HOCHSCHILD TWO-COCYCLES AND THE GOOD TRIPLE

 (As, Hoch,$M a g^{\infty}$)Philippe Leroux
Received: 23 August 2010; Revised: 16 February 2011
Communicated by A. Çiğdem Özcan

Abstract

The aim of this paper is to introduce the category of Hoch-algebras whose objects are associative algebras equipped with an extra magmatic operation \succ verifying the following relation motivated by the Hochschild two-cocycle identity: $$
\mathcal{R}_{2}: \quad(x \succ y) * z+(x * y) \succ z=x \succ(y * z)+x *(y \succ z)
$$

Such algebras appear in mathematical physics with \succ associative under the name of compatible products. Here, we relax the associativity condition. The free Hoch-algebra over a K-vector space is then given in terms of planar rooted trees and the triple of operads $\left(A s, H o c h, M a g^{\infty}\right)$ endowed with the infinitesimal relations is shown to be good. Hence, according to Loday's theory, we then obtain an equivalence of categories between connected infinitesimal Hochbialgebras and $M a g^{\infty}$-algebras.

Mathematics Subject Classification (2010): 05E99, 16W30, 16W99, 18D50 Keywords: Hoch-algebras, infinitesimal Hoch-algebras, magmatic algebras, good triples of operads, cocycles d'Hochschild

Notation: In the sequel K is a field. We adopt Sweedler notation for the binary cooperation Δ on a K-vector space V and set $\Delta(x)=x_{(1)} \otimes x_{(2)}$. For a K-vector space V, we set $\bar{T}(V):=\bigoplus_{n>0} V^{\otimes n}$.

1. Introduction

The well-known Poincaré-Birkhoff-Witt and the Cartier-Milnor-Moore theorems together can be rephrased as follows:

Theorem 1.1. (CMM-PBW) [6] For any cocommutative (associative) bialgebra \mathcal{H}, $C o m^{c}-$ As-bialgebra for short, the following are equivalent.
(1) \mathcal{H} is connected;
(2) \mathcal{H} is isomorphic to $U($ Prim $\mathcal{H})$ as a bialgebra;
(3) \mathcal{H} is isomorphic to $\operatorname{Com}^{c}(\operatorname{Prim} \mathcal{H})$ as a coalgebra,
where U is the usual enveloping functor and Prim \mathcal{H} the usual Lie algebra of the primitive elements of \mathcal{H}.

In the theory developed by J.-L. Loday [6], this result is rephrased by saying that the triple of operads (Com, As, Lie), endowed with the usual Hopf relation, is good, where Com, As, and Lie stand respectively for the operads of commutative, associative and Lie algebras. Other good triples of operads equipped with other relations than the usual Hopf one, have been found since. A summary can be found in [6], see also [3,4] for other examples.

It has been shown in [3] that the triple of operads ($A s, D i p t, M a g^{\infty}$) endowed with the semi-infinitesimal relations is good. The operad Dipt is governed by dipterous algebras which are associative algebras equipped with an extra left module on themselves, see also [7], and $M a g^{\infty}$ is governed by $M a g^{\infty}$-algebras, i.e., K-vector spaces having one n-ary (magmatic) generating operation for each integer $n>1$. We then obtained that the category of connected infinitesimal dipterous bialgebras, $A s^{c}-$ Dipt-bialgebras for short, was equivalent to the category of $M a g^{\infty}$-algebras. In this paper, we propose another equivalence of categories involving $M a g^{\infty}$: the category of connected infinitesimal Hoch-bialgebras is equivalent to the category of $M a g^{\infty}$-algebras.

In Section 2, we introduce Hoch-algebras, give examples and an explicit construction of the free Hoch-algebra over a K-vector space. In Section 3, we introduce the notion of (connected) infinitesimal Hoch-bialgebras. In Section 4 we prove the announced equivalence of categories. In Section 5, we deal with unital Hoch-algebras and close by Section 6 with two other good triples involving the operad Hoch.

2. The free Hoch-algebra

A Hoch-algebra G is a K-vector space equipped with an associative operation * and a magmatic operation \succ verifying:

$$
\mathcal{R}_{2}:(x \succ y) * z+(x * y) \succ z=x \succ(y * z)+x *(y \succ z)
$$

for all $x, y, z \in G$.
Remark 2.1. 1) Recall that a formal deformation of an associative algebra $(A, *)$ is a $K[[t]]$-bilinear multiplication law $m_{t}: A[[t]] \otimes_{K[[t]]} A[[t]] \mapsto A[[t]]$ on the space $A[[t]]$ of formal power series in a variable t with coefficients in A, satisfying the following properties:

$$
m_{t}(a, b)=a * b+m_{1}(a, b) t+m_{2}(a, b) t^{2}+\ldots
$$

for $a, b \in A$ where m_{t} is associative, that is: the equation $m_{t}\left(m_{t}(a, b), c\right)=$ $m_{t}\left(a, m_{t}(b, c)\right)$ for $a, b, c \in A$ holds. It is well known that m_{1} satisfies \mathcal{R}_{2} if and only if m_{t} is associative modulo t^{2}. In this case, $\left.A[t t]\right]$ equipped with the initial associative operation $*$ and m_{1} is a Hoch-algebra.
2) when \succ turns out to be associative, such algebras appear in mathematical physics in the works of A. Odesskii and V. Sokolov [9,8], A.B. Goncharov [2] and V. Dotsenko [1]. See also [5] for others examples of such algebras on matrices. In this paper, we relax the associativity condition on \succ.

Let V be a K-vector space. The free Hoch-algebra over V is defined as follows. It is equipped with a linear map $i: V \rightarrow \operatorname{Hoch}(V)$ and for any Hoch-algebra G and any linear map $f: V \rightarrow G$, there exists a unique Hoch-algebra morphim $\phi: \operatorname{Hoch}(V) \rightarrow G$ such that $\phi \circ i=f$. We now give an explicit construction of the free H och-algebra over a K-vector space.
Denote by T_{n} the set of rooted planar trees (degrees at least 2) with n leaves. The cardinalities of T_{n} are registered under the name $A 001003$ little Schroeder numbers of the Online Encyclopedy of Integer Sequences. For $n=1,2,3$, we get:

$$
T_{1}=\{\mid\}, T_{2}=\{Y\}, T_{3}=\{Y, Y, Y\}
$$

Define grafting operations by:

$$
[\cdot, \ldots, \cdot]: T_{n_{1}} \times \ldots \times T_{n_{p}} \rightarrow T_{n_{1}+\ldots+n_{p}}, \quad\left(t_{1}, \ldots, t_{p}\right) \mapsto\left[t_{1}, \ldots, t_{p}\right]:=t_{1} \vee \ldots \vee t_{p}
$$

where the tree $t_{1} \vee \ldots \vee t_{p}$ is the tree whose roots of the t_{i} have been glued together and a new root has been added. Observe that any rooted planar tree t can be decomposed in a unique way via the grafting operation as $t_{1} \vee \ldots \vee t_{p}$. Set $T_{\infty}:=$ $\bigoplus_{n>0} K T_{n}$. Define over $\bar{T}\left(T_{\infty}\right)$, the following binary operations, first on trees, then by bilinearity:

$$
\begin{gathered}
\text { Concatenation : }\left(t_{1} \ldots t_{p}\right) *\left(s_{1} \ldots s_{q}\right):=t_{1} \ldots t_{p} s_{1} \ldots s_{q} \\
\left(t_{1} \ldots t_{p}\right) \succ\left(s_{1} \ldots s_{q}\right):=\sum_{k=1}^{q} \sum_{i=1}^{p} t_{1} \ldots t_{p-i}\left[t_{p-(i-1)}, \ldots, t_{p}, s_{1}, \ldots, s_{k}\right] s_{k+1} \ldots s_{q}
\end{gathered}
$$

For instance we get:

$$
\begin{gathered}
||\succ|:=||Y+| Y+Y \\
|\succ| Y:=Y Y+Y
\end{gathered}
$$

Theorem 2.2. The K-vector space $\bar{T}\left(T_{\infty}\right)$ endowed with the operations $*$ and \succ is the free Hoch-algebra over K.

Proof. Let $x:=x_{1} \ldots x_{m}, y:=y_{1} \ldots y_{n}$ and $z:=z_{1} \ldots z_{p}$. We get:

$$
\begin{aligned}
(x \succ y) * z+(x * y) \succ z & =\sum_{k=1}^{n} \sum_{i=0}^{m-1} x_{1} \ldots x_{m-(i+1)}\left[x_{m-i}, \ldots, x_{m}, y_{1}, \ldots, y_{k}\right] y_{k+1} \ldots y_{n} z_{1} \ldots z_{p} \\
& +\sum_{k=1}^{p} \sum_{i=0}^{n-1} x_{1} \ldots x_{m} y_{1} \ldots y_{n-(i+1)}\left[y_{n-i}, \ldots, y_{n}, z_{1}, \ldots, z_{k}\right] z_{k+1} \ldots z_{p} \\
& +\sum_{k=1}^{p} \sum_{i=0}^{m-1} x_{1} \ldots x_{m-(i+1)}\left[x_{m-i}, \ldots, x_{m}, y_{1}, \ldots, y_{n}, z_{1} \ldots, z_{k}\right] z_{k+1} \ldots z_{p} \\
x \succ(y * z)+x *(y \succ z)= & \sum_{k=1}^{n} \sum_{i=0}^{m-1} x_{1} \ldots x_{m-(i+1)}\left[x_{m-i}, \ldots, x_{m}, y_{1}, \ldots, y_{k}\right] y_{k+1} \ldots y_{n} z_{1} \ldots z_{p} \\
& +\sum_{k=1}^{p} \sum_{i=0}^{m-1} x_{1} \ldots x_{m-(i+1)}\left[x_{m-i}, \ldots, x_{m}, y_{1}, \ldots, y_{n}, z_{1}, \ldots, z_{k}\right] z_{k+1} \ldots z_{p} \\
& +\sum_{k=1}^{p} \sum_{i=0}^{n-1} x_{1} \ldots x_{m} y_{1} \ldots y_{n-(i+1)}\left[y_{n-i}, \ldots, y_{n}, z_{1}, \ldots, z_{k}\right] z_{k+1} \ldots z_{p},
\end{aligned}
$$

showing that

$$
(x \succ y) * z+(x * y) \succ z=x \succ(y * z)+x *(y \succ z),
$$

holds for all forests of planar rooted trees x, y, z. Observe that any rooted planar tree $t:=\left[t_{1}, \ldots, t_{n}\right]$ can be rewritten as:

$$
t=\left(t_{1} *\left(t_{2} \ldots t_{n-1}\right)\right) \succ t_{n}-t_{1} *\left(\left(t_{2} \ldots t_{n-1}\right) \succ t_{n}\right)
$$

Let G be a Hoch-algebra and $g \in G$ and $f: K \rightarrow G$ be a linear map. Consider the embedding $i: K \hookrightarrow \bar{T}\left(T_{\infty}\right)$ defined by $i\left(1_{K}\right):=\mid$ and define by induction the map $\phi: \bar{T}\left(T_{\infty}\right) \rightarrow G$ as follows:

$$
\begin{gathered}
\phi(\mid)=g \\
\phi\left(t_{1} \ldots t_{n}\right)=\phi\left(t_{1}\right) *_{G} \phi\left(t_{2}\right) *_{G} \ldots *_{G} \phi\left(t_{n}\right) \\
\phi(t)=\left(\phi\left(t_{1}\right) *_{G}\left(\phi\left(t_{2}\right) \ldots \phi\left(t_{n-1}\right)\right)\right) \succ_{G} \phi\left(t_{n}\right)-\phi\left(t_{1}\right) *_{G}\left(\left(\phi\left(t_{2}\right) \ldots \phi\left(t_{n-1}\right)\right) \succ_{G} \phi\left(t_{n}\right)\right)
\end{gathered}
$$

for any $t:=\left[t_{1}, \ldots, t_{n}\right]$ and extend ϕ by linearity. By construction, ϕ is a morphism of associative algebras. Using the fact that:

$$
(x * y) \succ z-x *(y \succ z)=x \succ(y * z)-(x \succ y) * z,
$$

and changes of indices in the involving sums, one shows that ϕ is also a morphism for the magmatic operations. It is then the only Hoch-morphism such that $\phi \circ i=f$.

As the operad Hoch is nonsymmetric, the following holds. Let V be a K-vector space. The free Hoch-algebra over V is the K-vector space:

$$
\operatorname{Hoch}(V):=\bigoplus_{n>0} \operatorname{Hoch}_{n} \otimes V^{\otimes n}
$$

with $\operatorname{Hoch}(K):=\bigoplus_{n>0} \operatorname{Hoch}_{n} \simeq \bar{T}\left(T_{\infty}\right)$ (hence Hoch_{n} is explicitely described in terms of forests of rooted planar trees) equipped with the operations $*$ and \succ defined as follows:

$$
\begin{gathered}
\left(\left(t_{1} \ldots t_{n}\right) \otimes \omega\right) *\left(\left(s_{1} \ldots s_{p}\right) \otimes \omega^{\prime}\right)=\left(t_{1} \ldots t_{n} s_{1} \ldots s_{p}\right) \otimes \omega \omega^{\prime} \\
\left(\left(t_{1} \ldots t_{n}\right) \otimes \omega\right) \succ\left(\left(s_{1} \ldots s_{p}\right) \otimes \omega^{\prime}\right)=\left(\left(t_{1} \ldots t_{n}\right) \succ\left(s_{1} \ldots s_{p}\right)\right) \otimes \omega \omega^{\prime}
\end{gathered}
$$

for any $\omega \in V^{\otimes n}, \omega^{\prime} \in V^{\otimes p}$. The embedding map $i: V \hookrightarrow \operatorname{Hoch}(V)$ is defined by: $v \mapsto \mid \otimes v$.
Since the generating function associated with the Schur functor \bar{T} is $f_{\bar{T}}(x):=\frac{x}{1-x}$ and with the Schur functor T_{∞} is $f_{T_{\infty}}(x):=\frac{1+x-\sqrt{\left(1-6 x+x^{2}\right)}}{4}=x+x^{2}+3 x^{3}+$ $11 x^{4}+45 x^{5}+\ldots$, the generating function of the operad Hoch is $f_{\bar{T}} \circ f_{T_{\infty}}$, that is:

$$
f_{H o c h}(x):=\frac{1+x-\sqrt{1-6 x+x^{2}}}{3-x+\sqrt{1-6 x+x^{2}}}=x+2 x^{2}+6 x^{3}+22 x^{4}+\ldots
$$

The sequence $(1,2,6,22,90, \ldots)$ is registered as $A 006318$ under the name Large Schroeder numbers on the Online Encyclopedy of Integer Sequences.

Remark 2.3. When \succ is associative, the corresponding free algebra has been constructed in [1].

3. Infinitesimal Hoch-bialgebras

By definition, an infinitesimal Hoch-bialgebra (or an $A s^{c}-H o c h$-bialgebra for short) $(\mathcal{H}, * \succ, \Delta)$ is a Hoch-algebra equipped with a coassociative coproduct Δ verifying the following so-called nonunital infinitesimal relations:

$$
\begin{aligned}
\Delta(x \succ y) & :=x_{(1)} \otimes\left(x_{(2)} \succ y\right)+\left(x \succ y_{(1)}\right) \otimes y_{(2)}+x \otimes y \\
\Delta(x * y) & :=x_{(1)} \otimes\left(x_{(2)} * y\right)+\left(x * y_{(1)}\right) \otimes y_{(2)}+x \otimes y
\end{aligned}
$$

It is said to be connected when $\mathcal{H}=\bigcup_{r>0} F_{r} \mathcal{H}$ with the filtration $\left(F_{r} \mathcal{H}\right)_{r>0}$ defined as follows:
(The primitive elements) $F_{1} \mathcal{H}:=\operatorname{Prim} \mathcal{H}=\operatorname{ker} \Delta$,
Set $\Delta^{(1)}:=\Delta$ and $\Delta^{(n)}:=\left(\Delta \otimes i d_{n-1}\right) \Delta^{(n-1)}$ with $i d_{n-1}=\underbrace{i d \otimes \ldots \otimes i d}_{\text {times } n-1}$. Then,

$$
F_{r} \mathcal{H}:=\operatorname{ker} \Delta^{(r)}
$$

Theorem 3.1. Let V be a K-vector space. Define on $\operatorname{Hoch}(V)$, the free Hochalgebra over V, the cooperation $\Delta: \operatorname{Hoch}(V) \rightarrow \operatorname{Hoch}(V) \otimes \operatorname{Hoch}(V)$ recursively as follows:

$$
\begin{gathered}
\Delta(i(v)):=0, \text { for all } v \in V \\
\Delta(x \succ y):=x_{(1)} \otimes\left(x_{(2)} \succ y\right)+\left(x \succ y_{(1)}\right) \otimes y_{(2)}+x \otimes y . \\
\Delta(x \star y):=x_{(1)} \otimes\left(x_{(2)} \star y\right)+\left(x \star y_{(1)}\right) \otimes y_{(2)}+x \otimes y
\end{gathered}
$$

for all $x, y \in \operatorname{Hoch}(V)$. Then $(H o c h(V), \Delta)$ is a connected infinitesimal Hochbialgebra.

Proof. This result can be proved by hand or can be seen as a corollary of the Theorem 4.2 in the next section.

4. A good triple of operads

It can be usefull to have the following result when searching for good triples.
Lemma 4.1. Let $\mathcal{C}, \mathcal{A}, \mathcal{Z}, \mathcal{Q}$ and Prim be operads. Suppose the triples of operads $(\mathcal{C}, \mathcal{A}$, Prim) and $(\mathcal{C}, \mathcal{Z}, V e c t)$ equipped with the same compatibility relations, between products and coproducts, to be good. Suppose $\mathcal{A}=\mathcal{Z} \circ \mathcal{Q}$, then Prim $=\mathcal{Q}$.

Proof. Since $(\mathcal{C}, \mathcal{Z}, V e c t)$ is good, the notion of $\mathcal{C}^{c}-\mathcal{Z}$-bialgebra has a meaning and the following are equivalent:
(1) The $\mathcal{C}^{c}-\mathcal{Z}$-bialgebra \mathcal{H} is connected.
(2) As \mathcal{Z}-algebra, \mathcal{H} is isomorphic to the free \mathcal{Z}-algebra over its primitive elements.
(3) As \mathcal{C}^{c}-coalgebra, \mathcal{H} is isomorphic to the cofree \mathcal{C}^{c}-coalgebra over its primitive elements.
As $(\mathcal{C}, \mathcal{A}, \operatorname{Prim})$ is good, the isomorphism of Schur functors $\mathcal{A} \simeq \mathcal{C}^{c} \circ \operatorname{Prim}$ holds. Therefore, if V is a K-vector space, then $\mathcal{A}(V)=\mathcal{C}^{c}(\operatorname{Prim}(V))$. As $\mathcal{A}(V)=\mathcal{C}^{c}(\operatorname{Prim}(V))$, it obeys the third item, consequently the second item. But by hypothesis $\mathcal{A}(V)=\mathcal{Z}(\mathcal{Q}(V))$. As $\mathcal{A}(V)$ is isomorphic to the free \mathcal{Z}-algebra over its primitive elements, we get $\mathcal{Q}(V)=\operatorname{Prim}(V)$. Consequently, $\operatorname{Prim}=\mathcal{Q}$.

Theorem 4.2. The triple of operads (As,Hoch, Mag ${ }^{\infty}$) endowed with the infinitesimal relation is good.

Proof. Fix an integer $n>0$. By $[n]-M a g$ we mean the nonsymmetric binary operad generated by n magmatic (binary) operations. In [4, Theorems 4.4 (and $4.5)]$, it has been shown that for each integer $n>0$ the triples of operads $(A s,[n]-$
$M a g, \operatorname{Prim}[n]-M a g)$ endowed with the infinitesimal relations were good. For $n=2$, the operadic ideal J generated by the primitive operations:

$$
\begin{gathered}
(\succ \otimes i d)+\succ(\otimes i d)-\succ(i d \otimes *)-*(i d \otimes \succ), \\
(\otimes i d)-*(i d \otimes *)
\end{gathered}
$$

yields another good triple of operads $(A s,[2]-M a g / J, \operatorname{Prim}([2]-M a g / J))$ (cf. [6, Proposition 3.1.1] on quotient triples), which turns out to be the triple (As, Hoch, Prim Hoch). As (As, As, Vect) endowed with the infinitesimal relation is good $(\mathrm{cf}[7])$ and Hoch $=$ AsoMag ${ }^{\infty}$ using Section 2, we get Prim Hoch $=$ Mag $^{\infty}$ by using Lemma 4.1.

Remark 4.3. We give here another proof. The triple (As, Hoch, Prim $_{H o c h}$) can be shown to be good via [6, Theorem 2.5.1] checking hypotheses H0, H1 and $H 2 e p i$ of this theorem. The two first hypotheses are straightforward. Let V be a K-vector space. For the last one, recall that the projection map $\operatorname{Hoch}(V) \rightarrow V$ determines a unique coalgebra map $\phi(V): \operatorname{Hoch}(V) \rightarrow A s^{c}(V)$ mapping any tree of $\operatorname{Hoch}(n)$, with $n \in \mathbb{N}^{*}$ to $1_{n} \in A s^{c}(n)$. Consider $s(V): A s^{c}(V) \rightarrow \operatorname{Hoch}(V)$ mapping 1_{n} to the tree $|\ldots|$ (n times). It is also a coalgebraic morphism and $\phi(V) \circ s(V)=i d_{A s^{c}(V)}$. Hence H2epi holds. Hence, using [6, Theorem 2.5.1], $\left(A s, H o c h, \operatorname{Prim}_{H o c h}\right)$ is good. By construction $\operatorname{Hoch}(K)=A s\left(T_{\infty}\right)$ and $\operatorname{Hoch}(V)$ is isomorphic to $A s\left(M a g^{\infty}(V)\right)$ using Section 2. As $(A s, A s, V e c t)$, endowed with the same compatibility relations betwen products and coproducts, that is the infinitesimal one, is good, we get $\operatorname{Prim}_{H o c h}=M a g^{\infty}$.

We then obtain another equivalence of categories involving the operad $M a g^{\infty}$.
Corollary 4.4. The category of connected infinitesimal $A s^{c}-H o c h-b i a l g e b r a s ~ a n d ~ d$ the category of $M a g^{\infty}$-algebras are equivalent.

$$
\left\{\text { conn. } A s^{c}-\text { Hoch }- \text { bialg. }\right\} \underset{\text { Primitive }}{\stackrel{U}{\leftrightarrows}}\left\{M a g^{\infty}-\text { alg. }\right\}
$$

where U and Primitive are respectively the universal enveloping functor and the primitive functor.

Proof. Apply [6, Theorem 2.6.3].
Remark 4.5. The functor Primitive is obviously given as follows. If $(\mathcal{H}, *, \succ)$ is a connected infinitesimal Hoch-bialgebra, then for all integer $n>1$ and for all primitive elements $x_{1}, \ldots, x_{n} \in \mathcal{H}$, the element:

$$
\left[x_{1}, \ldots, x_{n}\right]_{n}:=\left(x_{1} * \ldots * x_{n-1}\right) \succ x_{n}-x_{1} *\left(\left(x_{2} * \ldots * x_{n-1}\right) \succ x_{n}\right)
$$

will be primitive. The functor U acts as follows. Let $\left(M,\left([, \ldots,]_{n}\right)_{n>1}\right)$ be a Mag ${ }^{\infty}$ algebra with the $[, \ldots,]_{n}$ being its generating n-ary operations. Then $U(M)$ is given by $\operatorname{Hoch}(M) / \sim$, where the equivalence relation \sim consists in identifying,

$$
\left(x_{1} * \ldots * x_{n-1}\right) \succ x_{n}-x_{1} *\left(\left(x_{2} * \ldots * x_{n-1}\right) \succ x_{n}\right)
$$

with $\left[x_{1}, \ldots, x_{n}\right]_{n}$, for all $x_{1} \ldots, x_{n} \in M$.

5. Extension to a unit

Unital Hoch-algebras are Hoch-algebras equipped with a unit 1 whose compatibility with operations are defined as follows:

$$
x \succ 1=x=1 \succ x, \quad x * 1=x=1 * x .
$$

For instance, $\operatorname{Hoch}_{+}(V):=K .1_{K} \oplus \operatorname{Hoch}(V)$, where $\operatorname{Hoch}(V)$ is the free Hochalgebra over a K-vector space V is a unital $H o c h$-algebra with unit 1_{K}. This gives birth to unital $M a g^{\infty}$-algebras which are $M a g^{\infty}$-algebras such that the generating operations are related with the unit as follows:

$$
\begin{gathered}
{[1, \cdot, \ldots, \cdot]_{n}=0} \\
{[\cdot, \ldots, 1, \ldots, \cdot]_{n}=[\cdot, \ldots, \cdot]_{n-1},} \\
{[\cdot, \ldots, \cdot, 1]_{n}=0}
\end{gathered}
$$

Over $\operatorname{Hoch}_{+}(V)$, one has a unital infinitesimal coproduct δ defined via the former coproduct Δ as follows:

$$
\delta(x)=1_{K} \otimes x+x \otimes 1_{K}+\Delta(x)
$$

for any $x \in \operatorname{Hoch}(V)$. The compatibility relations are the so-called unital infinitesimal relations defined as follows:

$$
\begin{gathered}
\Delta(x \succ y):=x_{(1)} \otimes\left(x_{(2)} \succ y\right)+\left(x \succ y_{(1)}\right) \otimes y_{(2)}-x \otimes y . \\
\Delta(x * y):=x_{(1)} \otimes\left(x_{(2)} * y\right)+\left(x * y_{(1)}\right) \otimes y_{(2)}-x \otimes y .
\end{gathered}
$$

We then obtain the good triple of operads $\left(A s, H o c h, M a g^{\infty}\right)$ equipped with the unital infinitesimal relations.

6. Other triples of operads

The triple of operads ($A s, H o c h, M a g^{\infty}$) endowed with the infinitesimal relations are not the only one involving the operad Hoch. By changing the compatibility relations, two other good triples of operads (Com, Hoch, Prim Com $^{\text {Hoch }}$) and $\left(A s, H o c h\right.$, Prim $_{A s}$ Hoch) endowed respectively with the Hopf relations and the semi-Hopf relations can be proposed. But contrarily to the case of the triple ($A s, H o c h, M a g^{\infty}$) the explicit descriptions of operads of the primitive elements of these two other triples are open problems.

References

[1] V.Dotsenko, Compatible associative products and trees, Algebra and Number Theory, 3(5) (2009), 567-586.
[2] A.B. Goncharov, Galois symmetries of fundamental groupoids and noncommutative geometry, Duke Math. J., 128(2) (2005), 209-284.
[3] Ph. Leroux, Infinitesimal or cocommutative dipterous bialgebras and good triples of operads, arXiv:0803.1421.
[4] Ph. Leroux, L-algebras, triplicial-algebras, within an equivalence of categories motivated by graphs, arXiv:0709.3453, to appear in Comm. Algebra.
[5] Ph. Leroux, Tiling the $\left(n^{2}, 1\right)$-De-Bruijn graph with n coassociative coalgebras, Comm. Algebra, 32(8) (2004), 2949-2967.
[6] J.-L. Loday, Generalized bialgebras and triples of operads, Astérisque, 320 (2008), 1-116.
[7] J.-L. Loday and M. Ronco, On the structure of cofree Hopf algebras, J. Reine Angew. Math., 592 (2006), 123-155.
[8] A. Odesskii and V. Sokolov, Pairs of compatible associative algebras, classical Yang-Baxter equation and quiver representations, arXiv:math/0611200.
[9] A. Odesskii and V. Sokolov, Integrable matrix equations related to pairs of compatible associative algebras, J.Phys. A, 39 (2006), 12447-12456.

Philippe Leroux

27 Rue Roux Soignat
69003 Lyon, France
e-mail: ph_ler_math@yahoo.com

