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ABSTRACT. In this paper we study certain properties of generalized local co-
homology modules with respect to a Serre class. We have proved that the
membership of the generalized local cohomology of finite modules M and N in
a Serre subcategory in the upper range (lower rang) depends on the support
of module M (N).
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1. Introduction

Throughout this paper (R,m) is a commutative Noetherian local ring. For
unexplained terminology from homological and commutative algebra we refer to
[8] and [7]. Generalized local cohomology was given in the local case by J. Her-
zog [9] and in the more general case by Bijan-Zadeh [5]. Let R be a commu-
tative Noetherian ring with identity, a an ideal of R and let M, N be two R-
modules. For an integer ¢ > 0, the i-th generalized local cohomology module
H{(M,N) = lim Exti,(M/a"M,N) with M = R, we obtain the ordinary lo-
cal cohomology module Hi(N) of N with respect to a which was introduced by
Grothendieck. We recall some properties of generalized local cohomology modules
which we need in this note. For any ideal a of R and two R-modules M and N the

following statements hold:

(i) f0 - N' — N — N” — 0 is an exact sequence of R-modules, then there

are long exact sequences

0— HY(M,N'") - HY(M,N) - HY(M,N") — ...
— H}(M,N') —» H}(M,N) — H}(M,N") — ...
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and

"

0— HYN",M)— HY(N,M) — HY (N, M) — ...
— H}(M,N') — H}(M,N) — H}(M,N") — ...

of generalized local cohomology modules.
(ii) If N is an a-torsion R-module, then there is an isomorphism H' (M, N) —
Exts (M, N) for all n > 0.

Recall that a class S of R-modules is a Serre subcategory of the category of
R-modules, when it is closed under taking submodules, quotients and extensions.
In this paper, we study some properties of generalized local cohomology modules
by using Serre classes. In [1], the authors have discussed the connection between
Hi(N) and the Serre classes of R-modules.

Using the generalized local cohomology modules, we can define t,(M, N) (resp.
t*(M, N)) of a pair (M, N) of R-modules relative to the ideal a by
t3(M,N) = to(M,N) = inf{i € N| H{(M, N) is not in S}

(resp. t&(M,N) =t*(M,N) =sup{i € N| H.(M,N) is not in S})
with the usual convention that the infimum (resp. supremum) of the empty set of in-
tegers is interpreted as +00 (resp. —oo0). We denote t4(R, N) = t4(N) (resp. t*(R, N)
= t%(NV)). We study the behavior of t,(M, N) and t*(M, N) under changing one of
the M and N, when we fixed the one others.
This paper recovers some results regarding the local cohomology R-modules that

have appeared in different papers.

2. Study of t,(M,N)

Lemma 2.1. Let N be in S and M a finitely generated R-module. Then for any
i € Ng, the R- modules Torf (M, N) and Exts,(M,N) are in S.

Proof. Let --- - F;, - F;_1 — --- = F1 — Fy — M — 0 be a minimal free
resolution of M. Then Torf(M,N) is an R-subquotient of F; @ N = NTk(F)
and hence is in S, where rk(F) means the rank of a free module F. The similar
argument shows that Exth (M, N) is in S. O

Theorem 2.2. Let S be a Serre subcategory of the category of R-modules. Let
a be an ideal of R and N a finite R-module. Suppose that L is an R-module in
S. If M is a finite R-module with SuppM C SuppN, then tq(M,L) > t,(N, L),
where the support of T is denoted by SuppT for an R-module T. In particular if
SuppN =SuppM , then t4(N,L) = tq(M, L)
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Proof. It is enough to show that H:(M, L) is in S for all i < t4(N,L) and all
finitely generated R-modules M such that SuppM C SuppN. To this end, we
argue by induction on . In view of hypothesis I'q(L) is in S. Therefore, since
HY(M,L) = Hom(M,T'4(L)), we see, by Lemma 2.1, that H(M, L) is in S. Now,
suppose, inductively, that ¢ > 0 and that the result has been proved for i — 1. By
Gruson’s theorem (see [12, 4.1]), there is a chain 0 = My C M; C --- C M; = M of
submodules of M such that each of the factor M;/M;_; is a homomorphic image
of a direct sum of finitely many copies of N. In view of the long exact sequence of

generalized local cohomology modules that induced by the short exact sequence
0—>Mj,1—>Mj—>Mj/Mj,1—)0 j:].,...,l,

it suffices to treat with only the case [ = 1. So we have an exact sequence

t
0=+ K—EPN— M0,
i=1
where t € N and K is a finitely generated R-module. This induces the long exact
sequence

t
0— HY(M,L) —» HY(@D N, L) » H(K,L) = ---
=1

t
HN(K,L) - H{(M,L) — H.(EP N.L).
i=1
By induction hypothesis, Hi~(K, L) is in S. Also, Hé(@:zl N, L) is in S, because
H{(®'_|N,L) = @!_, H(N,L) and H:(N,L) is in S, so that, in view of the
above exact sequence, the R-module H(M, L) is in S. O

Lemma 2.3. (i) Let M be a finitely generated R-module, N an R-module and
ta(N) > 0. Then
(1) 15(M, N/T4(N)) = £2(M, N)
(2) ta(M, N) = 1o(M. N/To(N))
(ii) Let x € a be a regular element on N. Then
(1) ta(M,N/xN) >t (M,N)—1
(2) t*(M,N)>t*(M,N/zN).

Proof. Since H:(M,T4(N)) = Extty(M,T4(N)), it follows from Lemma 2.1 that
Hi(M,T4(N)) is in S. Now, the claim is clear by the long exact sequence
s HI(M, Ta(N)) = HY(M, N) — Hi(M, N/Tq(N)) > -
(ii) It is clear by the long exact sequence
- — Hi{(M,N) — Hi(M,N) — Hi(M,N/zN) — --- . O
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Theorem 2.4. Let a be an ideal of R and L, M and N finitely generated R-modules.

(i) If0 - L - M — N — 0 is an exact sequence, then for any R-module C,
we have to(M,C) = inf{t,(L,C), t.(N,C)}
(ii) ta(R,N) =inf{ts(C,N) | C is finitely generated over R}
(i) If r < tq(R/P,N) for all P € SuppM, then r < tq(M,N).
(iv) to(M,L) = inf{t(R/P,L) | P € Supp M}
(v) Ifl =pd(N) < 00, then tq(M,N) > tqo(M, R) — pd(N).

Proof. (i), (ii) are clear by definition.

(iii) There is a prime filtration 0 = My C My C --- C My = M of submodules of
M, such that M;/M;_1 = R/P; where P; €SuppM. We use induction on ¢. When
t =1 H(M,N) = H;(R/P,N) is in S. Now suppose that ¢ > 1 and that the
result has been proved for t — 1. The exact sequence 0 — M;_1—M;—M;/M;_1—0
induces the long exact sequence H] (M;/M;_1,N) = HI (M, N) — H(M;_1,N).
It follows that H (M, N) is in S. This completes the proof of the theorem.

(iv) By using Theorem 2.2, t4(R/P,N) > to(M,N) = r for all P €SuppM and so
we assume that r = ¢,(M, N) < t4(R/P,N). Note that, in view of (iii) H] (M, N)
is in S. This contradiction completes the proof.

(v) We use induction on I = pd(N). If [ = 0, then there is a nothing to prove. Now,
assume that [ > 0 and that the assertion holds for [ — 1. We can construct exact
sequence 0 - T — F — N — 0 of finitely generated R-modules such that F' is
free and pd(T) = [ — 1. By the induction hypothesis, t4(M,T) > to(M,R) — 1 + 1.
Let i < tqo(M,R) —I. Then, it follows from the exact sequence H:(M,F) —
Hi{(M,N) — H{Y(M,T), that Hi(M, N) is in S, and the result follows. O

Definition 2.5. An R-module N is said to be Weakly Laskerian if the set of

associated primes of any quotient module of N is finite.

Remark 2.6. If N is weakly Laskerian, then AssN is finite. This holds, by employ-
ing a method of proof which is similar to that used in [7, 2.1.1], N is a-torsion-free

if and only if a contains a non-zerodivisor on N .

Theorem 2.7. Let S be a Serre subcategory of the category of R-modules. Let a
be an ideal of R and M a finite R-module. Suppose that N a weakly Laskerian R-
module of dimensionn. If t4(N) > 0, then the module Hom(R/a, Hé“(M’N)(M, N))
is in S. Furthermore, if L is a finite R-module such that SuppL C V(a), where V (a)
is the set of prime ideals of R containing a, then Hom(L,Hff(M’N) (M,N)) is in
S.
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Proof. Set t,(M,N) = t and we use induction on dim(N) = n. If n = 0,
then N = T',,(N) and hence H:(M,N) = Extly(M,Tq(N)) for all i. There-
fore, since t4(N) > 0, the R-module I'g(N) is in S, it follows from Lemma 2.1,
that Hom(R/a, H{(M, N) is in S. So suppose that n > 0 and that the result has
been proved for smaller values of n. Since, Hi(M,['4(N)) = Ext’(M,[4(N)) for
all 7, it follows from Lemma 2.1, that Hom(R/a, H,(M,N)) is in S if and only
if Hom(R/a, H{(M,N/T'4(N))) is in S. Thus we may assume that ['y(N) = 0.
Then there exists * € a such that = is an N-sequence. The exact sequence
0+ N —- N — N/zN — 0 implies the following long exact sequence of gen-

eralized local cohomology modules
HL Y (M, N) 5 HY (M, N) S HE WM N/zN)
HY(M,N) 5 HY (M, N) 5 HY(M, N/zN).
Using this exact sequence by the induction hypothesis and Lemmas 2.1, 2.3, it fol-
lows that the R-module Hom(R/a, H."1(M, N/xN)) is in S. Note that, by Lemma
2.1, Exth(R/a,im#) is in S. Now, using the exact sequence
0 — Hom(R/a,im#) — Hom(R/a, H."*(M, N/xzN))
— Hom(R/a,imyp) — Exth(R/a,imd),
we get Hom(R/a,imp) = Hom(R/a, (0 :gt(v,n) ) = Hom(R/a, H: (M, N)) is

in S. The last part follows from Gruson’s Theorem and the similar argument in
Theorem 2.2. (]

Theorem 2.8. Let S be a Serre subcategory of the category of R-modules. Let
a be an ideal of R and N a weakly Laskerian R-module of finite krull dimension,
such that ty(N) > 0 and H:(M,N) is in S for all i < t. Let X be a submodule of
HY(M,N) such that X is in S. Then Hom(R/a, H,(M,N)/X) is in S.

Proof. Let X be a submodule of H(M, N) such that X is in S. The short exact
sequence
0— X — H{(M,N)— H.(M,N)/X =0

induces the following exact sequence
0 — Hom(R/a,X) — Hom(R/a, H.(M,N)) —
Hom(R/a, H{(M,N)/X) — Exth(R/a, X).

Since Hom(R/a, H:(M,N)) and Exzty(R/a,X) are in S by Theorem 2.7 and
Lemma 2.1, we have Hom(R/a, H.(M,N)/X) isin S. O
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The previous theorem recovers the [4, 3, 6, 10].

Example 2.9. Let r = f-depth(a, N) = 0 and S be class of Artinian R-modules.
Then Hom(R/a, HY(N)) is not Artinian (cf. [11]). This example shows that if we
delete the assumption tq(N) > 0, then it may happen that Hom(R/a, H (M, N)/X)

is not in S.

Remark 2.10. The following classes of modules are Serre subcategories and they
are true in above theorems.
(1) The class of zero modules and to(M, N) = grade(a + Ann(M), N).
(2) The class of Artinian modules and to(M,N) = f-depth(a + Ann(M),N).
(3) The class of Noetherian modules and to(M,N) = fo(M, N), where fo(M,N),
the a-finiteness dimension of a pair (M, N) of R-modules relative to the
ideal a, is the least non-negative integer i such that H:(M, N) is not finitely
generated.
(4) The class of R- modules with finite support and tq(M,N) = g-depth(a +
Ann(M),N).

3. Study of t*(M,N)

Notation. The cohomological dimension c¢d,(M, N) of M and N with respect to
a is defined as cdq(M, N) = sup{i > 0 | H:(M,N) # 0}. Note that if pdg(M) is
finite, then, by easy induction, we can show that cd, (M, N) < cc.

Theorem 3.1. Let S be a Serre subcategory of the category of R-modules. Let a
be an ideal of R, N a finite R-module and M a finite R-module with pd(M) < oo,
where we denote by pd(T) the projective dimension over R of T for an R-module
T. If L is a finite R-module with SuppL CSuppN, then t*(M,L) < t*(M,N). In
particular, if SuppL=SuppN, then t*(M,L) = t*(M,N).

Proof. It is enough to show that H:(M, L) belongs to S for all finite R-module L
with SuppL CSuppN and for all ¢ > t*(M, N). Since pd(M) < oo, so cdq(M, L)
is finite, we have Hi(M,L) = 0 is in S for all i > cdq(M, L). We now argue by
descending induction on i. Now, assume that t*(M, N) < i and that the claim
holds for 7 + 1. By Gruson’s Theorem (see [12, 4.1]), there is a chain 0 = Ly C
Ly C -+ C Ly = L of submodules of L such that each of the factor L;/L;_1 is a
homomorphic image of a direct sum of finitely many copies of N. In view of the long
exact sequence of generalized local cohomology modules that induced by short exact
sequence 0 — L,y — L; — L;/L;—; — 0, for ¢ = 1,...,1, it suffices to treat with
only the case [ = 1. So, we have an exact sequence 0 — K — @’;:1 N — L — 0,
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where ¢ € N and K is a finitely generated R-module. This induces the long exact

sequence

¢
HN (M, L) — H{(M,K) — H.(M,D N) — Hi(M, L) - H{"' (M, K).
i=1
By the induction hypothesis, Hi™' (M, K) belongs to S. Also, Hi(M,@!_,(N)) =
@le Hi(M, N) belongs to S, because i > t*(M, N). Therefore, by the above exact
sequence H:(M, L) belongs to S. O

Theorem 3.2. Let a be an ideal of R and L, C and N finitely generated R-modules.

(i) If0 - L - N — C — 0 is an exact sequence, then for any finitely
generated R-module M, we have t*(M, N) = sup{t*(M,C),t*(M,L)}.

) t%(M, R) = sup{t*(M,C) | C is finitely generated over R }.

(ii) Let H:(M,R/P) be in S for all P €SuppN. Then HL(M,N) is in S.

(iv) If pdr(M) < oo, then t*(M, N) = sup{t*(M, R/P) | P €SuppN}.

(v) Ifl = pd(M) < o0, then t*(M,N) —1 <t*(R,N) =t*(N).

(ii

Proof. (i) and (ii) are clear by definition.

(i) There is a prime filtration 0 = Ny € N; C --- C Ny = N of submodules of
N, such that N;/N;_1 = R/P, where P; €SuppN. We use induction on ¢. When
t =1, H(M,R/P) = HY(M,N) is in S, where we put P = P;. Now suppose
that t > 1 and that the result has been proved for t — 1. The exact sequence
0 — Ni_1 = Ny = N¢/Ni_1 — 0 induces the long exact sequence

H(M,Ny_1) — H(M,N;) — H;(M,R/P,).

It follows that HY (M, Ny) is in S. This completes the proof.

(iv) By using Theorem 3.1 t*(M, R/P) < t*(M,N) = r for all P €SuppN and so
we assume that t*(M,R/P) < t*(M,N) = r. By using (iii), Hy(M,N) is in S.
This contradiction completes the proof.

(v) We use induction on I. If I = 0, then there is nothing to prove. We can
construct an exact sequence 0 — M’ — F — M — 0 of finitely generated R-
modules such that F' is free and pd(M’) = | — 1. By the induction hypothesis,
t*(M',N) <t*(R,N)+1—1. Let i > t*(R, N) + 1. Then, it follows from the exact

sequence
Hi (M, N) — Hy(M,N) = Hy(F,N) = Hy(M', N)

that H:(M, N)is in S. Hence t*(M,N) < t*(R,N) +1=t*(N) + . O
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Theorem 3.3. Let S be a Serre subcategory of the category of R-modules. Let a be
an ideal of R, N a finitely generated R-module and M an R-module, t = t*(M,N).
Assume that one of the following conditions is satisfied:

(i) ta(N) >0,

(ii) t*(M,N) > pd(M).
Then the HL(M,N)/aHL(M,N) belongs to S.

Proof. We prove by induction on dimN = n. If n = 0, then N is m-torsion, and
hence a-torsion module. Therefore H:(M,I'q(N)) = Exth,(M,N)isin S by Lemma
2.1. Thus the claim holds for n = 0. Now, suppose, inductively, that n > 0 and the
result has been proved for all finitely generated R-module of dimension smaller than
n. Since t4(N) > 0, view of the long exact sequence of generalized local cohomology
modules that is induced by the exact sequence 0 — I'y(N) - N — N/I';(N) — 0,
we may assume that I'y(N) = 0. Then there exists z € a such that z is an N-
sequence. The exact sequence 0 - N — N — N/xN — 0 implies the following

long exact sequence of generalized local cohomology modules
H. "' (M,N/xN) — H.(M,N) — H,(M,N) — H.(M,N/zN).

It yields that Hi(M,N/xN) belongs to S for all i > ¢t. By using Lemma 2.3,
t9(M, N/zN) < t8(M, N). If t%(M, N/zN) < t*(M, N), then H(M, N/zN) be-
longs to S. If t*(M,N/zN) = t*(M, N), thus HL(M, N/xN)/aHg(M,N/xN) be-

longs to S by induction hypothesis. Now, consider the exact sequence
HL(M,N) % HY(M,N) % HY(M,N/zN) % H'(M, N),
which induces the following two exact sequences
HY(M,N) 5 HY(M,N)—imf—0 and O0—imf—H.L(M, N/xN)—imp—0,

where we denote by imi the image of a map 1. Therefore, we can obtain the

following two exact sequences:
HE(M, N)/aHL (M, N) 5 HY(M, N)/aHL (M, N)—simf/aimf — 0, (%)
Torf(R/a,ime)—imb/aim— HL (M, N/a:N)/aHé(M, N/zN)—imep/aime—0 (*)

Since = € a, from (**) exact sequence, we deduce that, H:(M,N)/aH.{(M,N) =
imf/aimf. Now, Torf(R/a,imy) and HE(M, N/xN)/aHg(M, N/zN) belong in
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S by Lemma 2.1. The claim follows by (*). In addition, in view of (ii) the assertion

follows by repeating the above argument. (I

The previous theorem recovers the [2, 3.1].

Example 3.4. Let (R, m) be a commutative local ring t = cdpw(N) =0, N # 0 and
S be class of zero modules. Then HEL (N)/mHL(N) = N/mN # 0. This example
shows that if we delete the assumption t*(M,N) > pd(M) and t,(N) > 0, then it
may happen that HL (M, N)/aHL(M, N) is not S.
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