STRONGLY PRIME SUBMODULES AND PSEUDO-VALUATION MODULES

J. Moghaderi and R. Nekooei
Received: 31 May 2010; Revised: 1 July 2011
Communicated by Sait Halıcıoğlu

Abstract

In this paper we introduce strongly prime submodules and pseudovaluation modules over an integral domain, and obtain some basic results and characterizations.

Mathematics Subject Classification (2010): 13C13, 13C99 Keywords: multiplication module, prime submodule, strongly prime submodule, valuation domain, pseudo valuation domain, valuation, fractional submodule, pseudo-valuation module

1. Introduction

Throughout this paper, R denotes an integral domain with quotient field K, $T=R \backslash\{0\}$ and M is a unitary torsion free R-module. A submodule N of M is called prime if $N \neq M$ and for arbitrary $r \in R$ and $m \in M, r m \in N$ implies $m \in N$ or $r \in(N: M)$, where $(N: M)=\{r \in R \mid r M \subseteq N\}$. It is clear that when N is a prime submodule, $(N: M)$ is a prime ideal of R.

An R-module M is called a multiplication R-module, if for each submodule N of M, there exists an ideal I of R such that $N=I M$. (For more information about multiplication modules, see [1], [3], [4], [10], [13], [14]). An integral domain R is called a valuation ring, if for each $x \in K \backslash\{0\}, x \in R$ or $x^{-1} \in R$. (see [5], [6], [10]). An integral domain R is called a pseudo-valuation domain, if whenever a prime ideal P contains the product $x y$ of two elements of K, we have $x \in P$ or $y \in P$. Such a prime ideal P is called a strongly prime ideal. (see [7], [8], [9]). In the first section of this paper, we generalize the notion of strongly prime ideal to a prime submodule of a torsion free R-module and obtain results which characterize it. In the second section, we introduce pseudo-valuation modules and obtain some basic results.

[^0]
2. Strongly Prime Submodules

Let R be an integral domain with quotient field K and M be a torsion free R-module. For any submodule N of M, suppose $y=\frac{r}{s} \in K$ and $x=\frac{a}{t} \in M_{T}$. We say $y x \in N$, if there exists $n \in N$ such that $r a=s t n$, where $T=R \backslash\{0\}$ and $M_{T}=\left\{\left.\frac{a}{t} \right\rvert\, a \in M, t \in T\right\}$. It is clear that this is a well-defined operation (see [12, p. 399]).

Definition 2.1. Let R be an integral domain with quotient field K and M be a torsion free R-module. A prime submodule P of M is called strongly prime, if for any $y \in K$ and $x \in M_{T}, y x \in P$ gives $x \in P$ or $y \in(P: M)$.

Example 2.2. \quad i) Let R be a domain and $P \in \operatorname{Spec}(R)$. P is a strongly prime ideal of R if and only if P is a strongly prime R-submodule of R.
ii) The zero submodule is a strongly prime submodule of M.
iii) For a prime number p, let

$$
\begin{aligned}
& R=\left\{\left.p^{n} \frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0, n \in \mathbb{N}^{*},(p, a)=(p, b)=1\right\} \\
& M=\left\{\left.p^{n} \frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0, n \in \mathbb{N},(p, a)=(p, b)=1\right\}, \text { and } \\
& L=\left\{\left.p^{n} \frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0, n \in \mathbb{N}, n \geq 2,(p, a)=(p, b)=1\right\}
\end{aligned}
$$

Then L is a strongly prime submodule of M.
iv) Every proper submodule of any vector space, is strongly prime.
v) $2 \mathbb{Z}$ is a prime, but not a strongly prime submodule of \mathbb{Z}-module \mathbb{Z}.
vi) The unique maximal ideal of a discrete valuation domain R (which is not a field) is a strongly prime ideal, and hence a strongly prime submodule of R (See [7, Proposition 1.1]).

Following [11], an R-submodule N of M_{T} is called a fractional submodule of M, if there exists $r \in T$ such that $r N \subseteq M$.

Theorem 2.3. Let N be a proper submodule of M, then N is strongly prime if and only if for any fractional ideal I of R and any fractional submodule L of M, $I L \subseteq N$, gives $L \subseteq N$ or $I \subseteq(N: M)$.

Proof. Let N be strongly prime, $x \in L \backslash N$ and $y \in I$. Then $y x \in I L$ and since $I L \subseteq N, x \in M_{T} \backslash N$ and $y \in K$, we have $y \in(N: M)$. So $I \subseteq(N: M)$. Conversely, it is clear that N is a prime submodule of M. Let for $y \in K$ and $x \in M_{T}, y x \in N$. Put $I=R y$, a fractional ideal of R and $L=R x$, a fractional submodule of $M . I L \subseteq N$ and so $L=R x \subseteq N$ or $I=R y \subseteq(N: M)$. Therefore $x \in N$ or $y \in(N: M)$. Thus N is a strongly prime submodule of M.

Corollary 2.4. Let N be a proper submodule of M. Then N is strongly prime if and only if for any $y \in K$ and any fractional submodule L of $M, y L \subseteq N$, gives $L \subseteq N$ or $y \in(N: M)$.

Theorem 2.5. Let N be a prime submodule of M. For the following statements we have $(i) \Leftrightarrow(i i),(i i i) \Leftrightarrow(i v),(i v) \Rightarrow(i)$.
i) N is a strongly prime submodule.
ii) For any fractional ideal I of R and any fractional submodule L of M, $I L \subseteq N$ gives $L \subseteq N$ or $I \subseteq(N: M)$.
iii) N is comparable to each cyclic fractional submodule of M.
iv) N is comparable to each fractional submodule of M.

Proof. (i) \Leftrightarrow (ii) follows from by Theorem 2.3. (iv) \Rightarrow (iii) is clear.
(iii) \Rightarrow (iv) Let L be a fractional submodule of M such that $L \nsubseteq N$.

So there exists $x \in L \backslash N . R x$ is a cyclic fractional submodule of M and $R x \nsubseteq N$. So by (iii) $N \subseteq R x \subseteq L$.
(iv) \Rightarrow (i) Suppose that for $y=\frac{r}{s} \in K, x=\frac{a}{t} \in M_{T}$, we have $y x \in N, x \notin N$ and $y \notin(N: M)$. Since $x \notin N$ by (iv), $N \subseteq R x, x y \in R x$. So $y \in R$. On the other hand, since $y \notin(N: M)$, by (iv) $N \subseteq y M, x y \in y M$. Therefore $x \in M$. Now for $y \in R$ and $x \in M, y x \in N$ where N is prime, we have $x \in N$ or $y \in(N: M)$ which is a contradiction. Thus N is a strongly prime.

Remark 2.6. In Theorem 2.5, in general, (i) \nRightarrow (iii). For example, let $R=\mathbb{R}$, $M=\mathbb{R} \oplus \mathbb{R}, N=\mathbb{R} \oplus(0)$ which is strongly prime, but for $x=(0,1), R x \nsubseteq N$ and $N \nsubseteq R x$.

Lemma 2.7. Let P be a strongly prime submodule of M, then ($P: M$) is a strongly prime ideal of R.

Proof. It is clear that $(P: M) \in \operatorname{Spec}(R)$. Let $a b \in(P: M)$, for $a, b \in K$. Then $a(b M)=a b M \subseteq P$. By Corollary 2.4, $a \in(P: M)$ or $b M \subseteq P$. Since $P \subset M$, we have $b \in(P: M)$. So $(P: M)$ is a strongly prime ideal.

Let $R=\left\{\left.p^{n} \frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0, n \in \mathbb{N}^{*},(p, a)=(p, b)=1\right\}, M=R[x]$. Then $P=(x)$ is a prime but not a strongly prime submodule of M, and $(P: M)=(0)$ is a strongly prime ideal of R. So the converse of Lemma 2.7, is not true.

Definition 2.8. Let M be a R-module and P be an ideal of ring R. Define

$$
T_{P}(M)=\{m \in M \mid(1-p) m=0, \text { for some } p \in P\}
$$

If $M=T_{P}(M)$, then M is called a P-torsion R-module, and if there exists $m \in M$ and $q \in P$ such that $(1-q) M \subseteq R m$, then M is called a P-cyclic R module[1].

Theorem 2.9. Let M be an R-module. Then M is a multiplication R-module if and only if for every maximal ideal P of R, M is P-cyclic or P-torsion R-module.

Proof. [1, Theorem1.2].
Proposition 2.10. Let P be a prime ideal of an integral domain R and M be a faithful multiplication R-module. Then P is a strongly prime ideal if and only if $P M$ is a strongly prime submodule.

Proof. It is enough to show the necessity. It is clear that $P M$ is a prime submodule of M. Suppose that for $y=\frac{r}{s} \in K, x=\frac{a}{t} \in M_{T}, y x \in P M$. If $y \notin P$, put $A=\{b \in R \mid b x \in P M\}$. A is an ideal of R. If $A=R$, then $x \in P M$. Let $A \neq R$, then there exists a maximal ideal Q of R such that $A \subseteq Q$. Since $M \neq T_{Q}(M), M$ is Q-cyclic. So there exists $m \in M, q \in Q$ such that $(1-q) M \subseteq R m$. Therefore $(1-q) P M \subseteq P m$. Now there exists $u \in R, v \in P$ such that $(1-q) a=u m$, $(1-q) r a=s t v m$. So $r u=s t v$ and $\frac{u}{t} \in P$. Since $(1-q) a=u m$, hence $(1-q) x=$ $(1-q) \frac{a}{t}=\frac{u}{t} m \in P M$ and therefore $1-q \in A \subseteq Q$, which is a contradiction. Thus $P M$ is a strongly prime submodule of M.

Theorem 2.11. Let P be a prime submodule of M. Then P is strongly prime if and only if for any $y \in K, y^{-1} P \subseteq P$ or $y \in(P: M)$.

Proof. Let $y \in K \backslash(P: M)$ and $x \in P$. Since $x=y y^{-1} x \in P$ and P is a strongly prime, $y^{-1} x \in P$. So $y^{-1} P \subseteq P$. Conversely, suppose that for $y \in K, x \in M_{T}$, we have $y x \in P$. If $y^{-1} P \subseteq P$, then $x=y^{-1}(y x) \in P$. Otherwise $y \in(P: M)$. So P is strongly prime.

Lemma 2.12. Let L be a strongly prime submodule of M and N be a proper submodule of M such that $N_{T} \cap M=N$. Then $L \cap N=N$ or $L \cap N$ is a strongly prime submodule of N.

Proof. Let $L \cap N \neq N$. It is clear that $L \cap N$ is a prime submodule of N. Let for $y \in K, x \in N_{T}, y x \in L \cap N$. Since $y x \in L$ and L is strongly prime, $y \in(L: M)$ or $x \in L$. Since $N_{T} \cap M=N, y \in(L \cap N: N)$ or $x \in N \cap L$. So $N \cap L$ is a strongly prime submodule of N.

Lemma 2.13. Let $N \subseteq L$ be two submodules of M such that for any $y \in K$, $y N \cong N$. Then L is a strongly prime submodule of M if and only if $\frac{L}{N}$ is a strongly prime submodule of $\frac{M}{N}$.

Proof. Let L be a strongly prime submodule of M, and $y \in K$. By Theorem 2.11, $y^{-1} L \subseteq L$ or $y \in(L: M)$. So $y^{-1} \frac{L}{N} \subseteq \frac{L}{N}$ or $y \in\left(\frac{L}{N}: \frac{M}{N}\right)$.

Conversely, let $y \in K$. Since $\frac{L}{N}$ is strongly prime, $y^{-1} \frac{L}{N} \subseteq \frac{L}{N}$ or $y \in\left(\frac{L}{N}: \frac{M}{N}\right)$. So $y^{-1} L \subseteq L$ or $y \in(L: M)$ and by Theorem $2.11, L$ is a strongly prime submodule of M.

Remark 2.14. Let $f: M \rightarrow M^{\prime}$ be an R-epimorphism and N^{\prime} be a strongly prime submodule of M^{\prime}. Then in general $N=f^{-1}\left(N^{\prime}\right)$ is not a strongly prime submodule of M. Consider

$$
f: \mathbb{Z}[x] \rightarrow \mathbb{Z}, \quad p[x] \mapsto p[0]
$$

which is clearly a surjective \mathbb{Z}-module homomorphism. However the kernel of f which is $f^{-1}(0)$ is not a strongly prime submodule of $\mathbb{Z}[x]$, although $\{0\}$ is strongly prime in \mathbb{Z}. To see this, we can take the product $2 \cdot \frac{x}{2}=x \in f^{-1}(0)$, in which $2 \notin\left(f^{-1}(0): \mathbb{Z}[x]\right)=0$ and $\frac{x}{2} \notin f^{-1}(0)$.

Proposition 2.15. Let Q be a strongly prime submodule of M and P be a prime ideal of R such that $(Q: M) \subseteq P$. Then R_{P} - module, Q_{P} is a strongly prime submodule of M_{P}.

Proof. Let for $y=\frac{r}{s} \in K$ and $x=\frac{a}{t} \in M_{T}, y x \in Q_{P}$. Then $r a \in Q$ and since Q is a prime submodule $a \in Q$ or $r M \subseteq Q$. So $x \in Q$ or $y \in\left(Q_{P}: M_{P}\right)_{R_{P}}$.

Following [2], the R-module M is said to be integrally closed whenever $y^{n} m_{n}+$ $\cdots+y m_{1}+m_{0}=0$, for some $n \in \mathbb{N}, y \in K$ and $m_{i} \in M$, then $y m_{n} \in M$.

Lemma 2.16. Let P be a strongly prime submodule of an R-module M. Then P is an integrally closed R-module.

Proof. Let $y^{n} x_{n}+\cdots+y x_{1}+x_{0}=0$, for $y \in K, x_{i} \in P$. Since P is strongly prime, $y^{-1} P \subseteq P$ or $y \in(P: M)$. If $y^{-1} P \subseteq P$, then $y^{-i} P \subseteq P$ for all $i \in \mathbb{N}$. So $y x_{n}=-\left(x_{n-1}+y^{-1} x_{n-2}+\cdots+y^{-(n-1)} x_{0}\right) \in P$. If $y \in(P: M)$, then $y M \subseteq P$ and so $y x_{n} \in P$. Thus P is an integrally closed R-module.
Lemma 2.17. Let (R, m) be a quasi-local domain and M be an R-module. If M is a finitely generated R-module or $m M \neq M$, where m is a strongly prime ideal of R, then $m M$ is a strongly prime submodule of M.

Proof. Since $m M \neq M$ and $m \in \max (R)$, hence $m M \in \operatorname{Spec}(M)$. Let $y \in K$. If $y \notin R$, then $y^{-1} m \subseteq m$ and so $y^{-1} m M \subseteq m M$. If $y \in R$ and $y \notin m$, then $y^{-1} \in R$ and so $y^{-1} m M \subseteq m M$.

Finally, if $y \in m$, then $y \in(m M: M)=m$. Thus $m M$ is a strongly prime submodule of M.

3. Pseudo-Valuation Modules

Following [7], an integral domain R is called a pseudo-valuation domain ($P V D$), if every prime ideal of R is a strongly prime. By [7, Lemma 2.1], any valuation domain is $P V D$. In this section we generalize this concept to torsion free R-modules and obtain basic results.

Definition 3.1. An R-module M is called a pseudo-valuation module ($P V M$), if every prime submodule of M is strongly prime.

Example 3.2. \quad i) Let R be a domain. R is a $P V D$ if and only if the R-module R is a $P V M$.
ii) The \mathbb{Z}-module \mathbb{Q} is a PVM.
iii) Any vector space is $P V M$.
iv) The \mathbb{Z}-module \mathbb{Z} is not a $P V M$.

Lemma 3.3. Let M be a $P V M$. Then $\{(P: M) \mid P \in \operatorname{Spec}(M)\}$ is a totally ordered set.

Proof. Let $P, Q \in \operatorname{Spec}(M), a \in(P: M) \backslash(Q: M)$ and $b \in(Q: M)$. If $\frac{a}{b} \in R$, then since $b M \subseteq Q$, we have $a M=\frac{a}{b} b M \subseteq \frac{a}{b} Q \subseteq Q$. So $a \in(Q: M)$ which is a contradiction. Therefore $\frac{a}{b} \notin R$. By Theorem 2.11, $\frac{b}{a} P \subseteq P$. Now since $a \in(P$: $M)$, hence $b M=\frac{b}{a} a M \subseteq \frac{b}{a} P \subseteq P$. So $b \in(P: M)$ and $(Q: M) \subseteq(P: M)$.

Corollary 3.4. Let M be a multiplication PVM. Then the prime submodules of M are linearly ordered and so M has an unique maximal submodule.

Remark 3.5. Let $R=\left\{\left.p^{n} \frac{a}{b} \right\rvert\, a, b \in \mathbb{Z}, b \neq 0, n \in \mathbb{N}^{*},(p, a)=(p, b)=1\right\}$ and $M=R[x]$. Then R is a PVD, but M is not a PVM.

Lemma 3.6. Let M be a faithful multiplication R-module. Then M is a $P V M$ if and only if R is a $P V D$.

Proof. Let M be a $P V M$ and $P \in \operatorname{Spec}(R)$. Since M is a multiplication, $P M \in$ $\operatorname{Spec}(M)$ and since M is a $P V M, P M$ is a strongly prime submodule of M. By Proposition 2.10, P is a strongly prime ideal of R. So R is a $P V D$. Conversely, let $N \in \operatorname{Spec}(M)$. Since M is a multiplication, $N=P M$, for some prime ideal P of R. Since R is a $P V D, P$ is a strongly prime ideal. Now by Proposition $2.10, N$ is a strongly prime submodule. So M is a $P V M$.

Proposition 3.7. Let (R, m) be a quasi-local domain and M be an R-module. For the following statements we have $(i) \Rightarrow(i i) \Rightarrow(i i i)$.
i) M is a PVM and m is a strongly prime ideal of R.
ii) For any two submodules N, L of $M,(N: M) \subseteq(L: M)$ or $m(L: M) \subseteq$ $m(N: M)$.
iii) For any two submodules N, L of $M,(N: M) \subseteq(L: M)$ or $m(L: M) \subseteq$ $(N: M)$.

Proof. (i) \Rightarrow (ii) Let N, L be two submodules of M, such that $(N: M) \nsubseteq(L: M)$. So there exists $a \in(N: M) \backslash(L: M)$. Let $b \in(L: M)$, then $\frac{a}{b} \notin R$. Since m is a strongly prime ideal $\frac{b}{a} m \subseteq m$. So $b m \subseteq a m \subseteq m(N: M)$. Therefore $m(L: M) \subseteq m(N: M)$.
(ii) \Rightarrow (iii) This is clear.

Remark 3.8. It is easily seen that in the example of Remark 3.5, (iii) $\nRightarrow(i)$.
Proposition 3.9. Let M be a finitely generated R-module. Then for the following statements we have $(i) \Rightarrow(i i) \Leftrightarrow(i i i),(i) \Rightarrow(i v) \Leftrightarrow(v)$.
i) M is a $P V M$.
ii) For any $y \in K \backslash R$ and $a \in M$, if $M \neq R a$, then $R a \subseteq y M$.
iii) For any $y \in K \backslash R$ and $a \in M$, if $M \neq R a$, then $y^{-1} a \in M$.
iv) For any $y \in K \backslash R$ and $a \in R$, if $M \neq a M$, then $(y+a) M=y M$.
v) For any $y \in K \backslash R$ and $a \in R$, if $M \neq a M$, then $y^{-1} a M \subseteq M$.

Proof. (i) \Rightarrow (ii) Let $y \in K \backslash R, M \neq R a$, for $a \in M$. Since M is finitely generated, there exists a prime submodule P such that $a \in P$. By Proposition 2.10, $y^{-1} P \subseteq P$. So $y^{-1} a \in y^{-1} P \subseteq P \subseteq M$. Therefore $R a \subseteq y M$.
$($ ii $) \Leftrightarrow$ (iii) This is clear.
(i) \Rightarrow (iv) Let $y \in K \backslash R$, a be a non unit of R. Then $y+a \notin R, a M \neq M$. Since M is finitely generated there exists prime submodule P of M such that $a M \subseteq P$. On the other hand, by Lemma 2.7 and Proposition 2.10, $(y+a)^{-1}(P: M) \subseteq(P: M)$. Therefore $(y+a)^{-1} a \in(P: M) \subseteq R$. So $(y+a)^{-1} y=1-(y+a)^{-1} a \in R$ and $(y+a)^{-1} y M \subseteq M$. Thus $y M \subseteq(y+a) M$. Conversely, since $y \in K \backslash R, y^{-1}(P$: $M) \subseteq(P: M)$, hence $y^{-1} a \in(P: M) \subseteq R$. Therefore $(y+a) y^{-1}=1+y^{-1} a \in R$ and $(y+a) y^{-1} M \subseteq M$. Thus $(y+a) M \subseteq y M$.
(iv) \Rightarrow (v) Let $y=\frac{r}{s} \in K \backslash R$ and $x \in M$. So $(y+a) x \in y M$. There exists $u \in M$ such that $(y+a) x=y u$. So $(r+s a) x=r u$ and $y^{-1} a x=u-x \in M$. Therefore $y^{-1} a M \subseteq M$.
$(\mathrm{v}) \Rightarrow$ (iv) Let $y \in K \backslash R, a$ be a non unit of R. Then $y+a \notin R$. By (v), $(y+a)^{-1} a M \subseteq M$. So $y(y+a)^{-1} M=\left[1-(y+a)^{-1} a\right] M \subseteq M-(y+a)^{-1} a M \subseteq M$. Therefore $y M \subseteq(y+a) M$. Conversely, by $(\mathrm{v}), y^{-1}(y+a) M=\left(1+y^{-1} a\right) M \subseteq M$. So $(y+a) M \subseteq y M$.

Proposition 3.10. Let M be a free $P V M$. Then R is a $P V D$.
Proof. Let P be a prime ideal of R, then $P \oplus \cdots \oplus P$ is a prime submodule of $R \oplus \cdots \oplus R$. Since M is a $P V M, P \oplus \cdots \oplus P$ is strongly prime. Let $y \in K \backslash R$. Then by Theorem 2.11, $y^{-1}(P \oplus \cdots \oplus P) \subseteq P \oplus \cdots \oplus P$ and so $y^{-1} P \subseteq P$. Therefore P is a strongly prime ideal of R and so R is a $P V D$.

Proposition 3.11. Let M be a finitely generated $P V M$ such that every nonzero prime submodule is maximal. Then R is a $P V D$.

Proof. Let P be a nonzero prime ideal of R. By [2, Lemma 3.11], $\operatorname{dim} R=1$. So $P M$ is a prime submodule and hence a strongly prime submodule of M. Now by Lemma 2.7, $P=(P M: M)$ is a strongly prime ideal of R. Therefore R is a $P V D$.

Lemma 3.12. Let M be a Noetherian $P V M$. Then for any $y \in K \backslash R, y^{-1} \in \bar{R}$, where \bar{R} is an integral closure of R.

Proof. Let $y \in K \backslash R$. There exists a strongly prime submodule of M like P. So by Theorem 2.11, $y^{-1} P \subseteq P$. Since M is Noetherian, P is finitely generated, and we have $y^{-1} \in \bar{R}$.

Lemma 3.13. Let M be an R-module and for any $y \in K \backslash R, y^{-1} \in \bar{R}$. Then for any prime submodule P of $M, y^{-1}(P: M) \subseteq(P: M)$.

Proof. Let P be a prime submodule of M. Then $(P: M) \in \operatorname{Spec}(R)$ and there exists $q \in \operatorname{Spec}(\bar{R})$ such that $q \cap R=(P: M)$. Let $y \in K \backslash R$. Since $y^{-1} \in \bar{R}$, we have $y^{-1}(P: M) \subseteq y^{-1} q \subseteq q$. On the other hand, we can show that $y^{-1}(P: M) \subseteq$ R. So $y^{-1}(P: M) \subseteq q \cap R=(P: M)$.

Lemma 3.14. Let M be a Noetherian R-module such that for any $y \in K \backslash R$, $y^{-1} \in \bar{R}$. Then R is a $P V D$.

Proof. Let $P \in \operatorname{Spec}(R)$. There exists a prime submodule N of M such that $(N: M)=P$. By Lemma 3.13, $y^{-1}(N: M) \subseteq(N: M)$. So $y^{-1} P \subseteq P$. By Theorem 2.11, P is a strongly prime ideal and so R is a $P V D$.

Theorem 3.15. Let M be a Noetherian PVM. Then R is a PVD.

Proof. Take $y \in K \backslash R$ and a prime ideal P of R. There exists a prime submodule N of M such that $(N: M)=P$. Since M is a $P V M, N$ is a strongly prime submodule of M, and so $y^{-1} N \subseteq N$. It follows that $y^{-1} P M \subseteq y^{-1} N \subseteq N$. Since $M \neq N$ and N is strongly prime, we must have $y^{-1} P \subseteq(N: M)=P$. Therefore, it follows from [7, proposition 1.2] that P is a strongly prime ideal of R.

Theorem 3.16. Let M be a finitely generated noncyclic PVM which has only one maximal submodule. Then M is an integrally closed R-module.

Proof. Let $y^{n} x_{n}+\cdots+y x_{1}+x_{0}=0$, for $x_{i} \in M, y \in K$. Let P be an unique maximal submodule of M. As M is not cyclic and P is the unique maximal submodule of M, we have for any $i, x_{i} \in P$. Since M is a $P V M, P$ is a strongly prime. So by Theorem 2.11, $y \in(P: M)$ or $y^{-1} P \subseteq P$. If $y \in(P: M)$, then $y M \subseteq P \subseteq M$ and so $y x_{n} \in M$. If $y^{-1} P \subseteq P$, then for any $i \in \mathbb{N}, y^{-i} P \subseteq P$ and so $y x_{n} \in P \subseteq M$. Therefore M is an integrally closed R-module.

Lemma 3.17. Let M be a divisible R-module. Then M is a $P V M$.
Proof. Let P be a prime submodule of $M, y=\frac{r}{s} \in K$ and $x \in P$. If $y=0$, then $y \in(P: M)$. Let $y \neq 0$, so $r M=M$. There exists $u \in M$ such that $x=r u$. Since $x \in P$ and P is a prime submodule $u \in P$ or $r \in(P: M)$.

If $r \in(P: M)$, then $M=r M \subseteq P$ which is a contradiction. So $u \in P$ and $y^{-1} x=\frac{s}{r} x=\frac{s}{r} r u=s u \in P$. Therefore $y^{-1} P \subseteq P$ and P is a strongly prime submodule of M. Thus M is a $P V M$.

Theorem 3.18. Let M be an injective R-module. Then M is a PVM.
Proof. Since any injective R-module is divisible, hence by Lemma $3.17, M$ is a PVM.

Following [11], a torsion free R-module M is called a valuation R-module ($V M$) if for all $y \in K, y M \subseteq M$ or $y^{-1} M \subseteq M$.

By [7, Proposition 1.1], every $V D$ is $P V D$, but by the example in Remark 3.5, any $V M$ is not a $P V M$. Also by [7], since every $P V D$ is not a $V D$, hence every $P V M$ is not a $V M$.

Lemma 3.19. Let M be a finitely generated, non cyclic, $P V M$. Then M is a VM.

Proof. Let $y \in K$. If $y \in R$, then $y M \subseteq M$. If $y \notin R$, then by Proposition 3.9, (i $\Rightarrow \mathrm{iii}$) for any $a \in M, y^{-1} a \in M$ and so $y^{-1} M \subseteq M$. Therefore M is a $V M$.

Proposition 3.20. Let M be a Noetherian, integrally closed, PVM. Then M is $a V M$.

Proof. Let $y \in K$. If $y \in R$, then $y M \subseteq M$. If $y \notin R$, then by Lemma 3.12, $y^{-1} \in \bar{R}$. Now since M is an integrally closed R-module, M is also an \bar{R}-module.

So $y^{-1} M \subseteq M$ and therefore M is a $V M$.
Proposition 3.21. Let an R-module M have an invertible strongly prime submodule. Then M is a $V M$.

Proof. Let P be an invertible strongly prime submodule of M, then $P^{\prime} P=M$. Let $y \in K$. Then by Theorem 2.11, $y^{-1} P \subseteq P$ or $y \in(P: M)$. If $y \in(P: M)$, then $y M \subseteq P \subseteq M$. If $y^{-1} P \subseteq P$, then $y^{-1} M=y^{-1} P^{\prime} P \subseteq P^{\prime} P=M$. Therefore M is a $V M$.

Acknowledgment. The authors would like to thank the referee for the valuable suggestions and comments.

References

[1] Z. Abd El-bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16(4) (1988), 755-779.
[2] M. Alkan, B. Sarac and Y. Tiras, Dedekind modules, Comm. Algebra, 33(5) (2005), 1617-1626.
[3] M. Alkan and Y. Tiras, On invertible and dense submodules, Comm. Algebra, $32(10)$ (2004), 3911-3919.
[4] R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci., 27 (2003), 1715-1724.
[5] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
[6] N. Bourbaki, Commutative Algebra, Addison-Wesley, 1972.
[7] J. R. Hedstrom and Evan G. Houston, Pseudo-valuation domains, Pacific J. Math., 75(1) (1978), 137-147.
[8] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains (II), Houston J. Math., 4(2) (1978), 199-207.
[9] J. A. Huckaba, Extensions of pseudo-valuations, Pacific J. Math. 29(2) (1969), 295-302.
[10] M. D. Larsen and P. J. McCarthy, Multiplicative Theory of Ideals, Academic Press, London, 1971.
[11] J. Moghaderi and R. Nekooei, Valuation, discrete valuation and Dedekind modules, Int. Electron. J. Algebra, 8 (2010), 18-29.
[12] A. G. Naoum and F. H. Al-Alwan, Dedekind modules, Comm. Algebra, 24(2) (1996), 397-412.
[13] R. Nekooei, On finitely generated multiplication modules, Czechoslovak Math. J., 55(130)(2005), 503-510.
[14] P. F. Smith, Some remarks on multiplication modules, Arch. Math., 50(1988), 223-235.

J. Moghaderi

Department of Mathematics
Hormozgan University
Bandar Abbas, Iran
e-mail: j.moghaderi@yahoo.com
R. Nekooei

Department of Mathematics
Shahid Bahonar University of Kerman
Kerman, Iran
e-mail: rnekooei@mail.uk.ac.ir

[^0]: This research has been supported by Mahani Mathematical Research Center.

