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ABSTRACT. A semigroup S is J-trivial if any two distinct elements of S must
generate distinct ideals of S. We investigate this condition for the semigroup
of all right ideals of a ring under right ideal multiplication. There is a rich in-

terplay between the underlying ring and the semigroup of all of its right ideals.
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1. Introduction

Here R is a ring. (Herein all rings are associative, not necessarily commutative,
not necessarily with identity). Let R(R), L(R), and I(R) denote the multiplicative
semigroups of right, respectively left, two-sided ideals of R. In previous works we
considered these semigroups when they are bands (every element idempotent) [7,
8]. Rings for which every right ideal is idempotent are called right weakly regular
(r.w.r.) rings, and have been studied in great detail. For a survey of r.w.r. rings,
see [9].

In this paper we consider the [J-trivial condition for the semigroups R(R) and
L(R) and the consequences for the underlying ring R. A semigroup S is said to be
J -trivial if, whenever a,b € S such that a and b generate the same ideal in S, then
a = b. (Here S will always denote a semigroup and S! is the monoid obtained by
adjoining an identity element 1 to S [3, p.4].) Recall that the Green’s relation [J on
S is defined by: aJb if a,b € S and S'aS! = S'bS'; ie., a and b are J-equivalent
[3, p.48]. Semigroups which are finite and J-trivial have arisen in the study of
formal languages [12], and in the context of full transformation semigroups [13].
Saito gives conditions for a periodic semigroup to be J-trivial [13, Lemma 1.1].
Observe that every semilattice (commutative semigroup in which every element is
idempotent) is J-trivial, and that whenever S is J-trivial, then so is S* and SY.
(Here S° is the semigroup with zero, 0, adjoined [3, p.4].) Not all bands are [J-

trivial. For example, let S be a semigroup in which ab = b for all a,b € S; such a
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semigroup is called right zero [3, p.37]. Any right zero semigroup with more than
one element is a band that is not J-trivial.

In this paper we show that R(R) is J-trivial if R is either commutative, right
duo (every right ideal of R is two-sided), or nilpotent. The paper is arranged as
follows. In Section 2 we consider conditions that imply R(R) is J-trivial. If R is
either right duo, commutative, nilpotent, or a skewfield, then R(R) is J-trivial. If
R(R) is either O-cancellative or has identity, then R(R) is J-trivial. In Sections 3, 4,
and 5 we obtain results assuming R(R) is J-trivial, a hypothesis that is assumed for
the remainder of this introduction. In Section 3 idempotent right ideals are shown
to be ideals, maximal right ideals are considered, and the Jacobson and Brown-
McCoy radicals of R are shown to be equal. In Section 4 minimal right ideals are
considered, subdirectly irreducible rings are classified, and it is shown that every
idempotent is central. In Section 5 it is shown that R r.w.r. implies R is strongly

regular and that R m-regular implies R is strongly m-regular.

2. Conditions which imply that R(R) is J-trivial

We first consider conditions on the ring R which will imply that R(R) is J-
trivial. For any skewfield K, the semigroup R(K') has only two elements, 0 and K,
and K is the identity for the semigroup. So R(K) is J-trivial.

Recall that a ring R is right (left) duo if every right (respectively, left) ideal of
R is a two-sided ideal [10].

Proposition 2.1. Let R be a ring. Then we have the following.

(i) If A,B € I(R) and A # B, then A and B are not J -equivalent in either
R(R) or L(R).
(i1) I(R) is J-trivial.
(iii) If R is right (left) duo, then R(R) (respectively, L(R)) is J-trivial.
(iv) If R is commutative, then R(R) and L(R) are both J-trivial.

Proof. Suppose A, B € I(R) and A and B are J-equivalent in R(R). Then either
A=B,A=XB,A=BX, or A= XBY for some X,Y € R(R). In each case
A C B. Similarly, B C A, so A = B. Proceed similarly if A, B are J-equivalent
in L(R). This establishes part (i). Parts (ii) and (iii) follow immediately from (i),

and (iv) follows immediately from (iii). O

Note that for any commutative ring A and any set 2 of commuting indetermi-
nates, the polynomial ring A[Q)] and the ring of formal power series A < Q > are
each commutative and hence both R(A[€}]) and R(A < Q >) are J-trivial.
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Proposition 2.2. If R is nilpotent, then R(R) and IL(R) are J-trivial.

Proof. Let H, K € R(R) with HJ K. For convenience in calculation we operate in
the semigroup with identity, 1, adjoined to R(R). So H = XKY and K = BHT,
where X,Y, B,T are each in R(R) U {1}. A routine calculation establishes that
H = (XB)"H(TY)", for all n € N. If any one of X, B,T, or Y is not 1, then since
H is nilpotent, by choosing n large enough we get H =0. So K =0. f X =Y =1
we get H = K. Thus R(R) is J-trivial. Similarly, L(R) is J-trivial. O

Let char R = n > 1. Recall that R can be embedded as an ideal in the ring
R, where R! is the set Z,, x R with the operations (o, 7) + (8,t) = (o + 3,7 + 1),
(a,7)(B,t) = (aB,at + pr+rt), a, B € Zp, r,t € R, and that R! has identity with
char R' = n [2]. Observe that right ideals of R map onto right ideals of R! under
the embedding mapping » — (0,7). Identifying R with its image R! we see that
R(R) C R(R'). We refer to this embedding process as the Dorroh extension of R

using Z,, since it follows a procedure first used by J. Dorroh in [5].

Corollary 2.3. Let R be a nilpotent ring with char R = p, where p is a prime.
Then R(R') = R(R) U {R'}. Consequently, if R(R) is J-trivial, then R(R') is
J -trivial.

Proof. As described above form the Dorroh extension of R using Z,. Then R(R)U
{R'} CR(R"). Let B be a nonzero right ideal of R! and let al +r =z € B, where
a € Zy, v € R Ifa+#0,then a 'z =1+ a 'r. Since r is nilpotent, so is a~'r.
Consequently o~ !z is a unit in R! and hence B = R'. Thus R(R)U{R'} = R(R").
Using this and that R(R) is J-trivial it follows immediately that R(R!) is J-
trivial. (]

We next give an example to show that if R(R) is J-trivial, then R need not be

right duo.
0 K K
Example 2.4. Let K be any skewfield, andlet R= |0 0 K|. Since R is nilpo-
0 0 O
0 0 O
tent, then R(R) is J-trivial by Proposition 2.2. Further, the right ideal |0 0 K
00 0

is not two-sided, so that R is not right duo.
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If the skewfield in Example 2.4 has characteristic p for some prime p, then we
can use Corollary 2.3 to embed the ring of Example 2.4 in a ring R' with identity
and having that R(R') is J-trivial.

We use [B] for the ideal in the semigroup R(R) generated by B € R(R).

Proposition 2.5. If R(R) is J-trivial and R is a homomorphic image of the ring

R, then R(R) is J -trivial.

Proof. Let ¢ : R — R be a surjective ring homomorphism with Ker ¢ = I.
For notational convenience let S = R(R). For any C' € R(R) we use C for its
image under ¢. Consider H, K € S with HJ7K. In general, from HJK we have
that H = aKB and K = yHo, where a,3,7,0 € S'. First consider the case
where H = XKY and K = BHT. Then H+1 = (X + I)(K + I)(Y + I) and
K4+I1=(B+D)H+ID)(T+I). SoH+Ic[K+1I]inR(R),and K+ 1 € [H + 1]
in R(R). Since R(R) is J-trivial, this yields H +I = K + I. Consequently H = K.
The other cases, where one or more of a, 3,7, or ¢ is 1, are either similar to the

first case or easier. O

Example 2.6. The homomorphic image of a J-trivial semigroup need not be [J -
trivial. Let F =< 1,z,y > be the free monoid generated by v and y. This monoid
is J-trivial. Let B =< p,q | pg = 1 > be the bicyclic semigroup. Then B is a
simple monoid, and hence any two right ideals are J-related. In particular, B is
not J-trivial. Define ¢ : F — B by ¢(1) = 1, ¢(x) = p, ¢(y) = q. Then B is a

homomorphic image of F.

Proposition 2.7. If R(R) has identity, then the identity is R and R(R) is J-

trivial.

Proof. Let X be the identity of R(R). Let H be a right ideal of R. Then H =
HX C HR C H which implies that H = HR and hence R is a right identity for
R(R). So X = R. In this case R is right duo, and hence R(R) is J-trivial by
Proposition 2.1 (iii). O

Note that in Proposition 2.7 one cannot replace “R(R) has identity” with “R
has identity”. Any simple ring with identity and which is not a skewfield has that
R(R) is not J-trivial.

The converse of Proposition 2.7 is false. In the ring of Example 2.4, the right

ideal
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00 O
0 0 K
00 O

is not two-sided, so that R is not the identity of R(R). Similarly, for n > 3 one can
show that, in the n x n strictly upper triangular matrix ring U over any skewfield,
we have that R(U) is J-trivial, but U is not the identity of R(U).

We say that a semigroup S is left (right) 0-cancellative if sz = sy (xs = ys)
implies * = y for all non-zero s, z,y € S. The semigroup S is 0-cancellative if S is
both left and right 0-cancellative. See [3, p.3].

Proposition 2.8. IfR(R) is 0-cancellative, then R(R) and L(R) are each J -trivial.

Proof. Let H,K € R(R) with HJK in R(R). If either H or K is zero, then
both must be zero. So take H and K to be nonzero. From HJK we get that
there exist X,Y,B,T € R(R)! such that XHY = K and BKT = H. Then
K = XHY = X(BKT)Y C XKY = X(XHY)Y = X?HY? C XHY = K, So
K = XKY. Thus XKY = XHY. Note that if either X or Y is zero, then K = 0.
So X and Y are nonzero. If X,Y € R(R), then using that R(R) is 0-cancellative
and XHY = XKY weget K =H. f X =Y =1, then K =H. If X =1
and Y € R(R), then KY = HY and hence H = K. Similarly, if X € R(R) and
Y =1, we get K = H. Thus R(R) is J-trivial. Proceed similarly to get L(R) is
J-trivial. (]

Note that the converse of Proposition 2.8 is false, as the next example illustrates.

Example 2.9. Let A be any commutative ring and let R = A® A. Then R(R) is
not 0-cancellative but R(R) is J-trivial.

Proposition 2.10. Let R be a simple ring with R*> # 0. Then either R is a
skewfield or R(R) is not J-trivial.

Proof. Assume R is not a skewfield and let H € R(R) with 0 # H # R. If RH =0,
then the ideal r(R) = {z | Rx = 0} is nonzero and hence R = r(R), contrary to
R® #£0. So RH = R. Similarly HR # 0. Then H? C HR = H(RH) C H? and
hence H?> = HR. Consequently H? € [R]. Also, R = RH?, so R € [H?. Then
RJH?. Since H? is not R we have that R(R) is not J-trivial. O

Example 2.11. In Proposition 2.2 the hypothesis “R s nilpotent” cannot be re-
placed by “R is nil”. If R is a simple nil ring which is not nilpotent, then by
Proposition 2.10 R(R) is not J-trivial. Examples of such rings were first given by

Smoktunowicz, see [14].
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As an immediate consequence of Proposition 2.10 we have that if R is a simple
ring with identity and M, (R) is the full n X n matrix ring over R, then R(M,(R))
is not J-trivial for n > 1.

Note that for any commutative ring A and any set Q2 of commuting indetermi-
nates, the polynomial ring A[€2] and the ring of formal power series A < Q > are
each commutative and hence both R(A[Q)]) and R(A < Q >) are J-trivial.

Proposition 2.12. If for some m € N, R(R™) is J-trivial, then R(R) is J -trivial.

Proof. For convenience of notation let S = R(R) and consider H, K € R(R)
with [H] = [K] in S. Then there exist X,Y, B,T € S! such that H = XKY
and K = BHT. A routine calculation shows that H = XKY = (XB)"H(TY )"
for n € N. Choose n = m to get H € R(R™). Similarly K € R(R™). Also,
H = (XB)"H(TY)™ = [(XB)"X|K[Y(TY)™, so H is in the ideal in R(R™)
generated by K. Similarly, K is in the ideal in R(R™) generated by H. So HJ K
in R(R™). But R(R™) is J-trivial, so H = K. O

Corollary 2.13. If, for some m € N, R™ is right duo or commutative, then R(R)

is J -trivial.

Proposition 2.14. Let R = Ry & Ry, where Ry is a ring with R(Ry) J-trivial and
Ry is a nilpotent ring. Then R(R) is J-trivial.

Proof. The argument is similar to that for Proposition 2.12. Since R, is nilpotent,
some power of R isin R;. Then H and K will be J-equivalent in R(R;), and since
R(R;) is J-trivial we have H = K. O

Corollary 2.15. Let R = R1® Ry, where Ry is a ring such that R(RY") is J -trivial
for some m € N, and Rs is nilpotent. Then R(R) is J -trivial.

Observe that R = Ry ® Ry will have R(R) is J-trivial when Ry is nilpotent and

7" is either commutative or right duo, for some m.

3. Maximal right ideals and radicals

Unless otherwise specified, for the remainder of the paper R will have identity.

Proposition 3.1. Let R(R) be J-trivial.
(i) If H € R(R) and H = H?, then H € I(R).
(ii) If R is r.w.r., then R(R) =I(R).
(i) If R(R) is regular, then R(R) = I(R).
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Proof. (i) We have that H = H?> C HR C H, which implies that H = HR. Since
H = HR we have H = H> = (HR)H = H(RH). Thus H € [RH], and trivially
RH € [H]. So [RH| = [H] and since R(R) is J-trivial we have RH = H.

(ii) This part follows immediately from part (i).

(iii) Every regular ring is r.w.r. [16, p.173]. O

Recall that a semigroup S is periodic if for each s € S there exists n,m € N,n >
m, such that s = s™ [3, p.20].

Corollary 3.2. Let R(R) be J-trivial and periodic. If H € R(R), then for some
k € N, H* is an idempotent ideal. Consequently, each nonzero right ideal of R is

either nilpotent or contains a monzero idempotent ideal of R.

Proof. Recall that each element in a periodic semigroup has a power which is an
idempotent [3, p.20]. The desired result follows from this and from Proposition 3.1
(i). |

Proposition 3.3. (i) If M is a mazimal right ideal of R, then either M? = M or
M is an ideal of R.
(ii) If R(R) is J-trivial, then every mazimal right ideal of R is an ideal of R.

Proof. (i) Since RM is an ideal of R and M C RM we have that either RM = M,
and hence M is a two-sided ideal of R, or RM = R. If the latter holds, then
M?=(MR)M = M(RM)= MR = M.

(ii) Let R(R) be J-trivial and let M be a maximal right ideal of R. Suppose M is
not an ideal of R. Then RM = R. Hence R € [M]. So [R] C [M], but, because R
has identity, M = MR € [R], which implies [M] C [R]. So [R] = [M], and since
R(R) is J-trivial we have R = M, a contradiction. O

It is worth noting that from Proposition 3.3 (i) we see that in a ring with identity
a maximal right ideal which is nilpotent must be a two-sided ideal.

Recall that because R has identity the Jacobson radical of R, denoted by J(R),
is the intersection of all maximal right ideals of R, and the Brown-McCoy radical
of R, denoted by B(R), is the intersection of all maximal ideals of R [15]. Neither
of these results need hold for rings without identity [15].

Corollary 3.4. If R(R) is J-trivial, then J(R) = B(R). If J(R) =0, then R is

isomorphic to the subdirect product of skewfields.

Proof. That J(R) = B(R) follows immediately from Proposition 3.3(ii). If J(R) =
0, then B(R) = 0 and R is isomorphic to a subdirect product of rings with identity
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of the form R/M, where the ideal M is also maximal as a right ideal of R. So R/M

has no proper nonzero right ideals and hence is a skewfield. (I

4. Minimal right ideals

Recall that an idempotent e is left semicentral if ere = re for all r € R [1].
Proposition 4.1. If R(R) is J-trivial, then any idempotent in R is central.

Proof. Let ¢ € E(R). Since e € ReR we have eR C ReR and hence eR C
eReR C eR, so eR = (eR)?. Then by Proposition 3.1(i) we have eR = ReR. Then
Re = Ree C ReR = eR. So for each r € R there exists y € R such that re = ey.
Then ere = ey = ye = re. Thus e is left semicentral and consequently 1 — e is left
semicentral. Let f € E(R). Then (ef — fe)e =0 and (ef — fe)(1—e) =ef — fe—
(ef —fe)e=ef—fe. Thusef —fe= (ef—fe)(1—e) = (1—e)(ef— fe)(1—e) =0.
So e commutes with every idempotent of R. It is well-known that this implies e is
central in R. O

Proposition 4.2. Let R(R) be J-trivial. If B is a minimal right ideal of R and
B? #£ 0, then we have the following.
(i) B is an ideal of R,
(i) there exists a central idempotent e € R such that B = eR and eR = Re =
eRe,
(iii) R=eR® (1 —€e)R=eRe® (1 —€e)R and eRe is a skewfield, so (1 —e€)R
is an ideal of R which is mazimal as a right (left) ideal of R.

Proof. (i) Since 0 # B? C B, by minimality of B we get B2 = B. So by Proposi-
tion 3.1(i), B is an ideal of R.

(ii) It is well-known that any non-nilpotent minimal right ideal is generated by an
idempotent [11, Section 31]. So there exists e € E(R) such that B = eR. By
Proposition 4.1, e is central.

(iii) Since eR is a minimal right ideal of R we have that eRe is a skewfield [11,
Theorem 3.16]. Using the Pierce decomposition with e we have R = eR® (1 —e)R,
and this is a direct sum of two-sided ideals of R. From eRe = eR = R/(1 — e)R,
and since eRe is a skewfield, then (1 — e)R is maximal as a right (left) ideal of
R. O

Corollary 4.3. Let R(R) be J-trivial. If R has a minimal right ideal which is not
nilpotent, then R = Ry @ Ro where R(R1) and R(Rs) are J -trivial.
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Proof. From Proposition 4.2(iii) we have R = eR®(1—¢)R, where eR and (1—¢)R
are ideals of R. Use R/eR = (1 — e)R and Proposition 2.5 to get that R((1 —e)R)
is J-trivial. Similarly, R(eR) is J-trivial. O

Proposition 4.4. Let R be a subdirectly irreducible ring (not necessarily having
identity) and let H be the heart of R. Assume H? # 0 and that R(R) is J -trivial.
If R contains a minimal right ideal B of R with B C H, then R is a skewfield.

Proof. It is well-known that the non-nilpotent heart of a subdirectly irreducible
ring must itself be a simple ring [4, p.135]. So H is a simple ring. If B? = 0, then
the ring H must contain a non-zero nilpotent ideal. Consequently this ideal is H
itself, contrary to H? # 0. So B2 # 0. Use Proposition 4.2 to get that H is a
skewfield. So the ring H has an identity element, which forces H = R, and hence
R is a skewfield. O

Corollary 4.5. Let R be a subdirectly irreducible ring (not necessarily having iden-
tity) with heart H, H> # 0. If R(R) is J-trivial and R is right Artinian, then R is
a skewfield.

Proof. The chain condition yields the existence of a minimal right ideal B of R
with B C H. O

Example 4.6. The ring in Example 2.4 s subdirectly irreducible with heart
0 0 F

H=10 0 0

00 0

5. Regularity conditions

Let E(R) denote the set of idempotents of R. Recall that a ring R is strongly

regular if R is regular and every idempotent of R is central [6].
Theorem 5.1. If R is r.w.r. and R(R) is J-trivial, then R is strongly regular.

Proof. Let B € R(R). Then B = B? = (BR)R = B(RB). So B € [RB]. Since
trivially RB is in [B], we then have [B] = [RB] and consequently B = RB. So
each right ideal of R is a two-sided ideal. It is known that a r.w.r. ring with this
property is a regular ring [7]. By Proposition 4.1 we have that every idempotent of
R is central. Therefore, R is strongly regular. (]
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Corollary 5.2. The following are equivalent:
(i) R is r.w.r. and R(R) is J-trivial,
(ii) R is reqular and R(R) is J-trivial,
(iii) R is strongly regular,
) R

(iv) R(R) is a semilattice.

Proof. The equivalence of (i), (ii), and (iii) is clear from the proof of Theorem 5.1.
The equivalence of (iii) and (iv) is given in [7]. Any semilattice is a band and is

J-trivial, so (iv) implies (i), completing the logical circuit. O

Note that for a skewfield K, the ring is M,,(K) is regular, and hence r.w.r., but
for n > 1, R(M,,(K)) is not J-trivial.

Recall that R is w-regular if for each r € R there exists b € R such that »™br", and
R is strongly m-regular if for each r € R there exists m € N such that r™ = r"T1ly
for some y € R [16, Section 23]. It is known that every strongly m-regular ring is -
regular, but there are m-regular rings that are not strongly w-regular [16, Theorem
23.4].

Proposition 5.3. Let R(R) be J-trivial. Then R is w-regular if and only if R is

strongly m-regular.

Proof. Since all strongly m-regular rings are w-regular, it suffices to show that
m-regular implies strongly m-regular when R(R) is J-trivial. Let R be m-regular
and let € R. Then r™ = r™br"™, for some n € N, b € R. Observe that r"b is
idempotent, so by Proposition 4.1, 7"b is central and hence ™ = r?"b € r"*!'R. So

R is strongly m-regular. |

Note that the hypothesis that R is m-regular and R(R) is J-trivial does not

imply that R is r.w.r., as the example of any nonzero nilpotent ring shows.
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