0, I_{0,2}, I_{0,1,2}\} \cup \{I_{0,1}^{\alpha} \mid \alpha \in \mathcal{K}\}$ by Example 3.4 (2), and that $I_0 = D, I_{0,2} = D + M^2, I_{0,1,2} = V$, and $I_{0,1}^{\alpha}$ is not a subring of q(D) for every $\alpha \in \mathcal{K}$.

Lemma 4.6. (1) For elements $\alpha, \beta \in \mathcal{K}$, we have $I_{0,1}^{\alpha} \subseteq I_{0,1}^{\beta}$ if and only if $\alpha = \beta$.

- (2) $I_{0,2}$ and $I_{0,1}^{\alpha}$ are not comparable for every $\alpha \in \mathcal{K}$.
- (3) $I_{0,1}^{\alpha}$ and $I_{0,1}^{\beta}$ are similar for every $\alpha, \beta \in \mathcal{K}$.

Proof. (3) Set $1 + \alpha \pi + \alpha^2 \pi^2 = x$. Then we have $x(1, \pi) = (1, \pi + \alpha \pi^2)$. The proofs for (1) and (2) are similar.

Lemma 4.7. Let \star be a star operation on D. Then $(I_{0,2})^{\star}$ is either $I_{0,2}$ or V, and $(I_{0,1}^0)^{\star}$ is either $I_{0,1}^0$ or V.

Proof. Since V is a divisorial fractional ideal of D, we have $(I_{0,2})^* \subseteq V$ and $(I_{0,1}^0)^* \subseteq V$. Then the assertion follows from Lemma 4.6.

Lemma 4.8. (1) Set $I_{0,2} = (I_{0,2})^*$ and $I_{0,1}^0 = (I_{0,1}^0)^*$. Then * can be extended uniquely to a mapping $*_1$ from F(D) to F(D) with condition (C).

- (2) Set $I_{0,2} = (I_{0,2})^*$ and $V = (I_{0,1}^0)^*$. Then \star can be extended uniquely to a mapping \star_2 from F(D) to F(D) with condition (C).
- (3) Set $V = (I_{0,2})^*$ and $I_{0,1}^0 = (I_{0,1}^0)^*$. Then \star can be extended uniquely to a mapping \star_3 from F(D) to F(D) with condition (C).
- (4) Set $V = (I_{0,2})^*$ and $V = (I_{0,1}^0)^*$. Then \star can be extended uniquely to a mapping \star_4 from F(D) to F(D) with condition (C).

Proof. We confer Example 3.4 (2) and Lemma 3.3. Let $I \in F(D)$, then Lemma 3.8 implies that either I is similar to one and only one in $\{I_0, I_{0,2}, I_{0,1,2}, I_{0,1}^0\}$, or inf v(I) does not exist. If inf v(I) does not exist, then we set $I = I^{\star_i}$ for each i. \square

Lemma 4.9. In Lemma 4.8, we have the following:

- (1) \star_1 is a star operation on D, and $\star_1 = d$.
- (2) \star_2 is a star operation on D.
- (3) \star_3 is not a star operation on D.
- (4) \star_4 is a star operation on D, and $\star_4 = v$.

Proof. We confer Lemma 4.6.

(2) For elements $x \in q(D) \setminus \{0\}$ and $I \in F(D)$, we have $(x)^{\star_2} = (x)$, $(xI)^{\star_2} = xI^{\star_2}$, $I \subseteq I^{\star_2}$, and $(I^{\star_2})^{\star_2} = I^{\star_2}$.

Let $I_1, I_2 \in \mathcal{F}(D)$ with $I_1 \subseteq I_2$. The proof for $I_1^{\star_2} \subseteq I_2^{\star_2}$ follows from the following two facts:

- (i) Let $(1,\pi) \subseteq I \in \mathcal{F}(D)$ such that inf v(I) does not exist. Then $V \subseteq I$.
- (ii) For elements $x \in q(D) \setminus \{0\}$ and $I \in \{I_0, I_{0,2}\}$, if $xI_{0,1}^0 \subseteq I$, then $xV \subseteq I$.
- (3) Set $\pi + \pi^2 = x$. Then $x(1, \pi^2) \subseteq (1, \pi + \pi^2)$ and $xV \not\subseteq (1, \pi + \pi^2)$.

The proofs for (1) and (4) are similar.

Lemma 4.10. Assume that $P = M^3$. Then $|\Sigma(D)| = 3$, and, if $\dim(D) < \infty$, then $|\Sigma'(D)| = 4 + |\Sigma'(V)|$.

Proof. By Lemma 4.9, $\Sigma(D) = \{d, v, \star_2\}$, and hence $|\Sigma(D)| = 3$.

Assume that $\dim(D) < \infty$. By Lemma 2.7, we can apply Lemma 4.4 for $D' = D + M^2$. Then, in Lemma 2.3, we have $|\Sigma'_2| = |\Sigma(D)| + |\Sigma(D + M^2)| = 3 + 1 = 4$. It follows that $|\Sigma'(D)| = |\Sigma'_1| + |\Sigma'_2| = 4 + |\Sigma'(V)|$.

The proof for Proposition 4.1 is complete.

5. The case where K = k and $P = M^n$ with $n \ge 4$

In this section, let $D, P, V, M, K, v, \Gamma, \pi$ and K be as in Section 3. We will prove the following,

Proposition 5.1. (1) Assume that K is an infinite field and $P = M^n$ with $n \ge 4$. Then $|\Sigma(D)| = \infty$.

(2) Assume that K is a finite field and $\dim(D) < \infty$. Then $|\Sigma'(D)| < \infty$.

Lemma 5.2. Let T be an overring of D with $T \subseteq V$, and let $I \in F(T)$.

- (1) If inf v(I) exists, then it is min v(I).
- (2) If $\inf v(I)$ does not exist, then I is a divisorial fractional ideal of T.

The proof is similar to that of Lemma 3.3.

Lemma 5.3. Assume that K is a finite field, and let T be an overring of D with $T \subseteq V$. Then $|\Sigma(T)| < \infty$.

Proof. Let $P = M^n$. Set $\{I \in \mathcal{F}(T) \mid T \subseteq I \subseteq V\} = X$, and set $\{I \in \mathcal{F}(T) \mid \min v(I) \text{ exists, and } -n \leq \min v(I) \leq 0\} = Y$. Then X and Y are finite sets by Lemma 3.12. Let $I \in \mathcal{F}(T)$. Then either $\min v(I)$ exists or $\inf v(I)$ does not exist, and, if $\inf v(I)$ does not exist, then I is a divisorial fractional ideal of T by Lemma 5.2.

Let \star be a star operation on T, and let $I \in X$. Since $\pi^n I \subseteq T$, we have $\pi^n I^{\star} \subseteq T$. Hence min $v(I^{\star})$ exists, and $-n \leq \min v(I^{\star}) \leq 0$, that is, $I^{\star} \in Y$. If we set $I^{\star} = g_{\star}(I)$, there is a canonical mapping $g : \Sigma(T) \longrightarrow Y^X$, where Y^X is the set of mappings from X to Y. Moreover, g is injective by the definition, and hence $|\Sigma(T)| < \infty$.

Lemma 5.4. Assume that K is a finite field and $\dim(D) < \infty$. Then $|\Sigma'(D)| < \infty$.

Proof. By Lemmas 3.11 and 5.3, we have $|\Sigma_2'| < \infty$ and $|\Sigma'(D)| < \infty$ in Lemma 2.3.

Lemma 5.5. Let $\langle \tau; \alpha_1, \dots, \alpha_k \rangle$, $\langle \tau; \beta_1, \dots, \beta_k \rangle$ be two datas on D with the same type τ and with $k \geq 1$. Then $I(\tau; \alpha_1, \dots, \alpha_k) \subseteq I(\tau; \beta_1, \dots, \beta_k)$ if and only if $\alpha_i = \beta_i$ for each i.

Proof. For instance, assume that $P=M^5$ and that $I_{0,1,2}^{\alpha_1,\alpha_2,\alpha_3,\alpha_4}\subseteq I_{0,1,2}^{\beta_1,\beta_2,\beta_3,\beta_4}$. Then we have $\pi+\alpha_1\pi^3+\alpha_2\pi^4=(\pi+\beta_1\pi^3+\beta_2\pi^4)+(\pi^2+\beta_3\pi^3+\beta_4\pi^4)p_1+p_2$ for some elements $p_1,p_2\in P$. Hence $\alpha_1=\beta_1$ and $\alpha_2=\beta_2$. Similarly, we have $\pi^2+\alpha_3\pi^3+\alpha_4\pi^4=(\pi^2+\beta_3\pi^3+\beta_4\pi^4)+p_3$ for some element $p_3\in P$. Hence $\alpha_3=\beta_3$ and $\alpha_4=\beta_4$.

Lemma 5.6. Assume that $P = M^n$ with $n \ge 4$ and that K is an infinite field.

- (1) The set $\{T \mid T \text{ is an overring of } D \text{ with } T \subseteq V\}$ is an infinite set.
- (2) $|\Sigma'(D)| = \infty$.

Proof. (1) $I_{0,n-2}^{\alpha}$ is an overring of D with $I_{0,n-2}^{\alpha} \subseteq V$ for every $\alpha \in \mathcal{K}$. Since $|\mathcal{K}| = \infty$, the assertion holds by Lemma 5.5.

(2) follows from (1).
$$\Box$$

Lemma 5.7. Assume that $P = M^n$ with $n \ge 3$. Let $I \in F(D)$ such that $D \subseteq I \subseteq V$ with type τ , let $J \in F(D)$, and let $x \in q(D) \setminus \{0\}$.

- (1) If $I \subseteq J$, and if $\inf v(J)$ does not exist, then $V \subseteq J$.
- (2) If $xI \subseteq I_0$, and if $\tau \notin \{\langle 0 \rangle, \langle 0, n-1 \rangle\}$, then $xV \subseteq I_0$.
- (3) If $xI \subseteq I_{0,n-1}$, and if $\tau \notin \{<0>,<0,n-1>\}$, then $xV \subseteq I_{0,n-1}$.
- (4) If $xI \subseteq I_{0,1}^{\alpha_1, \cdots, \alpha_{n-2}}$, and if $\tau \notin \{<0>, <0, 1>, <0, n-1>\}$, then $xV \subseteq I_{0,1}^{\alpha_1, \cdots, \alpha_{n-2}}$.

Proof. (3) Suppose that v(x) = 0. Since $\tau \notin \{<0>, <0, n-1>\}$, I contains an element a such that 0 < v(a) < n-1. We have $xa \in I_{0,n-1}$ and 0 < v(xa) < n-1; a contradiction.

(4) We have $v(xI) \subseteq \{0, 1, n, n+1, \dots\}$. Since $x \in I_{0,1}^{\alpha_1, \dots, \alpha_{n-2}}$, we have $v(x) \in \{0, 1, n, n+1, \dots\}$.

If v(x) = 0, then $v(I) \subseteq \{0, 1, n, n+1, \dots\}$. Hence τ is either < 0 > or < 0, 1 >; a contradiction.

If v(x)=1, then $v(I)\subseteq\{0,n-1,n,\cdots\}$. Hence τ is either <0> or <0,n-1>; a contradiction.

Finally, if $v(x) \geq n$, then $xV \subseteq I_{0,1}^{\alpha_1, \dots, \alpha_{n-2}}$.

The proofs for (1) and (2) are similar.

Lemma 5.8. Assume that $P = M^n$ with $n \geq 4$. Then $I(0,1;0,\dots,0,\alpha) \sim I(0,1;0,\dots,0,\beta)$ if and only if $\alpha = \beta$.

Proof. The necessity: There is an element $x \in q(D) \setminus \{0\}$ such that $x(1, \pi + \alpha \pi^{n-1}) = (1, \pi + \beta \pi^{n-1})$. We may assume that $x = 1 + (\pi + \beta \pi^{n-1})\alpha'$ for some element $\alpha' \in \mathcal{K}$. Since $x(\pi + \alpha \pi^{n-1}) \in (1, \pi + \beta \pi^{n-1})$, we have $\alpha = \beta$.

Example 5.9. Assume that $P = M^5$. In the following, let $\alpha_i, \beta_i, \alpha_{(i)} \in \mathcal{K}$ for each i

- (1) $I_{0,1}^{\alpha_1,\alpha_2,\alpha_3} \sim I_{0,1}^{\beta_1,\beta_2,\beta_3}$ if and only if $\alpha_2 \beta_2 \equiv (\alpha_1 \beta_1)(\alpha_1 + \beta_1) \pmod{P}$ and $(\alpha_3 \beta_3) \equiv (\alpha_1 \beta_1)(\alpha_2 + \alpha_1\beta_1 + \beta_2) \pmod{P}$.
- (2) Let $x \in q(D) \setminus \{0\}$. If $xI_{0,1}^{\alpha_{(1)},\alpha_{(2)},\alpha_{(3)}} \subseteq I_{0,1}^{\alpha_{1},\alpha_{2},\alpha_{3}}$, and if $I_{0,1}^{\alpha_{(1)},\alpha_{(2)},\alpha_{(3)}} \not\sim I_{0,1}^{\alpha_{1},\alpha_{2},\alpha_{3}}$, then $xV \subseteq I_{0,1}^{\alpha_{1},\alpha_{2},\alpha_{3}}$.
- (3) Fix a data $< 0, 1; \alpha_{(1)}, \alpha_{(2)}, \alpha_{(3)} > on D$. Let $I \in F(D)$ with $D \subseteq I \subseteq V$. If I is either I_0 or $I_{0,4}$ or $I_{0,1}^{\alpha_1,\alpha_2,\alpha_3}$ with $I_{0,1}^{\alpha_1,\alpha_2,\alpha_3} \not\sim I_{0,1}^{\alpha_{(1)},\alpha_{(2)},\alpha_{(3)}}$, set $I = I^{\star_0}$, and otherwise set $V = I^{\star_0}$. Then \star_0 determines uniquely a star operation \star on D.
 - (4) If K is an infinite field, then $|\Sigma(D)| = \infty$.

Proof. We confer Example 3.4 (4).

(1) Set $\pi + \alpha_1 \pi^2 + \alpha_2 \pi^3 + \alpha_3 \pi^4 = A$ and set $\pi + \beta_1 \pi^2 + \beta_2 \pi^3 + \beta_3 \pi^4 = B$.

The necessity: There is an element $x \in q(D) \setminus \{0\}$ such that $xI_{0,1}^{\alpha_1,\alpha_2,\alpha_3} = I_{0,1}^{\beta_1,\beta_2,\beta_3}$. Then we have v(x) = 0. We may assume that $x = 1 + B\alpha$ for some element $\alpha \in \mathcal{K}$. Since $xA \in (1,B)$, we have $\alpha \equiv \beta_1 - \alpha_1, \beta_2 - \alpha_2 \equiv \alpha(\alpha_1 + \beta_1)$ and $\beta_3 - \alpha_3 \equiv \alpha(\alpha_2 + \alpha_1\beta_1 + \beta_2)$.

The sufficiency: Let $\beta_1 - \alpha_1 \equiv \alpha$ with $\alpha \in \mathcal{K}$, and set $1 + B\alpha = x$. We have that $A + AB\alpha = B + p_1$ for some element $p_1 \in P$, and hence $x(1, A) \subseteq (1, B)$. Similarly, let $\alpha_1 - \beta_1 \equiv \beta$ with $\beta \in \mathcal{K}$, $1 + A\beta = y$, and $B + AB\beta = A + p_2$ for some element $p_2 \in P$. Then $y(1, B) \subseteq (1, A)$. On the other hand, since xy is a unit of D, it follows that x(1, A) = (1, B) and y(1, B) = (1, A).

- (2) Suppose that v(x) = 0. Then we may assume that $x = 1 + (\pi + \alpha_1 \pi^2 + \alpha_2 \pi^3 + \alpha_3 \pi^4)\alpha$ for some element $\alpha \in \mathcal{K}$. Then $x(\pi + \alpha_{(1)}\pi^2 + \alpha_{(2)}\pi^3 + \alpha_{(3)}\pi^4) \in I_{0,1}^{\alpha_1,\alpha_2,\alpha_3}$ implies that $\alpha_{(2)} \alpha_2 \equiv (\alpha_{(1)} \alpha_1)(\alpha_{(1)} + \alpha_1)$ and $\alpha_{(3)} \alpha_3 \equiv (\alpha_{(1)} \alpha_1)(\alpha_{(2)} + \alpha_{(1)}\alpha_1 + \alpha_2)$; a contradiction.
- (3) We introduced the condition (C) in Section 4. Then \star_0 can be extended uniquely to a mapping \star from F(D) to F(D) with condition (C). Let $I_1, I_2 \in F(D)$ with $I_1 \subseteq I_2$, then we have $I_1^{\star} \subseteq I_2^{\star}$ by Lemma 5.7 and (2).
- (4) Let $\star_{\alpha_{(1)},\alpha_{(2)},\alpha_{(3)}}$ be the star operation on D determined in (3). If $I_{0,1}^{\alpha_1,\alpha_2,\alpha_3} \not\sim I_{0,1}^{\beta_1,\beta_2,\beta_3}$, then $\star_{\alpha_1,\alpha_2,\alpha_3} \neq \star_{\beta_1,\beta_2,\beta_3}$. By Lemma 5.8, we have $|\Sigma(D)| = \infty$.

Lemma 5.10. Assume that $P = M^n$ with $n \ge 4$.

- (1) Then $I(0,1;\alpha_1,\cdots,\alpha_{n-2}) \sim I(0,1;\beta_1,\cdots,\beta_{n-2})$ if and only if $\alpha_k \beta_k \equiv (\alpha_1 \beta_1)(\sum_{n=0}^{k-1} \beta_i \alpha_{k-1-i}) \pmod{P}$ for each $2 \leq k \leq n-2$.
- (2) Let $x \in q(D) \setminus \{0\}$. If $xI(0,1;\alpha_1,\dots,\alpha_{n-2}) \subseteq I(0,1;\beta_1,\dots,\beta_{n-2})$ with $I(0,1;\alpha_1,\dots,\alpha_{n-2}) \not\sim I(0,1;\beta_1,\dots,\beta_{n-2})$, then $xV \subseteq I(0,1;\beta_1,\dots,\beta_{n-2})$.

Proof. We confer Lemma 5.9, where n = 5.

(1) Set $\pi + \alpha_1 \pi^2 + \dots + \alpha_{n-2} \pi^{n-1} = A$, and set $\pi + \beta_1 \pi^2 + \dots + \beta_{n-2} \pi^{n-1} = B$. The necessity: There is an element $x \in q(D) \setminus \{0\}$ such that $xI_{0,1}^{\alpha_1,\alpha_2,\dots,\alpha_{n-2}} = I_{0,1}^{\beta_1,\beta_2,\dots,\beta_{n-2}}$. Since v(x) = 0, we may assume that $x = 1 + B\alpha$ for some element $\alpha \in \mathcal{K}$. Since $xA \in (1,B)$, we have $\alpha \equiv \beta_1 - \alpha_1$ and $\beta_k - \alpha_k \equiv \alpha(\sum_0^{k-1} \beta_i \alpha_{k-1-i})$ for each $2 \le k \le n-2$.

The sufficiency is similar to the proof for Lemma 5.9 (1).

(2) Suppose that v(x) = 0. Then we may assume that $x = 1 + (\pi + \beta_1 \pi^2 + \cdots + \beta_{n-2} \pi^{n-1}) \alpha$ for some element $\alpha \in \mathcal{K}$. Then $x(\pi + \alpha_1 \pi^2 + \cdots + \alpha_{n-2} \pi^{n-1}) \in I_{0,1}^{\beta_1, \dots, \beta_{n-2}}$ implies that $\beta_k - \alpha_k \equiv (\beta_1 - \alpha_1)(\sum_{0=0}^{k-1} \alpha_i \beta_{k-1-i})$ for each $2 \le k \le n-2$; a contradiction.

Lemma 5.11. Assume that $P = M^n$ with $n \ge 4$. Fix a data $< 0, 1; \alpha_{(1)}, \alpha_{(2)}, \cdots, \alpha_{(n-2)} > on D$, and let $I \in F(D)$ with $D \subseteq I \subseteq V$. If I is either I_0 or $I_{0,n-1}$ or $I(0,1;\alpha_1,\alpha_2,\cdots,\alpha_{n-2})$ with $I(0,1;\alpha_1,\alpha_2,\cdots,\alpha_{n-2}) \not\sim I(0,1;\alpha_{(1)},\alpha_{(2)},\cdots,\alpha_{(n-2)})$, set $I = I^{\star_0}$, and otherwise set $V = I^{\star_0}$. Then \star_0 determines uniquely a star operation \star on D.

Proof. We confer Lemma 5.9 (3). Then \star_0 can be extended uniquely to a mapping \star from F(D) to F(D) with condition (C). Let $I_1, I_2 \in F(D)$ with $I_1 \subseteq I_2$. Then, by Lemma 5.7 and Lemma 5.10 (2), we have $I_1^{\star} \subseteq I_2^{\star}$.

Lemma 5.12. Assume that K is an infinite field and $P = M^n$ with $n \ge 4$. Then $|\Sigma(D)| = \infty$.

Proof. Let $\star_{\alpha_{(1)},\alpha_{(2)},\cdots,\alpha_{(n-2)}}$ be the star operation on D determined in Lemma 5.11. If $I_{0,1}^{\alpha_1,\alpha_2,\cdots,\alpha_{n-2}} \not\sim I_{0,1}^{\beta_1,\beta_2,\cdots,\beta_{n-2}}$, then $\star_{\alpha_1,\alpha_2,\cdots,\alpha_{n-2}} \neq \star_{\beta_1,\beta_2,\cdots,\beta_{n-2}}$. By Lemma 5.8, we have $|\Sigma(D)| = \infty$.

The proof for Proposition 5.1 is complete, and the proof for the case where K=k in our Theorem is complete.

6. The case where $K \supseteq k$

In this final section, let D be an APVD which is not a PVD, P be the maximal ideal of D, V = (P : P), M be the maximal ideal of V, $K = \frac{V}{M}$, $k = \frac{D}{P}$, v be a valuation belonging to V, Γ be the value group of v, $\{\alpha_i \mid i \in \mathcal{I}\} = \mathcal{K}$ be a complete system of representatives of V modulo M with $\{0,1\} \subseteq \mathcal{K}$, and assume that $K \supseteq k$, and that min v(M) exists with min $v(M) = v(\pi) = 1 \in \mathbf{Z} \subseteq \Gamma$ for some element $\pi \in M$. We will prove the following,

Proposition 6.1. The following conditions are equivalent.

- (1) $|\Sigma'(D)| < \infty$.
- (2) K is a finite field, $\dim(D) < \infty$, and $P = M^n$ for some $n \ge 2$.

Lemma 6.2. (1) Let $x \in q(D) \setminus \{0\}$ with $v(x) \in \mathbb{Z}$, and let k be a positive integer with k > v(x). Then x can be expressed uniquely as $x = \alpha_l \pi^l + \alpha_{l+1} \pi^{l+1} + \cdots + \alpha_{k-1} \pi^{k-1} + a \pi^k$, where l = v(x) and each $\alpha_i \in \mathcal{K}$ with $\alpha_l \neq 0$ and $a \in V$.

- (2) There is a unique integer $n \geq 2$ such that $P = M^n$.
- (3) Let $I \in F(D)$ such that $\inf v(I)$ exists. Then $\inf v(I) = \min v(I)$.
- (4) Let $I \in F(D)$ such that $\inf v(I)$ does not exist. Then $I = I^{v}$.

The proofs are similar to those for Lemmas 3.1, 3.2 and 3.3.

Lemma 6.3. Assume that $P = M^n$ for some $n \ge 2$. Let T be an overring of D with $T \subseteq V$ and let $I \in F(T)$.

- (1) If $\inf v(I)$ exists, then it is $\min v(I)$.
- (2) If $\inf v(I)$ does not exist, then I is a divisorial fractional ideal of T.

The proof is similar to that for Lemma 3.3.

Lemma 6.4. Assume that K is a finite field and $P = M^n$ for some $n \ge 2$.

- (1) The set $\{I \in F(D) \mid D \subseteq I \subseteq V\}$ is a finite set.
- (2) Let l be a negative integer. Then the set $\{I \in F(D) \mid \min v(I) \text{ exists, and } l \leq \min v(I) \leq 0\}$ is a finite set.
 - (3) The set $\{T \mid T \text{ is an overring of } D \text{ with } D \subseteq T \subseteq V\}$ is a finite set.

- (4) The set $\{I \in F(T) \mid T \subseteq I \subseteq V\}$ is a finite set.
- (5) Let T be an overring of D with $T \subseteq V$, and let l be a negative integer. Then the set $\{I \in F(T) \mid \min v(I) \text{ exists, and } l \leq \min v(I) \leq 0\}$ is a finite set.

The proofs are similar to those for Lemmas 3.9, 3.10, 3.11 and 3.12.

Lemma 6.5. Assume that k is an infinite field and $P = M^n$ for some $n \ge 2$. Then there is an infinite number of intermediate rings between D and V.

Proof. Let $u \in V$ such that $\bar{u} = u + M \in K \setminus k$. Let $a \in D \setminus P$, and set $(1, (1+au)\pi^{n-1}) = D_a$. Then D_a is an overring of D with $D_a \subseteq V$.

Let $a, b \in D \setminus P$ such that $D_a = D_b$. Then we have $\bar{a} = \bar{b}$. For, we have $(1 + au)\pi^{n-1} = (1 + bu)\pi^{n-1}d + p$ for some elements $d \in D$ and $p \in P$. It follows that 1 - d = (bd - a)u + m for some element $m \in M$. If $bd - a \equiv 0$, then $1 - d \equiv 0$, hence $\bar{b} = \bar{b}\bar{d} = \bar{a}$. Suppose that $\bar{b}\bar{d} - \bar{a} \neq \bar{0}$. Since $\bar{1} - \bar{d} = \bar{b}\bar{d} - \bar{a}$ \bar{u} , we have $\bar{u} \in k$; a contradiction. It follows that $\{D_a \mid a \in D \setminus P\}$ is an infinite set, since k is an infinite field. The proof is complete.

Proof for Proposition 6.1. (1) \Longrightarrow (2): By Lemma 2.2 (6), we have $\dim(D) < \infty$ and $[K:k] < \infty$. We may apply Lemma 6.2. Then we have $P = M^n$ for some $n \geq 2$. Suppose that K is an infinite field. Since $[K:k] < \infty$, k is an infinite field. By Lemma 6.5, there is an infinite number of intermediate rings between D and V. It follows that $|\Sigma'(D)| = \infty$; a contradiction.

(2) \Longrightarrow (1): We can apply Lemma 6.4. The set $\{I \in \mathcal{F}(D) \mid D \subseteq I \subseteq V\} = X$ is a finite set. Let \star be a star operation on D, and let $I \in X$. We note that V is a divisorial fractional ideal of D. Since $D \subseteq I^{\star} \subseteq V$, we have $I^{\star} \in X$.

If we set $I^* = g_*(I)$, then the element $\star \in \Sigma(D)$ gives an element $g_* \in X^X$. By Lemma 6.2 (3), the mapping $g : \star \longmapsto g_*$ from $\Sigma(D)$ to X^X is an injection. It follows that $|\Sigma(D)| < \infty$.

Let T be an overring of D with $T \subseteq V$. Set $\{I \in \mathcal{F}(T) \mid T \subseteq I \subseteq V\} = X$, and set $\{I \in \mathcal{F}(T) \mid \min v(I) \text{ exists, and } -n \leq \min v(I) \leq 0\} = Y$. Then X and Y are finite sets. For every $I \in \mathcal{F}(T)$, either $\min v(I)$ exists or $\inf v(I)$ does not exist by Lemma 6.3 (1). Let \star be a star operation on T, and let $I \in X$. Since $\pi^n I \subseteq T$, we have $\pi^n I^{\star} \subseteq T$. Hence $\min v(I^{\star})$ exists, and $-n \leq \min v(I^{\star}) \leq 0$, that is, $I^{\star} \in Y$. If we set $I^{\star} = g_{\star}(I)$, there is a canonical mapping $g : \Sigma(T) \longrightarrow Y^X$. Lemma 6.3 implies that g is an injection, hence $|\Sigma(T)| < \infty$. By Lemma 6.4 (3) and Lemma 2.3, we have $|\Sigma_2'| < \infty$, and $|\Sigma'(D)| < \infty$.

The proof for our Theorem is complete by Propositions 5.1 and 6.1.

Ackowledgement The author is grateful to Professor Toshitaka Terasaka for his collaboration in writing this paper.

References

- [1] A. Badawi and E. Houston, Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains, Comm. Alg., 30 (2002), 1591-1606.
- [2] M. Fontana and K. Loper, Kronecker function rings: a general approach, Ideal Theoretic Methods in Commutative Algebra, Lecture Notes in Pure and Appl. Math., 220, M. Dekker, New York, 2001, 189-205.
- [3] M. Fontana and K. Loper, An historical overview of Kronecker function rings, Nagata rings, and related star and semistar operations, Multiplicative Ideal Theory in Commutative Algebra, Springer, New York, 2006, 169-187.
- [4] R. Gilmer, Multiplicative Ideal Theory, M. Dekker, New York, 1972.
- [5] F. Halter-Koch, Ideal Systems: An Introduction to Multiplicative Ideal Theory, M. Dekker, New York, 1998.
- [6] J. Hedstrom and E. Houston, Pseudo-valuation domains, Pacific J. Math., 75 (1978), 137-147.
- [7] L. Kronecker, Grundzüge einer arithmetischen Theorie der algebraischen Grössen, J. Reine Angew. Math., 92 (1882), 1-122.
- [8] W. Krull, Beiträge zur Arithmetik kommutativer Integritätesbereiche, Math. Zeit., 41 (1936), 545-577.
- [9] R. Matsuda, Note on the number of semistar-operations, Math. J. Ibaraki Univ., 31 (1999), 47-53.
- [10] R. Matsuda, Note on the number of semistar operations, VIII, Math. J. Ibaraki Univ., 37 (2005), 53-79.
- [11] R. Matsuda, Commutative Semigroup Rings, 2nd. ed., Kaisei, Tokyo, 2006.
- [12] R. Matsuda, Semistar operations on pseudo-valuation domains, JP J. Algebra Number Theory Appl., 17 (2010), 163-172.

Ryûki Matsuda

2241-42 Hori, Mito, Ibaraki $310\text{-}0903,\,\mathrm{JAPAN}$

e-mail: rmazda@adagio.ocn.ne.jp