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Abstract. This paper concerns with the study of pretorsion classes and pre-
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ize the rings for which these lattices coincide, as the Artinian principal ideal

rings.
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1. Introduction

In this work R denotes an associative ring with unitary element 1 and R-mod

denotes the category of left unital modules over the ring R.

We shall work with big lattices of classes of R-modules. Among the closure

properties we will consider here are those of being closed under: monomorphisms

(�), homomorphic images (�), direct sums (⊕), direct products (Π), injective

hulls (E ( )), projective covers (P ( )) and extensions (ext).

Also we consider classes closed under isomorphic copies of its elements.

If P is a set of some of the closure properties above, we denote by LP the (big)

lattice of all classes of R-modules closed under the properties in P. All these lattices

have inclusion as their partial order and thus infima is given by intersection. The

least element is {0}, denoted by 0, and the greatest element is R-mod, denoted

by 1.

As examples we can mention the well known frame of hereditary torsion theories

in R-mod (R-tors) which here coincides with L{�,⊕,ext,�}. Another example is the

boolean lattice of natural classes in R-mod (R-nat) which here will be denoted by

L{�,⊕,E( ),ext} = L{�,⊕,E( )} (see [9]).
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We can also notice that some of these lattices have an underlying set of elements

while other have a proper class of elements, in this last case we use the term big

lattice instead of lattice.

In the proof of the main result we use the fact that L{�} = L{�} is equivalent

with R being an Artinian principal ideal ring (see [2, Theorem 38]).

Given P a set of closure properties and given a class C of R-modules we let ξP(C)
denote the least class in LP containing C as a subclass. Respectively we let χP(C)
denote the largest class in LP in which C is a subclass.

For a preradical r in R-mod we let Tr = {M ∈ R-mod | r(M) = M} and Fr =

{M ∈ R-mod | r(M) = 0}. A hereditary torsion theory is an ordered pair (T ,F)

of classes or R-modules such that (i) Hom(T, F ) = 0 for all T ∈ T , F ∈ F , (ii)

Hom(A,F ) = 0 for all F ∈ F implies that A ∈ T , (iii) Hom(T,A) = 0 for all

T ∈ T implies that A ∈ F , (iv) T is closed under submodules. It is a known fact

that for a hereditary torsion theory T ∈ L{�,⊕,ext,�} and F ∈ L{�,Π,ext,E()}.

2. The lattices L{�,Π} and L{�,⊕}

We begin by giving the description of the generated class in the big lattices

L{�,Π} and L{�,⊕} respectively.

Remark 2.1. If X is a class of R-modules, it is easily seen that ξ{�,Π}(X) is given

by the class of the X-cogenerated R-modules and ξ{�,⊕}(X) is given by the class

of the X-generated R-modules.

We denote by R-pr the big lattice of preradicals in R-mod.

It is well known that there is a one to one correspondence between the class of

idempotent preradicals (R-idp) and L{�,⊕} and that there is a one to one corre-

spondence between the class of radicals ( R-rad) and L{�,Π}. In general R-idp and

R-rad are not sublattices of R-pr.

Example 2.2. Take R = Z.
(a) Let d be the preradical that assigns to every abelian group its divisible part

and s be the preradical wich assigns to every abelian group its socle. Then t and s

are both idempotent but if M = Zp∞ then in Z-idp we have that (s ∧ d) (M) = Zp

and (s ∧ d) (s ∧ d) (M) = 0. Thus (s ∧ d) is not idempotent.

(b) Let t be the preradical that assigns to every abelian group its torsion sub-

group and d as in (a). Then t and d are both radicals but if M = Π
p∈P

Zp with P

the set of prime numbers, then in Z-rad we have that (t ∨ d) (M) = ⊕
p∈P

Zp and

(t ∨ d)
(

M
(t∨d)(M)

)
̸= 0. Hence t ∨ d is not a radical.
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Proposition 2.3. If L{�,Π} ⊆ L{�}, then R-rad is a complete sublattice of R-pr.

Proof. Let {rα}α∈X be a collection of radicals.

(1) We always have that
∧

α∈X

{rα} is a radical. Indeed, if M ∈ R-mod, then

( ∧
α∈X

{rα}
) M( ∧

α∈X

{rα}
)
(M)

 =
∩

α∈X

rα

 M( ∧
α∈X

{rα}
)
(M)


 .

Since

( ∧
α∈X

{rα}
)
(M) ⊆ rα (M) for each α ∈ X, then by [8, Chapter VI.

Lemma 1.1] we have that

rα

 M( ∧
α∈X

{rα}
)
(M)

 =
rα (M)( ∧

α∈X

{rα}
)
(M)

∀α ∈ X.

Then

( ∧
α∈X

{rα}
) M( ∧

α∈X

{rα}
)
(M)

 =
∩

α∈X

rα (M)( ∧
α∈X

{rα}
)
(M)

=
∩

α∈X

 rα (M)∩
α∈X

rα (M)

 = 0.

This proves that
∧

α∈X

{rα} is a radical.

(2) Now if M ∈ R-mod, we have

( ∨
α∈X

{rα}
) M( ∨

α∈X

{rα}
)
(M)

 =
∑

α∈X

rα

 M( ∨
α∈X

{rα}
)
(M)

 .

For each α ∈ X, there exists an epimorphism

M

rα (M)
� M( ∨

α∈X

{rα}
)
(M)

.

Since M
rα(M) ∈ Frα and as Frα ∈ L{�,Π}, all of whose members we are assuming

closed under homomorphic images, we have M ∨
α∈X

{rα}

(M)

∈ Frα for each α ∈ X.
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Thus ( ∨
α∈X

{rα}
) M( ∨

α∈X

{rα}
)
(M)

 = 0

hence
∨

α∈X

{rα} is a radical. �

Proposition 2.4. If L{�,⊕} ⊆ L{�}, then R-idp is a complete sublattice of R-pr.

Proof. Let {rα}α∈X be a collection of idempotent preradicals.

(1) We always have that
∨

α∈X

{rα} is an idempotent preradical. Indeed, ifM ∈ R-

mod, then( ∨
α∈X

{rα}
)(( ∨

α∈X

{rα}
)
(M)

)
=

( ∨
α∈X

{rα}
)( ∑

α∈X

rα (M)

)
=
∑

α∈X

rα

( ∑
α∈X

rα (M)

)
.

For each β ∈ X it happens that

rβ

( ∑
α∈X

rα (M)

)
⊇
∑

α∈X

rβrα (M)

hence ∑
α∈X

rα

( ∑
α∈X

rα (M)

)
⊇
∑

α∈X
β∈X

rβrα (M) ⊇
∑

α∈X

rαrα (M) =

=
∑

α∈X

rα (M) =

( ∨
α∈X

{rα}
)
(M) .

The reciprocal inclusion is clear.

(2) For infima, take M ∈ R-mod. Then( ∧
α∈X

{rα}
)(( ∧

α∈X

{rα}
)
(M)

)
=

( ∧
α∈X

{rα}
)( ∩

α∈X

rα (M)

)
=
∩

α∈X

rα

( ∩
α∈X

rα (M)

)
.

Since for each α ∈ X, rα (M) ∈ Trα ∈ L{�,⊕}, all of whose members we are

assuming closed under monomorphisms, we have

rβ

( ∩
α∈X

rα (M)

)
=
∩

α∈X

rα (M) , for each β ∈ X.

Thus ( ∩
β∈X

rβ

)( ∩
α∈X

rα (M)

)
=
∩

α∈X

rα (M) =

( ∧
α∈X

{rα}
)
(M)
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hence
∧

α∈X

{rα} is an idempotent preradical. �

Given C ∈ LP , a pseudocomplement for C in LP is an element D ∈LP such

that C ∩ D = 0 and which is maximal with respect to this property. If D is

largest with this property, we will call D the strong pseudocomplement of C (S-

pseudocomplement, for short).

If C ∈ LP we let C⊥P denote to some pseudocomplement (S-pseudocomplement)

of C, if it exists. If each C ∈ LP has a pseudocomplement (S-pseudocomplement)

we say that LP is a pseudocomplemented (or S-pseudocomplemented) (big) lattice.

Remark 2.5. L{�} and L{�} are S-pseudocomplemented big lattices. Actually if

C ∈L{�} and D ∈L{�}, then:

C⊥{�} = {M ∈ R-mod | M has no non zero submodules in C}

and

D⊥{�} = {M ∈ R-mod | M has no non zero homomorphic images in D} .

Lemma 2.6. If C ∈ L{�,�} then:

(1) C⊥{�} ∈ L{Π} and

(2) C⊥{�} ∈ L{⊕}.

Proof. (1) If {Mα}α∈X is a family of R-modules in C⊥{�} and there exists

0 ̸= C
f
�

∏
α∈X

{Mα} with C ∈ C

then there exists β ∈ X such that C
f
�

∏
α∈X

{Mα}
ρβ� Mβ is not zero. Thus 0 ̸=

ρβ ◦f (C) ≤ Mβ , and as C is closed under homomorphic images, then ρβ ◦f (C) ∈ C,
a contradiction. So

∏
α∈X

{Mα} ∈ C.

(2) It is similar to (1). �

Proposition 2.7. (1) If C ∈L{�,Π} and C is closed under homomorphic images

then C has an S-pseudocomplement in L{�,Π}. Moreover

C⊥{�,Π} = C⊥{�}

and C⊥{�,Π} ∈ L{�,Π,E(),ext}.

(2) If C ∈L{�,⊕} and C is closed under monomorphisms, then C has an S-

pseudocomplement in L{�,⊕}. Moreover

C⊥{�,⊕} = C⊥{�}

and C⊥{�,⊕} ∈ L{�,⊕,P ( ),ext}.
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Proof. (1) By Lemma 2.6, C⊥{�} is also closed under products, and so C⊥{�} ∈
L{�,Π} and C⊥{�} ∩ C = 0. Now, let D ∈ L{�,Π} be such that D ∩ C = 0. Since

D ∈ L{�}, then D ⊆ C⊥{�} .

(2) It is similar to (1). �

Lemma 2.8. If L{�,⊕} ⊆ L{�} then every finitely generated (or finitely cogener-

ated) projective R-module P is injective.

Proof. By Remark 2.1, we have that

ξ{�,⊕} (E (P )) =
{
M ∈ R-mod | ∃ E (P )

(X) � M for some set X
}
.

By the present hypothesis ξ{�,⊕} (E (P )) is closed under submodules, thus P ∈
ξ{�,⊕} (E (P )). So P is E (P )-generated.

Since P is finitely generated (or finitely cogenerated) and projective, then P is a

direct summand of a finite direct sum of copies of E (P ). Thus P is injective. �

Corollary 2.9. If L{�,⊕} ⊆ L{�} then R is left self-injective.

Remark 2.10. If L{�,Π} ⊆ L{�} then R is isomorphic to a finite direct product

of right perfect left local rings.

Proof. If (T ,F) is a hereditary torsion theory, then F ∈ L{�,Π}, so that F is

closed under homomorphic images and we conclude using [6]. �

Remark 2.11. Notice that in Remark 2.10, such a ring is Morita equivalent to a

finite product of local right and left perfect rings. (see also [5, Theorem VI.2.4])

Lemma 2.12. If L{�,Π} ⊆ L{�} then R is a finitely cogenerated injective cogen-

erator. In particular every finitely cogenerated projective module is injective.

Proof. By Remark 2.1, we have that

ξ{�,Π} (R) =
{
M ∈ R-mod | ∃ M � RX for some set X

}
.

Since R ∈ ξ{�,Π} (R) and since ξ{�,Π} (R) is closed under homomorphic images

and direct sums, then as each R-module is a quotient of a free R-module,

ξ{�,Π} (R) = R-mod.

In particular for a simple R-module S, there exists a set X and a monomorphism

E (S)
φ
� RX .

Then there exists an i ∈ X such that the composition

S
i
↪→ E (S)

φ
� RX

ρi� R
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is a monomorphism, ρi : RX � R being a projection. Since S ⊆es E (S), then

ρiφ : E (S) � R is a monomorphism. Thus E(S) is isomorphic to a direct summand

of R.

By Remarks 2.10 and 2.11 we can assume that R is local.

If R = E (S)⊕ J and J ̸= 0, then R would have at least two maximal left ideals

contradicting that R is local. Hence R = E (S) and R is self-injective and finitely

cogenerated. �

Now we will prove the main Theorem of this work:

Theorem 2.13. The following assertions are equivalent for a ring R:

(1) R is an Artinian principal ideal ring.

(2) L{�,Π} ⊆ L{�,⊕}.

(3) L{�,⊕} ⊆ L{�,Π}.

Proof. (1 ⇒ 2) By [2, Theorem 38] (1) is equivalent to L{�} = L{�}. Now, if

C ∈L{�,Π}, then C ∈ L{�} and since L{�,Π} ⊆ L{⊕}, then C ∈L{�,⊕}. Hence

L{�,Π} ⊆ L{�,⊕}.

(1 ⇒ 3) If C ∈ L{�,⊕}, by [2, Theorem 38], C ∈ L{�,⊕,�}. On the other

hand we have that R is a left Artinian ring, so by [4] C ∈ L{�,⊕,�,Π} and then

L{�,⊕} ⊆ L{�,Π}.

(3 ⇒ 1) By Corollary 2.9, R is left self-injective.

Let C ∈ L{�,⊕}, by (3) C ∈ L{�,⊕,�,Π}. Then, by [4], R is left Artinian. Thus

R is a QF-ring.

Noting that the condition L{�,⊕} ⊆ L{�,Π} holds when we take a quotient R
I

of R, we get that each factor R
I is QF-ring too. Then by [7, Proposition 25.4.6B]

R is an Artinian principal ideal ring.

(2 ⇒ 1) By Lemma 2.12 we have that R is a left self-injective ring and we can

suppose that R is a local right and left perfect ring and finitely cogenerated. Again

notice that the condition L{�,Π} ⊆ L{�,⊕} holds also with respect to a quotient
R
I . Then for each two sided ideal I of R we have that R

I is finitely cogenerated too.

Let J be the Jacobson radical of R. We claim J is nilpotent. Indeed, if I =∩
n∈N

Jn, then I is a two sided ideal of R. As R
I is finitely cogenerated and

∩
n∈N

(
Jn

I

)
=

0, there exists m ∈ N such that Jm = I. Then Jm is an idempotent two sided ideal

of R. By [8, Chapter VIII, Corollary 6.4] there exists an idempotent e such that

Jm = ReR. Since R = E (S) then R is indecomposable, thus its only idempotents

are 0 and 1. Since Jm ̸= R, then e = 0 and thus Jm = 0.
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Now, we will see that R is left Artinian by induction on m, the nilpotency index

of J . Since R is right perfect, for m = 1 we have that R ∼= R
J which is semisimple

Artinian. If m > 1 then we consider the exact sequence

0 → Jm−1 → R → R

Jm−1
→ 0

Since Rad
(

R
Jm−1

)
= J

Jm−1 whose nilpotency index is at most m− 1, then R
Jm−1

is left Artinian by induction hypothesis. On the other hand, Jm−1 is an R
J -module

and since R
J is semisimple Artinian, we note that Jm−1 is semisimple. Finally as

Jm−1 ≤ R and R is finitely cogenerated, then Jm−1 is finitely cogenerated and

semisimple. Hence Jm−1 and R are left Artinian.

Since R is left self-injective, R is a QF-ring. Note that the same applies for

a quotient R
I of R. By [7, Proposition 25.4.6B], R is an Artinian principal ideal

ring. �

Proposition 2.14. If L{�,Π} ⊆ L{�}, then

skel(L{�,Π}) = R− nat = L{�,Π,�,E(),ext}.

Proof. Since L{�,Π} ⊆ L{�}, we have by Remark 2.10 that R is a finite di-

rect product of right perfect left local rings. By [9, Propositions 2.4 and 2.5],

every natural class is closed under direct products and quotients. Thus R-nat

= L{�,Π,�,E(),ext}.

If C ∈ L{�,Π}, then by hypothesis and Proposition 2.7 we have that

C⊥{�,Π} = C⊥{�} = {M | M has no non zero submodules in C} .

Hence L{�,Π} is S-pseudocomplemented.

Now, since R-nat ⊆ L{�,Π} ⊆ L{�} and skel(L{�}) = R-nat (see [1, Theorem

12]) we can apply [3, Theorem 1.4] to obtain skel(L{�,Π}) = R-nat. �
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Universidad Nacional Autónoma de México
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