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Abstract. We define a notion of depth for an inclusion of complex semisimple

algebras, based on a comparison of powers of the induction-restriction table

(and its transpose matrix) and a previous notion of depth in an earlier pa-

per of the second author. We prove that a depth two extension of complex

semisimple algebras is normal in the sense of Rieffel, and conversely. Given

an extension H ⊆ G of finite groups we prove that the depth of CH in CG is

bounded by 2n if the kernel of the permutation representation of G on cosets

of H is the intersection of n conjugate subgroups of H. We prove in several

ways that the subgroup depth of symmetric groups Sn ⊆ Sn+1 is 2n− 1. An

appendix by S. Danz and B. Külshammer determines the subgroup depth of

alternating groups An ⊆ An+1 and dihedral group extensions.
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1. Introduction

Depth two is an algebraic notion for noncommutative ring extensions with an

associated Galois theory [16,17]. If applied to a subalgebra pair of quantum al-

gebras, depth two is a notion of normality that extends ordinary normality for

subgroups and Hopf subalgebras [13,15,8]. A Hopf subalgebra K is normal in a

finite-dimensional Hopf algebra H if and only if H is a depth two ring extension of

K: see [3] for this theorem and its generalization to faithfully flat, finitely generated

projective Hopf algebra extensions over a commutative base ring as well as right

and left versions of normality, depth two and Hopf-Galois extension.

For M the induction-restriction table for a subalgebra pair of semisimple C -

algebras B ⊆ A, the depth two condition is given by a matrix inequality MM tM ≤
qM for some q ∈ Z+, an observation in [9] that we build on in this paper. Recall
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that a Hopf subalgebra K is normal in a Hopf algebra H if HK+ = K+H where

K+ is the augmentation ideal of K. A predecessor of this definition is Rieffel’s

definition of a normal subring: a semisimple subalgebra B in a semisimple algebra

A is a normal subring if any maximal ideal in A restricts to an A-invariant ideal

in B [19]. We show in Section 4 that, for a semisimple subalgebra pair B ⊆ A,

the depth two condition is equivalent to B being a normal subring in A. As a

consequence, higher depth subgroups or semisimple subalgebras may be described

as being normal further along in the Jones tower of iterated endomorphism algebras

(Corollary 4.8 below).

In [14] the notion of depth more than two for a Frobenius extension B ⊆ A is

shown to be simplified via a generalization of depth two from ring extensions to

towers of three rings, where an appropriate tower of three rings is chosen in a tower

of iterated endomorphism rings above B ⊆ A. In [9] this idea was applied to a pair

of complex semisimple algebras B ⊆ A with inclusion matrix M : the subalgebra

pair has depth n if n is the least integer for which Mn+1 is less than a multiple

of Mn−1, where powers of an r × s-matrix M are understood by M2 = MM t,

M3 = MM tM , and so forth. As noted in Section 2 below, depth n is equivalently

the point of stabilization of the zero entries of even or odd powers of M , which

form a descending chain of subsets.

In [9] the generalized depth two condition on a tower of semisimple algebras

C ⊆ B ⊆ A with inclusion matrices N and M̃ , respectively, is given by NM̃M̃ tM̃ ≤
qNM̃ where q ∈ Z+: let N be the identity matrix to recover the depth two condition

on a subalgebra pair. Build a tower of algebras above B ⊆ A, where A1 = End AB

and one iterates the endomorphism ring construction and embeds via left multipli-

cation. Then A ↪→ A1 has inclusion matrix M t, and the subalgebra pair B ⊆ A

has depth n if n is the least integer for which the tower B ⊆ An−3 ⊆ An−2 satisfies

the generalized depth two condition. For this tower of three algebras the inclusion

matrices are N = Mn−2, M̃ = M or M t, in the generalized depth two condition,

which when substituted and simplified, becomes the depth n inequality condition,

Mn+1 ≤ qMn−1, on the inclusion matrix M .

The paper is organized as follows. In Section 2 we define a matrix M of non-

negative integer coefficients with nonzero rows and columns to be of depth n > 1

if n is the least integer for which the n + 1’st power of M is less than a multiple of

the n− 1’st power of M , where M2 denotes MM t, M3 = MM tM and so on. For

example, if M is the induction-restriction table of irreducible characters of a finite

group G and a subgroup H, then M has depth two if and only if H is a normal

subgroup of G [15]. If M is the inclusion matrix of a subalgebra pair of complex
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semisimple algebras B ⊆ A, then M has depth two if and only if B is a normal

subring in A (in the sense of Rieffel [19]) as shown below in Theorem 4.6. We study

depth three or more in Section 5, 6 and two appendices by Danz and the third

coauthor. We prove that the depth of symmetric groups Sn ⊆ Sn+1 is 2n − 1. In

Section 3, we make use of a well-known interpretation of the inclusion matrix M

as the incidence matrix of a bicolored weighted multigraph of semisimple algebras

B ⊆ A, showing that odd depth is one plus the diameter of the row corresponding

to the simples of B; even depth is two plus the maximum graphical distance along

edges of the graph from an equivalence class of simples of B, under one simple of

A, to the simple of B furthest away. In Section 6, we show that a subgroup H of

G has depth at most 2n if the largest normal subgroup of G contained in H (i.e.

the core) is the intersection of n conjugates of H (and at most 2n− 1 if the core is

trivial).

Throughout this paper our algebras have ground field C , although this may

be replaced by any algebraically closed field of characteristic zero with the same

results. In this case semisimple algebras split into direct products of matrix algebras

sometimes known as multi-matrix algebras or split semisimple algebras.

2. The depth of an irredundant matrix

In this section, we make an introductory study of irredundant matrices, which

naturally arise as the induction-restriction table of irreducible C -characters for a

subgroup of a finite group. This type of matrix also occurs more generally as the

induction-restriction table of simple modules, equivalently incidence matrices of

inclusion diagrams, for a subalgebra pair of semisimple algebras as explained in the

next section.

An r×s-matrix M = (mij) with non-negative integer entries is called irredundant

if each column and row vector of M is nonzero. It is called positive (written

M > 0) if each mij is positive. Its (right) square will be the symmetric r × r-

matrix S := M2 := MM t. The (i, j)-entry sij of S is the euclidean inner product

of rows i and j in M . In particular, the diagonal entry sii is positive since each

row in M is nonzero. Continuing, the cube of M is just M3 = MM tM = SM ,

M4 = S2, etc. The odd powers M2n+1 = SnM are all of size r × s, and the even

powers M2n = Sn are symmetric r × r-matrices. All these powers of M are again

irredundant.

Let N = (nij) be another irredundant r × s-matrix. Then N and M are called

equivalent up to permutation if there are permutation matrices P ∈ Sr and Q ∈ Ss

such that M = PNQ. We use the ordering M ≥ N if mij ≥ nij for each i = 1, . . . , r
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and j = 1, . . . , s. If M ≥ N then TM ≥ TN and MU ≥ NU for every irredundant

r × r-matrix T ≥ 0 and every irredundant s× s-matrix U ≥ 0. If T > 0 then also

TM > 0 since the columns in M contain positive entries.

The definition below comes from considerations of what depth greater than two is

for Frobenius extensions when restricted to semisimple subalgebra pairs with inclu-

sion matrix M as outlined in the introduction. (Although not needed in this paper,

the interested reader might see [16,14] for the definition of higher depth Frobe-

nius extensions and see [9] for why semisimple C -algebra pairs are split separable

Frobenius extensions.)

Definition 2.1. An irredundant r × s-matrix M has depth n ≥ 2 if n is the least

integer for which the following inequality (called a depth n matrix inequality) holds

for some q ∈ Z+,

Mn+1 ≤ qMn−1. (1)

The definition depends only on the equivalence class of M up to permutation.

The remarks above show that (1) implies the depth n+1 matrix inequality Mn+2 ≤
qMn. We set Z(M) = {(i, j) : mij = 0} and A(M) = {(i, j) : mij 6= 0}. Then

Z(Mn−1) ⊇ Z(Mn+1) and A(Mn−1) ⊆ A(Mn+1)

for n ≥ 2 since Mn+1 = SMn−1 and the diagonal entries of S are positive.

The descending chain of subsets Z(M) ⊇ Z(M3) ⊇ Z(M5) ⊇ . . . must stabilize

at some point. The next proposition notes that the point at which these subsets

become equal bounds the depth of M .

Proposition 2.2. An irredundant matrix M satisfies a depth n inequality if and

only if Z(Mn−1) = Z(Mn+1) if and only if A(Mn−1) = A(Mn+1). In particular,

if Mn−1 > 0 then M has depth n or less.

Proof. Suppose that Mn+1 ≤ qMn−1 for some q ∈ Z+. If the (i, j)-entry in

Mn−1 is zero then the (i, j)-entry in Mn+1 is also zero, by the matrix inequality.

Thus Z(Mn−1) ⊆ Z(Mn+1). Together with the opposite inclusion noted above, we

conclude that Z(Mn−1) = Z(Mn+1).

Conversely, if Z(Mn−1) = Z(Mn+1), we may choose q to be the maximum of

the entries in Mn+1, in which case Mn+1 ≤ qMn−1. ¤

Corollary 2.3. Let M be an irredundant matrix. If the minimum polynomial of

S = MM t has degree d then M has depth 2d − 1 or less. In particular, M has

always finite depth.
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Proof. The minimum polynomial of S gives an equation of the form

Sd + a1Sd−1 + · · ·+ ad−1S + ad = 0

with a1, . . . , ad ∈ C . Thus A(M2d) = A(Sd) ⊆ A(Sd−1) = A(M2d−2), so that M

has depth 2d− 1 or less. ¤

Example 2.4. The matrix

M =




1 0 1 0 0

0 0 0 0 1

0 0 0 1 0

0 1 1 0 0

0 0 0 1 1




has depth 4 as is easily computed (in fact, M5 ≤ 5M3). Note that M is the inclusion

matrix of the Sylow 2-subgroup D8 in the symmetric group S4 (cf. section 3).

It is interesting to compare the depths of M and M t.

Proposition 2.5. If an irredundant matrix M has depth n, then M t has depth

n + 1 or less. If n is even, then M t has depth n.

Proof. If Mn+1 ≤ qMn−1 for some q ∈ Z+, we multiply from the left by M t to

obtain (M t)n+2 ≤ q(M t)n, which shows that M t has depth n + 1 or less.

If n is even then the transpose of the inequality Mn+1 ≤ qMn−1 is the inequality

(M t)n+1 ≤ q(M t)n−1. ¤

Example 2.6. The matrix M below, which is the inclusion matrix of S2 ⊆ S3

([9]), has depth three while its transpose has depth four:

M =

(
1 0 1

0 1 1

)
, MM t =

(
2 1

1 2

)
, M tM =




1 0 1

0 1 1

1 1 2




This is easier to see graphically; we return to this example in the next section.

3. On inclusions of complex semisimple algebras

Suppose that B ⊆ A is an inclusion of complex semisimple algebras. Label

the simple A-modules by V1, . . . , Vs and the simple B-modules by W1, . . . , Wr.

Restrict the j’th simple A-module Vj to B and express the result in terms of simple

B-modules:

Vj ↓B
∼=

r⊕

i=1

mijWi (2)
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Then M = (mij) is an r × s-matrix, and

Wi ↑A= WA
i = A⊗B Wi

∼=
s⊕

j=1

mijVj (3)

since HomA(A⊗B Wi, Vj) ∼= HomB(Wi, Vj) for all i, j. In other words, we have

[Wi ↑A, Vj ] = mij = [Wi, Vj ↓B ] (4)

where [X, Y ] := dim HomA(X,Y ) for finite-dimensional A-modules X,Y . The ma-

trix M is known as the inclusion matrix of B in A [10]. It corresponds to the

induction-restriction table (as it is known in group theory) for simples or their ir-

reducible characters. It may also be viewed as the matrix of a linear mapping in

K-theory, between the groups Z r ∼= K0(B) → K0(A) ∼= Z s. Note that mij 6= 0 if

and only if Wi is a constituent of Vj ↓B .

For irreducible characters α ∈ Irr(B) and χ ∈ Irr(A), let fα ∈ B and eχ ∈
A denote the corresponding central idempotents. It is well-known that α is a

constituent of χ ↓B if and only if eχfα 6= 0.

Let Z(A) be the center of the algebra A. Then the algebra Z(A) ∩ B is a

(semisimple) subalgebra of Z(A) and Z(B). Thus there are partitions Irr(A) =⊔t
i=1Ai and Irr(B) =

⊔t
i=1 Bi such that the basis of primitive idempotents of

Z(A) ∩B is given by

mi =
∑

χ∈Ai

eχ =
∑

α∈Bi

fα. (5)

Proposition 3.1. Let B ⊆ A be an inclusion of complex semisimple algebras with

A free as left B-module. With the above notations it follows that

∑

χ∈Ai

χ(1)χ ↓B=
dim A

dim B

∑

α∈Bi

α(1)α and
∑

α∈Bi

α(1)α ↑A=
∑

χ∈Ai

χ(1)χ. (6)

Proof. The regular character of A is ρA =
∑t

i=1 χi where χi =
∑

χ∈Ai
χ(1)χ

for i = 1, . . . , t. Similarly, the regular character of B is ρB =
∑t

i=1 αi where

αi =
∑

α∈Bi
α(1)α for i = 1, . . . , t. Since A is free as a left B-module, we also

have ρ ↓B= dim A
dim B ρB . Thus χi ↓B= dim A

dim B αi for i = 1, . . . , t. Since ρB ↑A= ρA, we

similarly obtain αi ↑A= χi for i = 1, . . . , t. ¤

We define a relation on Irr(B) by α ∼ β if α ↑G and β ↑G have a common

irreducible constituent. This relation∼ is reflexive and symmetric but not transitive

in general. Its transitive closure is an equivalence relation denoted by ≈ or dA
B . Thus

α ≈ β if and only if there are α0, . . . , αm ∈ Irr(B) such that α = α0 ∼ α1 ∼ · · · ∼
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αm = β. (This equivalence relation was considered before by Rieffel in [19]; this

section and the next may be viewed as a continuation of results in his paper.)

We also define a relation on Irr(A) by χ ∼ µ if χ ↓B and µ ↓B have a common

irreducible constituent. This relation ∼ is again reflexive and symmetric but not

transitive in general. Its transitive closure is an equivalence relation denoted by

≈ or uA
B . Thus χ ≈ µ if and only if there are µ0, . . . , µr ∈ Irr(A) such that

χ = µ0 ∼ µ1 ∼ · · · ∼ µr = µ.

Let α ∈ Irr(B). Then all irreducible constituents of α ↑A are in the same

equivalence class of uA
B . If α ∼ β ∈ Irr(B) then α ↑A and β ↑A have a common

irreducible constituent χ ∈ Irr(A). Thus all the irreducible constituents of α ↑A

and β ↑A are uA
B-equivalent. This implies by transitivity that, for α, β ∈ Irr(B)

with α ≈ β, all the irreducible constituents of α ↑A and of β ↑A are uA
B-equivalent.

An argument similar to the one just given shows that whenever χ, µ ∈ Irr(A)

are uA
B-equivalent then all irreducible constituents of χ ↓B are dA

B-equivalent to all

irreducible constituents of µ ↓B .

Proposition 3.2. Let B ⊆ A be an inclusion of complex semisimple algebras. Then

A1, . . . ,At are the uA
B-equivalence classes, and B1, . . . ,Bt are the dA

B-equivalence

classes.

Proof. Let χ, µ ∈ Irr(A) such that χ ∼ µ. Then χ ↓B and µ ↓B have a common

constituent α ∈ Irr(B). Thus eχfα 6= 0 6= eµfα. Let i ∈ {1, . . . , t} such that α ∈ Bi.

Then eχmi 6= 0 6= eµmi which implies that χ, µ ∈ Ai. This shows that each Ai is

a union of uA
B-equivalence classes.

Conversely, let C1, . . . , Cl be the uA
B-equivalence classes of Irr(A), and let ei =∑

χ∈Ci
eχ for i = 1, . . . , l. Then t ≤ l, Irr(A) = C1 ∪ · · · ∪ Cl and 1A = e1 + · · ·+ el.

If α ∈ Irr(B) then eifα 6= 0 for some i ∈ {1, . . . , l}. We claim that i is unique; in

fact, if also j ∈ {1, . . . , l} with ejfα 6= 0 then there exist χ ∈ Ci, µ ∈ Cj such that

eχfα 6= 0 6= eµfα. Thus α is a constituent of χ ↓B and µ ↓B . Hence χ ∼ µ, and

i = j. So our claim is proved.

We conclude that eifα = e1fα + · · ·+ elfα = fα. Thus

ei =
∑

α∈Irr(B)

eifα =
∑

α∈Irr(B), eifα 6=0

eifα =
∑

α∈Irr(B), eifα 6=0

fα ∈ B.

In this way we obtain non-zero pairwise orthogonal idempotents e1, . . . , el in Z(A)∩
B. Thus l ≤ dimZ(A) ∩ B = t ≤ l, and we see that A1, . . . ,At are the uA

B-

equivalence classes.

The proof of the other assertion is similar. ¤
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Corollary 3.3. Let B ⊆ A be an inclusion of complex semisimple algebras. Then

the number of uA
B-equivalence classes is the same as the number of dA

B-equivalence

classes and equals dim (Z(A) ∩B).

In the following we identify modules with their characters. Let i, j ∈ {1, . . . , r}
be different. We say that the distance d(Wi,Wj) between Wi and Wj is m if m is

the smallest number such that there are m−1 intermediate simple B-modules with

Wi = Wi0 ∼ Wi1 ∼ · · · ∼ Wim
= Wj . Thus d(Wi, Wj) = 1 if and only if Wi ∼ Wj .

We put d(Wi,Wj) = −∞ if Wi and Wj are not dA
B-equivalent, and d(Wi,Wi) = 0

for all 1 ≤ i ≤ r. To any extension of complex semisimple algebras we associate

the standard bipartite graph, with one edge between black and white dots for each

nonzero multiplicity (or the more refined bicolored weighted multigraph called the

Bratelli diagram, with as many edges as the multiplicity, see subsection 2.3 of [10]).

Note that the distance defined here is half of the graphical distance between the

black points corresponding to Wi and Wj in the standard bipartite graph.

Once again consider the inclusion matrix M = (mij) for an inclusion of complex

semisimple algebras B ⊆ A and its symmetric ‘square’ S = MM t = (sij). The

entries of the powers of M (in the sense of the previous section) will be denoted by

(SmMk)ij where k = 0, 1.

Proposition 3.4. Let i 6= j. Then (Sm)ij > 0 if and only if 0 < d(Wi, Wj) ≤ m.

This is equivalent to the existence of a path of length 2m between Wi and Wj in the

standard bipartite graph of B ⊆ A.

Proof. Observe first that sij > 0 if and only if Wi ∼ Wj or equivalently d(Wi,Wj) =

1. Indeed sij =
∑s

u=1 miumju. Thus sij > 0 if and only if there is u such that

miu > 0 and mju > 0. That means that Wi and Wj are constituents of Vu ↓B and

therefore Wi ∼ Wj .

For m > 1 note that (Sm)ij =
∑

l1,...,lm−1
sil1sl1l2 · · · slm−1j . Thus (Sm)ij > 0 if

and only if there are 1 ≤ l1, . . . , lm−1 ≤ r such that Wi ∼ Wl1 ∼ · · · ∼ Wlm−1 ∼ Wj ,

i.e. d(Wi,Wj) ≤ m. ¤

We recall the notation A(X) = {(i, j) : xij 6= 0} for an irredundant r× s-matrix

X = (xij). Then, given another irredundant r × s-matrix Y , there is q ∈ Z+ such

that X ≤ qY if and only if A(X) ⊆ A(Y ).

We also recall that Sii > 0 and therefore (Sp)ii > 0 for all p > 0. This implies

that A(Sm) ⊆ A(Sm+p) for all p > 0. In terms of distance in the standard bipartite

graph this says that if there is a path between Wi and Wj of length 2m then there

is also a path of length 2(m + p) between the same points. For example, one can

travel p-times back and forth along the last edge of the path of length 2m.
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Definition 3.5. The depth of a complex semisimple algebra inclusion B ⊆ A is

defined to be the depth of its inclusion matrix M (in terms of Section 2, which also

notes that the definition is independent of the ordering in the basis of simples). A

subgroup H of a finite group G is said to have depth n if the corresponding group

algebras over C form an inclusion of complex semisimple algebras (via Maschke

and Wedderburn theory) of depth n.

The background for this definition is given in [9,16,17,15,14,13] and their bibli-

ographies; the definition coincides with the definition of depth introduced briefly

in [9]. In the group algebra case of the definition above, the depth two condition

M3 ≤ qM is the same as the condition for depth two in [15, Section 3], as can be

seen as follows. Suppose that Irr(G) = {χ1, . . . , χs} and Irr(H) = {ψ1, . . . , ψr}.
Then mij = 〈ψi | (χj)H〉 = 〈ψG

i |χj〉 by Frobenius reciprocity, and

sij =
s∑

k=1

mikmjk =
s∑

k=1

〈ψG
i | χk〉〈ψG

j | χk〉 = 〈ψG
i |ψG

j 〉.

We apply reciprocity and orthogonal expansion:

(SM)ij =
r∑

k=1

〈ψG
i |ψG

k 〉〈ψk | (χj)H〉 =
r∑

k=1

〈(ψG
i )H |ψk〉〈ψk | (χj)H〉

= 〈(ψG
i )H | (χj)H〉 = 〈((ψG

i )H)G |χj〉 (7)

For group algebras, we will in practice obtain M as follows. Both character tables

of G and H will be assumed known. Restrict each of the s irreducible characters of G

to H, then express each restricted character as a non-negative integer combination

of the r irreducibles of H by using inner products of characters.

Theorem 3.6. The inclusion matrix M of a complex semisimple algebra inclusion

B ⊆ A satisfies a depth 2m+1 matrix inequality (m ≥ 1) if and only if the distance

between any two simple B-modules is at most m.

Proof. Suppose that M satisfies a depth 2m + 1 matrix inequality. By Proposi-

tion 2.2, we have A(Sm) = A(Sm+p) for all p > 0. If (Sm+p)ij > 0, then (Sm)ij > 0,

so d(Wi,Wj) ≤ m by Proposition 3.4. It follows that d(Wi,Wj) ≤ m for all pairs

of simples Wi,Wj over B. (The distance is −∞ if two simples are not in the same

connected component of the inclusion diagram).

Conversely, suppose that the distance between any two simple B-modules is at

most m. By Corollary 2.2, we have to show that A(Sm+1) ⊆ A(Sm). If (Sm+1)ij >

0 then in the standard bipartite graph there is a path of length 2m + 2 between

Wi and Wj . Therefore the distance between these two points is positive (not −∞),

and by the assumption it is at most m. Thus (Sm)ij > 0 by Proposition 3.4. ¤
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If we define the diameter of a row of simples in an inclusion diagram to be the

greatest graphical distance between simples (an even number), the theorem says

that the minimum odd depth inequality satisfied by the inclusion matrix of B ⊆ A

is one plus the diameter of the simples of B in its inclusion diagram.

Corollary 3.7. The inclusion B ⊆ A has depth 3 or less if and only if ∼ is an

equivalence relation on Irr(B).

Proof. Suppose that B ⊆ A has depth 3 or less. By the above theorem the

distance between any two simple B-modules Wi and Wj is at most 1. If Wi ∼ Wj

and Wj ∼ Wk then d(Wi,Wk) ≤ 2. The assumption implies d(Wi,Wk) ≤ 1, i.e.

Wi ∼ Wk. This proves that ∼ is transitive.

Conversely, suppose that ∼ is transitive. Then the distance between any two

simple B-modules is at most 1. The above theorem implies that B ⊆ A is of depth

3 or less. ¤

Let 1 ≤ u ≤ s. The irreducible constituents of Vu ↓B are all inside of one dA
B-

equivalence class. Denote the set of these constituents by Vu. The distance between

a simple B-module Wi and Vu is defined as usual, as the minimal distance between

Wi and an element of Vu. Thus

d(Wi,Vu) = min{d(Wi,Wj) : Wj ∈ Vu}. (8)

Definition 3.8. We define m(Vu) to be the maximal distance between any simple

B-module Wi and the set Vu.

Note that miu > 0 if and only if Wi ∈ Vu.

Proposition 3.9. Let m ≥ 1 and Wi /∈ Vu. Then (SmM)iu > 0 if and only if

0 < d(Wi,Vu) ≤ m.

Proof. Suppose that 0 < (SmM)iu =
∑r

l=1(Sm)ilmlu. Then there is 1 ≤ l ≤ r

such that (Sm)il > 0 and mlu > 0. Proposition 3.4 and the remark above imply

that d(Wi,Wl) ≤ m and Wl ∈ Vu. Thus 0 < d(Wi, Vu) ≤ m.

Conversely, if 0 < d(Wi,Vu) ≤ m then there is 1 ≤ l ≤ r such that 0 <

d(Wi,Wl) ≤ m and Wl ∈ Vu. This implies that (Sm)il > 0 and mlu > 0 which

together give that (SmM)iu > 0. ¤

Theorem 3.10. The inclusion matrix M of B ⊆ A satisfies a depth 2m matrix

inequality (with m ≥ 2) if and only if m(Vu) ≤ m− 1 for any simple A-module Vu.

Proof. Suppose that M satisfies a depth 2m matrix inequality. Then SmM ≤
qSm−1M for some q ∈ Z+. By induction one can prove that Sm+pM ≤ qp+1Sm−1M
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(multiplying with S on the left). Assume that m(Vu) = m+p with p ≥ 0 and some

u. This implies that there is a simple B-module Wi such that d(Wi,Vu) = m + p.

Proposition 3.9 implies that (Sm+pM)iu > 0. Thus (Sm−1M)iu > 0 and Proposi-

tion 3.9 implies that d(Wi,Vu) ≤ m − 1. This is a contradiction and the proof in

one direction is complete.

Conversely suppose that m(Vu) ≤ m−1 for any simple A-module Vu. By Corol-

lary 2.2, we have to show that A(SmM) ⊆ A(Sm−1M). Let (i, u) ∈ A(SmM). Then

(SmM)iu > 0 and Proposition 3.9 implies that d(Wi,Vu) ≤ m. Our assumption

gives that d(Wi,Vu) ≤ m− 1. Then Proposition 3.9 implies that (Sm−1M)iu > 0.

Thus (i, u) ∈ A(Sm−1M). ¤

We note that in terms of graphical distance, the minimal even depth matrix

inequality satisfied by B ⊆ A is two plus the largest graphical distance of a B-

simple from an equivalence class of B-simples under one A-simple.

Example 3.11. The bipartite graph of the inclusion B = C [S2] ⊆ A = C [S3] at

the bottom level, joined to the graph of the semisimple pair A ↪→ E = EndAB via

λ at the top level is shown below:
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Notice that the graph of A ↪→ E is the reflection of the graph of B ⊆ A about the

middle row, which is true in general by Morita theory [10]. Applying Theorem 3.6,

we see from the bottom graph that the graphical distance between simples is 2, so

the depth of S2 ⊆ S3 is three. Applying Theorem 3.10, we see from the top graph

that the maximal distance between a simple and a set Vu of two simples on the

middle line has graphical distance 2, so that the depth of A ↪→ E is four.

By simply adding dots and the same pattern of edges to the right of the diagram,

we create graphs (in fact Dynkin diagrams of type An) for complex semisimple

algebra inclusions of arbitrary odd or even depth. In terms of explicit inclusion

mappings, the following inclusion B := C n → A := C ×M2(C )n−1 ×C has depth

2n− 1: (λi ∈ C , n ≥ 2)

(λ1, . . . , λn) 7→ (λ1,

(
λ1 0

0 λ2

)
,

(
λ2 0

0 λ3

)
, . . . ,

(
λn−1 0

0 λn

)
, λn)
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while its endomorphism algebra extension A ↪→ E = M3(C )×M4(C )n−2×M3(C )

has depth 2n: (Mi ∈ M2(C ))

(λ1,M1, . . . ,Mn−1, λn) 7→ (

(
λ1 0

0 M1

)
,

(
M1 0

0 M2

)
, . . . ,

(
Mn−1 0

0 λn

)
)

Remark 3.12. The definition of depth may be extended to the case depth one

as follows. Define M0 to be the r × r identity matrix I in the depth n matrix

inequality condition, in which case a depth one extension of semisimple algebras

B ⊆ A with inclusion matrix M satisfies S ≤ qI for q ∈ Z+. This is satisfied

by a centrally projective ring extension B ⊆ A, defined by BAB ⊕ ∗ ∼= BBn
B for

some n, or equivalently there are ri ∈ CA(B) and fi ∈ Hom(BAB , BBB) such that

each a ∈ A satisfies a =
∑n

i=1 rifi(a). If A and B are the complex group algebras

corresponding to G ⊇ H, a depth one extension is for example any subgroup of

the center of G, or H is normal in G with a normal complement. This depth one

condition is analyzed further in [4].

If M is the inclusion matrix of a subalgebra pair of semisimple algebras B ⊆ A,

then M t is the inclusion matrix of A ↪→ E = End AB (via a 7→ λa where λa(x) = ax

for every a, x ∈ A) by an argument that goes as follows. It is clear that the natural

module AB is finitely generated projective; it is indeed also a generator since the

ground field has characteristic zero. Thus B and E are Morita equivalent algebras

with context bimodules EAB and A∗ := BHom(AB , BB)E ; the E-simples are then

A ⊗B Wi (i = 1, . . . , r). Restricting the E-simples down to A and using Eq. (3),

the columns of the inclusion matrix of A ↪→ E are the rows of M . We conclude

that the inclusion matrix of A ↪→ E is M t. Thus the following result follows from

observations in Section 2.

Corollary 3.13. The subalgebra pair of semisimple algebras B ⊆ A is of depth 2n

if and only if its endomorphism algebra extension A ↪→ E is of depth 2n. If B ⊆ A

is of depth 2n− 1, then A ↪→ E is of depth 2n or less.

This corollary is consistent with several general ‘endomorphism ring theorems’

in [14,13] and is an improvement in the semisimple case.

It is also easy to see that if C ⊆ B and B ⊆ A are successive subalgebra

pairs of semisimple algebras with inclusion matrices M and N , respectively, then

the inclusion matrix of the composite subalgebra pair C ⊆ A is MN . As a sim-

ple consequence we may note an improved version of the embedding theorem [14,

Corollary 8.6]. We prove that any depth n subalgebra pair may be embedded

in a depth two extension, depth two being an improvement from the point of



INDUCTION-RESTRICTION DEPTH OF SUBGROUPS 145

view of Galois theory (see [16,15,14,13] and papers in their bibliographies). We

set up the theorem by extending the subalgebra pair and its endomorphism ring,

B ⊆ A ↪→ E1 := E = End AB by a tower of iterated endomorphism rings:

B ⊆ A ↪→ E1 ↪→ E2 ↪→ · · · (9)

where E2 = End EA, and iterate with respect to λ : E1 ↪→ E2 to form E3, then

continuing like this. Note that E1 is Morita equivalent to B, E2 is Morita equivalent

to A (the details are brought together in [9, Proposition 2.2]), so all Em’s are

themselves semisimple algebras. Then if B ⊆ A has inclusion matrix M , A ↪→ E1

has inclusion matrix M t, and E1 ↪→ E2 has again inclusion matrix M , and so on

in alternating fashion.

Theorem 3.14. A depth n subalgebra pair of semisimple algebras B ⊆ A is embed-

ded in the depth two subalgebra pair of semisimple algebras B ↪→ En−2. Conversely,

the subalgebra B of A has depth n or less if it embeds in a depth two extension

B ↪→ En−2.

Proof. If the inclusion matrix of B ⊆ A is M , then Mn+1 ≤ qMn−1 for some

q ∈ Z+. Since n ≥ 2, we have 3n − 3 ≥ n + 1. Thus there is p ∈ Z+ such that

M3n−3 ≤ pMn−1. In other words, by checking odd and even case, this is the same

as

Mn−1(Mn−1)tMn−1 ≤ pMn−1,

which of course is the depth two condition for the matrix Mn−1 = MM tM . . . (n−1

times M and M t alternately). But Mn−1 is the inclusion matrix of the composite

subalgebra pair B ↪→ En−2.

Conversely, if B ↪→ En−2 has depth two, the zero entries of its inclusion matrix

Mn−1 satisfy Z(Mn−1) = Z(M3n−3); whence Z(Mn−1) = Z(Mn+1) and B has

depth n or less in A by Proposition 2.2. ¤

Given two irredundant matrices, an r× s-matrix M = (mij) and a p× q-matrix

N = (nij), we form the tensor product M ⊗N corresponding to the tensor product

of linear mappings between vector spaces. In terms of block matrix representation,

M ⊗ N is the rp × sq-matrix (mijN), or equivalently up to permutation (Mnij).

Our interest in determining the depth of M ⊗N knowing the depths of M and of

N comes from the following situation in group theory. Given a subgroup H1 ⊆ G1

with inclusion matrix M and another subgroup H2 ⊆ G2 with inclusion matrix N ,

the inclusion matrix of H1 ×H2 ⊆ G1 ×G2 is M ⊗N .
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Proposition 3.15. If the irredundant matrices M and N have depth n and m,

respectively, then M ⊗N has depth max{n,m} or less.

Proof. Suppose n ≥ m. Note that (M ⊗ N)t = M t ⊗ N t, so that (M ⊗ N)m =

Mm ⊗ Nm in the meaning of power of non-square matrices as above. But we are

given that Mn+1 ≤ q1M
n−1 for some q1 ∈ Z+. Since N satisfies a depth m matrix

inequality and therefore also a depth n matrix inequality, there is q2 ∈ Z+ such

that Nn+1 ≤ q2N
n−1. It follows that (M ⊗N)n+1 ≤ q1q2(M ⊗N)n−1. ¤

4. Depth two and normality

Let B ⊆ A be an inclusion of complex semisimple algebras. We define B to be

a normal subring in A if the restriction of every maximal ideal I (in A) to B is

A-invariant, meaning that (I ∩B)A = A(I ∩B) as subsets of A. This definition of

normal subrings was first given in [19] and used to provide a ring-theoretic setting

for Clifford theory. It is also closely related historically to the HK+ = K+H

condition of normality of a Hopf subalgebra K in a Hopf algebra H.

Let Â denote the set of maximal two sided ideals of A. Similarly define B̂. Any

I ∈ Â determines up to isomorphism a unique simple A-module denoted by VI and

a minimal (primitive) central idempotent eI of A. Similarly any J ∈ B̂ determines

up to isomorphism a unique simple B-module denoted by WJ and a minimal central

idempotent fJ of B.

Proposition 4.1. WJ is a constituent of VI ↓B if and only if I ∩ B ⊂ J if and

only if fJeI 6= 0.

Proof. Suppose that WJ is a constituent of VI ↓B . Then I ∩ B annihilates WJ

since I annihilates VI . Thus I ∩B ⊆ J .

Suppose that I ∩ B ⊆ J . Since fJ /∈ J we have fJ /∈ I ∩ B, so fJ /∈ I. Thus

0 6= (fJ + I)(1 + I) = (fJ + I)(eI + I) = fJeI + I; in particular, fJeI 6= 0.

If fJeI 6= 0 then WJ is a constituent of Vi ↓B , as already observed in Section 3.

¤

Proposition 4.2. Let f ∈ B and e ∈ A be idempotents. Then

f =
∑

I∈Â, feI 6=0

feI and e =
∑

J∈B̂, efJ 6=0

efJ .

The next proposition makes an improvement on [19, Proposition 2.10].

Proposition 4.3. Suppose that for any simple A-module V the irreducible con-

stituents of V ↓B form an entire equivalence class of ≈. Then ∼ is transitive and

B is normal in A.
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Proof. Clearly ∼ is transitive. Let I ∈ Â, and suppose that α ∈ Irr(B) such that

fα ∈ I, in the notation of Section 3. Then eIfα 6= 0.

Assume that eIfβ 6= 0 for some β ∈ Irr(B) with β ≈ α. Then β is a constituent

of χ ↓B where χ is the character of VI . By our hypothesis, α is also a constituent

of χ ↓B . Thus eIfα 6= 0, a contradiction.

This shows that eIfβ = 0, i.e. fβ ∈ I, for all β ∈ Irr(B) with β ≈ α. Thus, in

the notation of Section 3, we have mi ∈ I where i ∈ {1, . . . , t} is such that α ∈ Bi.

We set I := {i : 1 ≤ i ≤ t, mi ∈ I}. Then m :=
∑

i∈I mi ∈ Z(A) ∩B and

I ∩B =
⊕

α∈Irr(B), fα∈I∩B

fαB =
⊕

α∈Irr(B), fα∈I

fαB =
⊕

i∈I
miB = mB.

Thus (I ∩B)A = mBA = mA = Am = ABm = A(I ∩B). ¤

Lemma 4.4. We have SM ≤ qM for some q ∈ Z+ if and only if for any simple

A-module V the irreducible constituents of V ↓B form an entire equivalence class

of ≈.

Remark 4.5. With the previous notations the statement of the lemma can be

rephrased as SM ≤ qM for some q ∈ Z+ if and only if Vu coincides with an entire

equivalence class of ∼ for any simple A-module Vu.

Proof. Suppose that SM ≤ qM for some q ∈ Z+. Then A(SM) ⊂ A(M). Suppose

that Wi ∼ Wj ∈ Vu. Then Proposition 3.4 and the remark after Definition 3.8 imply

that sij > 0 and mju > 0. Thus (SM)iu > 0. This means that (i, u) ∈ A(SM) ⊂
A(M). Thus miu > 0, i.e. Wi ∈ Vu.

Conversely, suppose that Vu coincides with an entire equivalence class of ≈. We

need to show SM ≤ qM for some q ∈ Z+, or A(SM) ⊂ A(M). Let (i, u) ∈ A(SM).

Then there is 1 ≤ l ≤ r such that Sil > 0 and mlu > 0. This means that Wi ∼
Wl ∈ Vu. Since Vu coincides with an entire equivalence class of ≈ it follows that

Wi ∈ Vu. Thus miu > 0 and (i, u) ∈ A(M). ¤

Theorem 4.6. The inclusion B ⊆ A has depth 2 if and only if B is normal in A.

Proof. If B ⊆ A is normal then Proposition 2.8 in [19] implies that ∼ is an equiv-

alence relation and that for any simple A-module V the irreducible constituents of

V ↓B form an entire equivalence class. Lemma 4.4 implies that the inclusion B ⊆ A

has depth two.

The converse follows from Lemma 4.4 and Proposition 4.3. ¤

This theorem provides a quick third proof of [8, main theorem, 5.1]. Recall that

a Hopf subalgebra K of a Hopf algebra H is normal if HK+ = K+H for K+ the

kernel of the counit ε : K → C .
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Corollary 4.7. A depth two Hopf subalgebra of a semisimple Hopf algebra is nor-

mal.

Proof. A Hopf subalgebra of a semisimple Hopf algebra is known to be semisimple.

If it has depth two, it is normal in the sense of Rieffel. But H+ ∩K = K+ for the

kernel of the counit, the augmentation map ε : H → C , the kernel being of course

a maximal ideal in H. The restricted ideal in K is then H-invariant, so K is a

normal Hopf subalgebra. ¤

The following corollary puts the last theorem together with Theorem 3.14. Recall

that given a subalgebra B ⊆ A, the first endomorphism ring is E1 = End AB , the

second E2 = End (E1)A, and so forth (with A = E0 and B = E−1). We embed

En in En+1 as before via left multiplication in an endomorphism tower (or Jones

tower) above B ⊆ A. Put E0 = A.

Corollary 4.8. Let B be a semisimple subalgebra in a complex semisimple algebra

A. Then the subalgebra pair B ⊆ A has depth n ≥ 3 if and only if B is normal in

En−2 (and not normal in En−3).

Proof. If B is normal in En−3, the zero entries Z(Mn−2) = Z(Mn), thus the

inclusion matrix M would satisfy a depth n− 1 inequality. ¤

To summarize, for semisimple algebras we have a depth two subalgebra to be normal

in the overalgebra, a depth three subalgebra to be normal in E1 and a higher depth

subalgebra to be normal further along in the endomorphism tower determined by

its depth.

5. Inclusions of semisimple Hopf algebras

Let K ⊆ H be an inclusion of semisimple Hopf subalgebras. Let C(H) and C(K)

be the character rings of H and K respectively. These are commutative rings if H

and K are quasitriangular or cocommutative Hopf algebras such as group algebras.

If M and N are two H-modules with characters χ and µ respectively, then

mH(M, N) := dim HomH(M,N). The same quantity is also denoted by mH(χ, µ).

In this manner one obtains a nondegenerate symmetric bilinear form mH( , ) on

the character ring C(H) of H. The following result is Proposition 2 of [6]. It shows

that the image of the induction map is a two sided ideal in C(H). A different proof

that also works in the nonsemisimple case is given below.

Lemma 5.1. Let K be a Hopf subalgebra of a semisimple Hopf algebra H. Let M

be an H-module and V a K-module. Then

M⊗V ↑H
K= (M ↓H

K ⊗V ) ↑H
K and V ↑H

K ⊗M = (V⊗M ↓H
K) ↑H

K
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Proof. Define

φ : M⊗(H⊗KV ) → H⊗K(M⊗V )

by m⊗h⊗Kv 7→ h(2)⊗K(S−1(h(1))m⊗v). It can be checked that φ is a well-

defined morphism of H-modules. Moreover φ is bijective since h ⊗K ⊗m⊗v 7→
(h(1)m⊗h(2) ⊗K v) is its inverse map. The other isomorphism is obtained in a

similar way. ¤

In terms of characters both formulas can be written as χInd(α) = Ind(Res(χ)α)

and Ind(α)χ = Ind(αRes(χ)), or

χα ↑= (χ ↓ α) ↑ and α ↑ χ = (α χ ↓) ↑ . (10)

Let T : C(K) → C(K) be given by T (α) = Res(Ind(α)). Thus T (α) = α ↑↓.
Note that the matrix of the operator T with respect to the basis of C(K) given by

the irreducible characters of K is the matrix S defined in a previous section.

Lemma 5.2. With the above notations one has

T (αT (β)) = T (α)T (β) = T (T (α)β) (11)

for all α, β ∈ C(K).

Proof. One has

T (αT (β)) = (α(β ↑↓)) ↑↓= (α((β ↑) ↓) ↑) ↓= (α ↑ β ↑) ↓= α ↑↓ β ↑↓

We have applied relation 10 for the fourth equality and the fact that Res is an

algebra map in the last equality. So the first equation in the lemma is proved, and

the other is obtained in a similar way. ¤

For a Hopf algebra H, its counit (or augmentation map) is denoted by εH .

Proposition 5.3. With the above notations one has

1) Tn(εK) = T (εK)n for all n ≥ 1.

2) Tn(α) = T (α)T (εK)n−1 for all n ≥ 1.

Proof. The first part is a special case of the second one. We prove the second by

induction on n. The case n = 1 is trivial. Suppose that Tn(α) = T (α)T (ε)n−1 for

some n where ε = εK . Then

Tn+1(α) = T (Tn(α)) = T (T (α)T (ε)n−1) = T (T (α))T (ε)n−1

= T (T (α)ε)T (ε)n−1 = T (α)T (ε)n,

by induction and the preceding lemma. ¤
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Lemma 5.4. Let α and β be different irreducible characters of K. Then 0 <

d(α, β) ≤ m if and only if mK(α, Tm(β)) > 0.

Proof. This follows from Proposition 3.4 since as noted before the matrix of the

operator T with respect to the basis of C(K) given by the irreducible characters of

K is the matrix S defined in a previous section. ¤

Define U : C(H) → C(H) such that U(χ) = χ ↓H
K↑H

K . It follows from Eq. (10)

for α = εH that Um(χ) = χ(ε ↑H
K)m for all m ≥ 0. Recall the equivalence relation

uH
K on Irr(H) from Section 3. One has χ ∼ µ if and only if χ ↓H

K and µ ↓H
K have a

common constituent. Then uH
K is the equivalence relation obtained by taking the

transitive closure of ∼.

Remark 5.5. Note that χ ∼ µ if and only if mH(χ,U(µ)) > 0. Inductively it can

be shown that χ uH
K µ if and only if there is l > 0 such that mH(χ, U l(µ)) > 0.

Proposition 5.6. A Hopf subalgebra K is normal in H if and only if εK by itself

forms an equivalence class of dH
K .

Proof. From the decomposition of Z(H) ∩K it follows that the integral element

ΛK is central in H [18]. ¤

Remark 5.7. Suppose that A = CG and B = CH for finite groups H ⊆ G. Then

Z(CG)∩CH ⊂ Z(CN) where N is the core of H in G. This follows since a basis

for Z(CG) is given by
∑

g∈C g where C runs through all conjugacy classes of G.

6. Inclusion of group algebras

Let H ⊆ G be an inclusion of finite groups and let N := coreG(H) be the core

of H in G, i.e., the largest normal subgroup in G contained in H. We will use the

short notations uG
H and dG

H for the equivalence relations uCG
CH and dCG

CH defined in

an earlier section.

Proposition 6.1. For all n ≥ 1 one has that kerG(Un(εG)) = N .

Proof. Note that U(εG) = εH ↑G
H . Since εG is a constituent of U(εG) it follows by

induction on n that U(εG) is a constituent of Un(εG) and therefore kerG(Un(εG)) ⊆
kerG(U(εG)). On the other hand, in general, kerG(χn) ⊃ kerG(χ) for any character

χ of G. Since Un(εG) = (U(εG))n we obtain that kerG(Un(εG)) = kerG(U(εG))

for all n ≥ 1. It remains to show kerG(U(εG)) = N . If x ∈ N then one has that

x(g⊗H1) = g(g−1xg)⊗H1 = g⊗H1 since gxg−1 ∈ N ⊆ H. Thus N ⊆ kerG(U(εG)).

On the other hand yg⊗H1 = g⊗H1 implies that ygH = gH and therefore y ∈
gHg−1. Thus if y ∈ kerG(U(εG)) then y ∈ ⋂

g∈G gHg−1 = N . ¤
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Corollary 6.2. For all n ≥ 1 one has that kerH(Tn(εH)) = N .

Proof. It follows from the previous proposition since Un(εG) ↓G
H= Tn(εH). ¤

Corollary 6.3. Let H ⊆ G be a group inclusion and N be the core of H in G.

Consider the equivalence relation dG
H on the irreducible characters of H as above.

Then the equivalence class of εH is Irr(H/N).

Proof. From the proof of the previous proposition it follows that Un(εG) has

all irreducible constituents inside those of Un+1(εG) for all n ≥ 0. Since N =

kerG(U(εG)) it follows from a well known theorem of Brauer (see also Proposition

6.5 below) that Irr(H/N) coincides with the set of irreducible constituents of all

tensor powers Un(εG) with n ≥ 0. Therefore there is m ≥ 0 such that Irr(G/N)

coincides with the set of all irreducible constituents of Um(εG). If α ∈ Irr(H/N)

then α is a constituent of εN ↑H
N . Therefore α ↑G

H is a constituent of εN ↑G
N .

But the irreducible constituents εN ↑G
N are exactly those of Um(εG). Therefore

since α is a constituent of T (α) = α ↑G
H↓G

H it follows that α is a constituent of

Um(εG) ↓G
H= Tm(εH). This implies that α ≈ εH .

Conversely suppose that β ≈ εH . Then by definition of ≈ it follows that β is a

constituent of Tn(εH) for some n ≥ 0. Therefore by Corollary 6.2 its restriction to

N contains β(1) copies of the trivial character of N . Thus β ∈ Irr(H/N). ¤

Until the beginning of Subsection 6.1 we let m be the constant from the proof

of previous corollary. Since Un(εG) ↓G
H= Tn(εH) note that Tm(εH) has all the

possible constituents of all powers Tn(εH) with n ≥ 0.

Remark 6.4. Since N £G it is well known that χ uG
N µ if and only if χ and µ have

exactly the same irreducible constituents viewed as N -characters by restriction.

Thus χ uG
N µ if and only if χ ∼ µ, i.e. m

G
(χ,UN (µ)) > 0. It also follows from [7]

that UN (χ) = χεN ↑G
N where UN : C(G) → C(G) is given by UN (χ) = χ ↓G

N↑G
N .

Thus

U2
N (χ) = χ(εN ↑G

N )2 =
|G|
|N |χεN ↑G

N=
|G|
|N |UN (χ).

For any irreducible character α ∈ Irr(N) the constituents of α ↑G
N form an entire

equivalence class under dG
N . Similarly, for any irreducible character χ ∈ Irr(G) the

constituents of χ ↓G
N form an entire equivalence class under dG

N . Thus, by Clifford

theory, the equivalence classes of Irr(N) under dG
N are just the G-orbits on Irr(N)

(under the conjugation action).

The following result follows from a well known result of Brauer and will be used

in the sequel. For a proof in the context of Hopf algebras see [7].
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Proposition 6.5. Let G be a group, χ a character of G and N = kerG(χ). Then

εG
N has as irreducible constituents all the possible irreducible constituents of all the

powers of χ.

Corollary 6.6. The equivalence relation uG
H is the same as the equivalence relation

uG
N coming from N E G. Thus the equivalence classes of Irr(G) under uG

H are in

natural bijection with the G-orbits on Irr(N).

Proof. Write as above χ ∼ µ if and only if χ ↓G
H and µ ↓G

H have a common

constituent. If χ ∼ µ then clearly χ uG
N µ. This implies that if χ uG

H µ then χ uG
N µ.

Conversely by Remark 5.5 we see that χ uG
N µ if and only if m

G
(χ, UN (µ)) > 0.

Remark 6.4 implies that UN (µ) = µεN ↑G
N . On the other hand, using the previous

proposition it follows that mG(χ, UN (µ)) = mG(χ, µεG
N ) = mG(εN ↑G

N , µχ∗) > 0

if and only if mG(Um(εH), χµ∗) = mG(χ,Um(µ)) > 0. ¤

Corollary 6.7. One has that the relation ∼ on Irr(G) coming from the inclusion

H ⊆ G is an equivalence relation if and only if εN ↑G
N and εH ↑G

H have the same

constituents.

Proof. ∼ is an equivalence relation if and only if εH ↑G
H and (εH ↑G

H)m have the

same constituents. But (εH ↑G
H)m has the same constituents as εN ↑G

N . ¤

Proposition 6.8. Let N ⊆ H ⊆ G with N £ G. The depth of H/N inside G/N is

less than or equal to the depth of H in G. If H has depth three or less in G then

H/N has depth three or less in G/N .

Proof. Let T̄ : C(H/N) → C(H/N) be the operator T defined as above but for the

inclusion H/N ⊆ G/N . Since Rep(G/N) ⊆ Rep(G) and Rep(H/N) ⊆ Rep(H) it is

easy to check that T̄ is the restriction of T to C(H/N). Indeed both restriction and

induction for the inclusion H/N ⊆ G/N come from the restriction and induction

for the inclusion H ⊆ G.

Then the proposition follows from Theorem 3.6 and Theorem 3.10. ¤

For example, with G = S4, H = D8 and

N = {(1), (12)(34), (13)(24), (14)(23)} = V4,

the depth of H < G is four (computed in Section 2), while the depth of H/N ∼=
S2 < G/N ∼= S3 is three (computed graphically in Section 3).

Again let G be a finite group, H a proper subgroup of G, and N := coreG(H)

denote the core of H in G. We say χ ∈ Irr(G) and ψ ∈ Irr(H) are linked if

0 6= 〈ψ ↑G |χ〉G = 〈ψ|χ ↓H〉H . (12)
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This defines a bipartite graph Γ with vertices Irr(G)∪Irr(H) (the inclusion diagram

of the corresponding group algebras is a weighted multigraph variant of this). As

usual, we denote by Irr(G|κ) the set of all χ ∈ Irr(G) such that 〈χ ↓N , κ〉 6= 0, for

κ ∈ Irr(N).

Proposition 6.6 implies that the connected components of Γ are in bijection with

the orbits of G on Irr(N).

6.1. A theorem with examples. Recall that the core coreG(H) of a subgroup

H < G is the largest normal subgroup of G contained in H. It is also defined by

coreG(H) =
⋂

x∈G
xH where xH denotes the subgroup xHx−1 conjugate to H.

Theorem 6.9. Let H ⊆ G be an inclusion of finite groups, and suppose that

N := coreG(H) is the intersection of m conjugates of H. Then H has depth ≤ 2m

in G. Moreover, if N ⊆ Z(G) then H has depth ≤ 2m− 1 in G.

Proof. Let α ∈ Irr(H), and let x ∈ G. Then Mackey decomposition shows that

IndH
H∩xHx−1(ResxHx−1

H∩xHx−1(xα)) is a summand of T (α) = ResG
H(IndG

H(α)). Thus

ResG
H(IndG

H∩xHx−1(ResxHx−1

H∩xHx−1(xα))) is a summand of

T 2(α) = ResG
H(IndG

H(T (α))).

Let y ∈ G. Then, by Mackey decomposition again,

IndH
H∩yHy−1∩yxHx−1y−1(ResyxHx−1y−1

H∩yHy−1∩yxHx−1y−1(yxα))

is a summand of T 2(α). Continuing in this fashion, we see that, for x1 := 1, x2, . . . , xm ∈
G,

IndH
x1Hx−1

1 ∩...∩xmHx−1
m

(ResxmHx−1
m

x1Hx−1
1 ∩...∩xmHx−1

m
(xmα))

is a summand of Tm−1(α). We can choose x1 = 1, x2, . . . , xm =: z in such a way

that x1Hx−1
1 ∩ . . . ∩ xmHx−1

m = N . Then Tm−1(α) has a summand of the form

IndH
N (ReszHz−1

N (zα)) = IndH
N (zResH

N (α)).

Let β be an irreducible constituent of ResH
N (α). Then IndG

N (zβ) = IndG
N (β) is a

summand of IndG
H(Tm−1(α)). But the irreducible constituents of IndG

N (β) form

a complete equivalence class of Irr(G) under uG
H , by Corollary 6.6. Thus α has

graphical distance at most 2m− 1 to any χ ∈ Irr(G). So α has graphical distance

at most 2m−2 to any set of irreducible constituents of ResG
H(χ), for any χ ∈ Irr(G),

and the first part is proved.

Now suppose that N ⊆ Z(G). Then, in the notation above, IndH
N (zβ) = IndH

N (β)

is a summand of Tm−1(α). But now the irreducible constituents of IndH
N (β) form a

complete equivalence class of Irr(H) under dG
H . This shows that any two irreducible
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characters of H have graphical distance at most 2m − 2, so that H has depth at

most 2m− 1 in G. ¤

We illustrate the theorem with three examples.

Example 6.10. (1) Let G = S4 and H = D8, so that N = V4 is the intersection

of m = 2 conjugates of H. By the theorem, D8 has depth ≤ 4 in S4; indeed the

depth is four by our earlier computations. In the appendix, the depth of D2n in Sn

is shown to be three for n > 5.

(2) Let G = Sn+1 and H = Sn for some n. Then N = 1, which is the intersection

of m = n conjugates of H:

{1} = Sn ∩ S(1 n+1)
n ∩ · · · ∩ S(n−1 n+1)

n .

By the theorem, Sn has depth at most 2n−1 in Sn+1. We will see later that 2n−1

is precisely the depth of Sn < Sn+1.

(3) Let G = A6 and H = A5, so that N = 1 again. A computation with

character tables shows that A5 has depth 5 in A6. However, in this case, N is not

the intersection of 3 conjugates of H, so the bound in the theorem is not sharp here.

The depth of the inclusion of alternating groups An ⊆ An+1 will be computed in

the appendix.

We obtain a corollary by recalling that G acts on the set of subgroups of G

by conjugation. Let NG(H) be the normalizer of H in G, which is the stabilizer

subgroup of H under conjugation. The proof is a simple application of the orbit

counting theorem:

Corollary 6.11. The depth of a subgroup H of a finite group G is bounded above

by 2[G : NG(H)].

Since NG(H) contains each subgroup K in which H is normal, it follows that a

subnormal subgroup H of subnormal depth in G (or defect) r (cf. [11]) has depth

less than or equal to 2mr−1, where m is the maximal index of two consecutive

subgroups in a subnormal series.

The following are examples of depth three or more subgroups from the literature

on group theory.

Example 6.12. Brodkey’s theorem (cf. Theorem 1.37 in [11]) states that if a finite

group G has an abelian Sylow p-subgroup H, then the largest normal p-subgroup

Op(G) = N of G is the intersection of two conjugates of H. In other terms then,

H is a depth four or less subgroup in G; depth three or less if N = {1G}.
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Example 6.13. If G is p-solvable, where p is odd and not a Mersenne prime, then

the largest normal p-subgroup N of G is an intersection of two Sylow p-subgroups.

If p is even or a Mersenne prime, then N is an intersection of three Sylow p-

subgroups [5]. This in our terms implies that the Sylow p-subgroup has depth ≤
4 or 6, respectively. If N = 1 then these numbers can be improved to 3 and 5,

respectively.

Example 6.14. The theorem above implies that a subgroup H of a finite group

G has at most depth three if H ∩ xHx−1 = 1 for some x ∈ G. For example, a

Sylow p-subgroup of GL(n, q) has depth three, as well as certain Borel and Weyl

subgroups (for specific values of n and q = pr, left as an exercise to the interested

reader) [1].

The results of this paper are suited for creating a program using GAP to calculate

the depth of subgroups of suitably small groups. We thank Susanne Danz for

implementing such a program at the University of Jena.

In this paper we have found subgroups of depth at each odd number (the sym-

metric group series), at depth four (the dihedral group in S4 with some additional

examples) and a search with this program yields a subgroup of depth 6 (the 108-

element normalizer subgroup of the Sylow 3-subgroup of the 432-element affine

group AGL(3, 2)). We found no subgroups of depth an even number greater than

6.

Remark 6.15. Suppose K < H < G is a tower of finite groups, where the subgroup

H < G is corefree and m conjugates of H have trivial intersection. Then the depth

of the subgroup K < G is bounded above by 2m − 1. This follows from the same

theorem since K satisfies the same core hypothesis. For example, by the results of

one of the examples above, any subgroup K of Sn has depth less than or equal to

2n− 1 in Sn+1.

6.2. Computations for the operator T . Suppose that H is a subgroup of a

finite group G. We denote by Cl(G) the set of conjugacy classes of G and by

CF(G) the ring of complex class functions on G. For a union X of conjugacy

classes of G, we denote by γG,X the characteristic function of X in CF(G). Then

γG,X ↓H= γH,H∩X .

Similarly, if C and D denote the conjugacy classes in G and H, respectively, of an

element in H then an easy computation shows that

γH,D ↑G=
|G|
|H| ·

|D|
|C|γG,C .
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This implies that the eigenvectors of the linear map

T : CF(H) −→ CF(H), χ 7−→ χ ↑G↓H ,

corresponding to nonzero eigenvalues are precisely the class functions γH,C∩H (C ∈
Cl(G), C ∩H 6= ∅). Moreover, the eigenvalue of T corresponding to an eigenvector

γC,C∩H is clearly
|G|
|H| ·

|C ∩H|
|C| .

We denote by

t := |{ |G||H| ·
|C ∩H|
|C| : C ∈ Cl(G), C ∩H 6= ∅}|

the number of distinct nonzero eigenvalues of T . Then the minimum polynomial of

T has degree t or t + 1. Since S is the matrix of T with respect to the basis Irr(H)

of CF(H), Corollary 2.3 implies that H has depth 2t + 1 or less in G.

We also note that all eigenvalues of T are nonzero if and only if T is surjective.

This is equivalent to the condition that two elements in H are conjugate in G if

and only if they are already conjugate in H. In this case, the minimum polynomial

of T has degree t. So, arguing as above, we conclude that H has depth 2t − 1 or

less in G. We summarize:

Theorem 6.16. (i) The nonzero eigenvalues of S are the numbers

|G|
|H| ·

|C ∩H|
|C| (C ∈ Cl(G), C ∩H 6= ∅).

(ii) The subgroup H of G has depth ≤ 2t + 1 in G where t denotes the number

of distinct nonzero eigenvalues of S.

(iii) All eigenvalues of S are nonzero if and only if any two elements in H which

are conjugate in G are already conjugate in H. In this case, H has depth ≤ 2t− 1

in G.

Example 6.17. For the inclusion of the alternating groups A4 < A5 it may be

checked that the minimum polynomial of S is X(X − 1)(X − 2)(X − 5). By the

theorem above, A4 has depth ≤ 7 in A5. Computing the powers of M , one sees

that the subgroup A4 < A5 has depth five. The depth of the inclusion An ⊆ An+1

for arbitrary n will be computed in the appendix.

Example 6.18. Consider the inclusion S3 < S4 of symmetric groups. It can

be computed that the minimal polynomial S in this case is given by m(X) =

X3 − 7X2 + 14X − 8 = (X − 4)(X − 2)(X − 1). The nonzero eigenvalues of S are

1, 2, 4. By the theorem above, the depth of S3 < S4 is at most five, which is the

precise depth of the extension as we will see in the next subsection.
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6.3. Depth of inclusions of symmetric groups. In this subsection we will

prove the following:

Theorem 6.19. For any n ≥ 2 the standard inclusion Sn ⊆ Sn+1 has depth 2n−1.

In order to prove the theorem, we recall that the irreducible characters of Sn

are in bijection with partitions of n. Moreover, partitions of n can be visualized

by their Young diagrams. For example, the trivial character of Sn corresponds to

the trivial partition (n) of n, and the Young diagram of (n) is a row of n boxes.

Similarly, the sign character of Sn corresponds to the partition (1n) = (1, . . . , 1),

and the Young diagram of (1n) is a column of n boxes.

By the branching rules, restricting an irreducible character of Sn+1 to Sn means

removing a box from the corresponding Young diagram, and inducing an irreducible

character of Sn to Sn+1 means adding a box to the corresponding Young diagram.

By Theorem 6.9 above, the inclusion Sn ⊆ Sn+1 has depth ≤ 2n− 1. It is easy

to give an alternative proof of this, based on the combinatorics of Young diagrams.

These ideas are explained in more detail in the appendix where they are also used

to determine the depth of the inclusion of alternating groups An ⊆ An+1.

It only remains to show that the inclusion matrix of Sn ⊆ Sn+1 does not satisfy

a depth 2n− 2 inequality. For this we may argue as follows:

The sign character of Sn+1, denoted by Vu, restricts to the sign character σ of

Sn. Thus, in the notation of Section 3, the set Vu consists of σ alone. It is easy to

see that d(ε, σ) = n− 1:

· · ·
n

7−→ · · ·
n− 1

7−→
n− 2

· · ·

7−→ · · · 7−→ n− 1 ...
7−→ n...

It follows that m(Vu) = n− 1. Thus Theorem 3.10 shows that the inclusion matrix

of Sn in Sn+1 cannot satisfy a depth 2n− 2 inequality.

This result also applies to the semisimple Hecke algebras: H(q, n) is depth 2n−1

in H(q, n+1), since they share the same representation theory with the permutation

groups Sn < Sn+1 (see [10]).



158 SEBASTIAN BURCIU, LARS KADISON AND BURKHARD KÜLSHAMMER

Appendix: Depth of subgroups – some examples

Susanne Danz 1 and Burkhard Külshammer

Appendix A. Inclusions of symmetric and alternating groups

Throughout this section, let n ≥ 1, let Sn denote the symmetric group of degree

n, and let An denote the alternating group of degree n. Moreover, let Pn be the set

of all partitions of n. By Theorem 6.19, we know that for n ≥ 2 the ring extension

CSn ⊆ CSn+1 is of depth 2n − 1. We now aim to determine the depth of the

ring extension CAn ⊆ CAn+1. Moreover, we will give a combinatorial proof of

Theorem 6.19. Before stating the results, we fix some further notation.

Remark A.1. (a) For λ ∈ Pn, we denote the conjugate partition by λ′. That

is, the Young diagram of λ′ is obtained by transposing the Young diagram of λ.

For λ ∈ Pn, let χλ be the corresponding ordinary irreducible Sn-character. If

λ = λ′ then χλ ↓An= χλ
+ + χλ

−, for irreducible An-characters χλ
+ 6= χλ

−. We

choose our labelling in accordance with [12], Sec. 2.5. With this convention,

for α′ = α ∈ Pn+1 and λ′ = λ ∈ Pn such that 〈χα ↓Sn , χλ〉 6= 0, we have

〈χα
+ ↓An , χλ

+〉 6= 0 = 〈χα
+ ↓An , χλ

−〉 and 〈χα
− ↓An , χλ

−〉 6= 0 = 〈χα
− ↓An , χλ

+〉 (see [12],

Theorem 2.5.13, and [2]). If λ 6= λ′ then χλ ↓An= χλ′ ↓An is irreducible. We may

then suppose that λ > λ′, and set χλ
0 := χλ ↓An . Here “≥” denotes the usual

lexicographic ordering on partitions.

(b) We consider the bipartite graphs Γ(Sn) and Γ(An). Here Γ(Sn) has vertices

V := Pn ∪ Pn+1 and edges

E := {(α, λ) ∈ Pn+1 × Pn | 〈χα ↓Sn , χλ〉 6= 0}.
The graph Γ(An) has vertices Ṽ := V (n) ∪ V (n + 1) and edges Ẽ where

V (n) := {[λ, 0] | λ ∈ Pn, λ > λ′} ∪ {[λ, +], [λ,−] | λ = λ′ ∈ Pn},
V (n + 1) := {[α, 0] | α ∈ Pn+1, α > α′} ∪ {[α, +], [α,−] | α = α′ ∈ Pn+1},

Ẽ := {([α, x], [λ, y]) ∈ V (n + 1)× V (n) | 〈χα
x ↓An , χλ

y 〉 6= 0}.
(c) Let λ, µ ∈ Pn with corresponding Young diagrams [λ] and [µ], respectively.

We set

d(λ, µ) := |[λ] \ [µ]|+ |[µ] \ [λ]| = 2(n− |[λ] ∩ [µ]|).
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With this notation, we have:

Proposition A.2. Let n ≥ 2, and let λ, µ ∈ Pn. Then d(λ, µ) is the length of a

shortest path from λ to µ in Γ(Sn). In particular, the ring extension CSn ⊆ CSn+1

has depth 2n− 1.

Proof. Let λ, µ ∈ Pn, and set 2m := d(λ, µ). We argue with induction on m, in

order to show that in Γ(Sn) there is a path of length 2m from λ to µ. For m = 0

this is trivially true, so we may now suppose that m ≥ 1. We construct a partition

λ1 of n such that d(λ, λ1) = 2, d(λ1, µ) = 2m− 2, and such that there is a path of

length 2 from λ to λ1. Since λ 6= µ, we have [λ] 6⊆ [µ] 6⊆ [λ]. Thus there is some

i ∈ N such that (i, λi) ∈ [λ] \ [µ] and (i + 1, λi) /∈ [λ]. That is, (i, λi) is a removable

node of [λ]. Analogously, there are some r, s ∈ N such that (r, s) ∈ [µ] \ [λ]. We

may suppose further that (t, s) ∈ [λ], for 1 ≤ t ≤ r − 1, and (r, u) ∈ [λ], for

1 ≤ u ≤ s− 1. So (r, s) is an addable node of [λ]. We define α ∈ Pn+1 with Young

diagram [α] := [λ]∪{(r, s)}. Assume that (i, λi) is not a removable node of [α]. This

can happen only if (r, s) = (i + 1, λi) or (r, s) = (i, λi + 1). But, since (r, s) ∈ [µ],

this implies also (i, λi) ∈ [µ], a contradiction. Therefore, [λ1] := [α]\{(i, λi)} is the

Young diagram of a partition λ1 ∈ Pn with d(λ, λ1) = 2, d(λ1, µ) = 2m − 2, and

〈χα ↓Sn , χλ〉 6= 0 6= 〈χα ↓Sn , χλ1〉. So there is a path of length 2 from λ to λ1 in

Γ(Sn). By induction, there is a path of length 2m− 2 from λ1 to µ in Γ(Sn). So

we obtain a path

α1

FF
FF

FF
FF

F α2

AA
AA

AA
AA

· · · αm

JJJJJJJJJ

λ = λ0 λ1 λ2 · · · λm−1 λm = µ

of length 2m from λ to µ in Γ(Sn). Conversely, let

β1

EE
EE

EE
EE

E β2

??
??

??
?

· · · βr

HH
HH

HH
HH

HH

λ = µ0 µ1 µ2 · · · µr−1 µr = µ

be a shortest path in Γ(Sn). That is, 2r ≤ d(λ, µ). We argue with induction on r

to show d(λ, µ) = 2r. If r = 0 then λ = µ, and d(λ, µ) = 0 = 2r. Next suppose that

r = 1. Then λ 6= µ, and [µ] is obtained by first adding a node (i, j) to [λ], and then

removing a node (r, s) 6= (i, j) from [λ] ∪ {(i, j)} = [β1]. That is d(λ, µ) = 2. Now

we may suppose that r ≥ 2. By induction, d(λ, µr−1) = 2(r−1) and d(µr−1, µ) = 2.

So d(λ, µ) ≤ 2r, and thus 2r = d(λ, µ). This proves the first part of the statement.
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Since, for any λ, µ ∈ Pn, we have (1, 1) ∈ [λ] ∩ [µ], it follows that d(λ, µ) ≤
2(n − 1). Moreover, for λ := (n) and µ := (1n), we have d(λ, µ) = 2(n − 1), so

that, by what we have just shown and Theorem 3.6, the extension CSn ⊆ CSn+1

has depth 2(n − 1) + 1. On the other hand, χ(n) = χ(n+1) ↓Sn . Therefore, for

n > 2, Theorem 3.10 implies that the inclusion matrix of CSn ⊆ CSn+1 cannot

satisfy a depth 2(n−1) inequality. If n = 2 then CSn ⊆ CSn+1 cannot have depth

2(n− 1) = 2, since S2 6E S3. This completes the proof of the proposition. ¤

Lemma A.3. Let λ, µ ∈ Pn. Suppose that µ′ = µ 6= λ = λ′. Then d(λ, µ) ≥ 4.

Proof. Let µ′ = µ 6= λ = λ′. Then there are some i, j ∈ {1, . . . , n} such that

(i, λi) /∈ [µ] and (j, µj) /∈ [λ]. Since both λ and µ are symmetric, also (λi, i) ∈ [λ]\[µ]

and (µj , j) ∈ [µ] \ [λ]. In particular, i 6= λi or j 6= µj , and also i 6= j. Hence

d(λ, µ) ≥ 3, and so d(λ, µ) ≥ 4, since d(λ, µ) is even. ¤

Example A.4. Consider, for instance, the symmetric partitions λ = (4, 3, 2, 1) and

µ = (5, 2, 13) of 10. Then we have d(λ, µ) = 2(10− 4− 2− 1− 1) = 4.

Proposition A.5. Let n ≥ 3. Then the ring extension CAn ⊆ CAn+1 has depth

2(n− d√ne) + 1.

Proof. In consequence of Theorem 3.6 and Theorem 3.10, it suffices to show the

following:

(1) For any v, w ∈ V (n), there is a path of length at most 2(n− d√ne) from v

to w in Γ(An), and

(2) there is some v ∈ V (n) such that in Γ(An) there is no path of length less

than 2(n− d√ne) from v to [(n), 0].

For this, let v, w ∈ V (n). Suppose first that λ = λ′ ∈ Pn and that v := [λ, +] and

w := [λ,−]. Let further α ∈ Pn+1 with Young diagram [α] := [λ] ∪ {(1, λ1 + 1)}.
Then α > α′, and 〈χα

0 ↓An , χλ
+〉 = 1 = 〈χα

0 ↓An , χλ
−〉, by [2]. Hence in Γ(An) there

is a path of length 2 ≤ 2(n− d√ne) from v to w.

Therefore, from now on, we may suppose that v = [λ, x] and w = [µ, y], for

some λ ≥ λ′ and µ ≥ µ′ with λ 6= µ, and appropriate x, y ∈ {0,+,−}. We set

2m := d(λ, µ), and show that there is a path from v to w in Γ(An) of length 2m.

Note that, since λ ≥ λ′ and µ ≥ µ′, we must have λ1 ≥ d√ne and also µ1 ≥ d√ne.
So 2m ≤ 2(n− d√ne), and we then get (1).
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First of all, by Proposition A.2, there is a path

α1

FF
FF

FF
FF

F α2

AA
AA

AA
AA

· · · αm

JJJJJJJJJ

λ = λ0 λ1 λ2 · · · λm−1 λm = µ

of length 2m in Γ(Sn). Here λ0, . . . , λm ∈ Pn, and α1, . . . , αm ∈ Pn+1. We now

construct a path

[α̃1, z1]

HHH
HHHH

HHHH
· · · [α̃m, zm]

KKKKKKKKKK

[λ, x]
= [λ̃0, x0]

[λ̃1, x1] · · · [λ̃m−1, xm−1]
[λ̃m, xm]
= [µ, y]

in Γ(An) as follows. For i = 1, . . . , m, we set λ̃i := max{λi, (λi)′} and α̃i :=

max{αi, (αi)′} where the maxima are taken with respect to the lexicographic or-

dering on partitions. We then determine the “signs” x0, . . . , xm, z1, . . . , zm induc-

tively. Of course, x0 = x. So we may suppose that i ≥ 1 and that we have already

determined x0, . . . , xi−1 and z1, . . . , zi−1. In order to fix zi and xi, we distinguish

four cases.

Case 1. λ̃i−1 6= (λ̃i−1)′ and α̃i 6= (α̃i)′. In this case we set zi := 0 and

xi :=





+, if λ̃i = (λ̃i)′ and y ∈ {0, +},
−, if λ̃i = (λ̃i)′ and y = −,

0, if λ̃i 6= (λ̃i)′.

Case 2. λ̃i−1 6= (λ̃i−1)′ and α̃i = (α̃i)′. If λ̃i 6= (λ̃i)′ then we set zi := + and

xi := 0, otherwise

zi := xi :=





+, if y ∈ {0,+},
−, if y = −.

Case 3. λ̃i−1 = (λ̃i−1)′ and α̃i 6= (α̃i)′. We then set zi := 0 and

xi :=





+, if λ̃i = (λ̃i)′ and y ∈ {0, +},
−, if λ̃i = (λ̃i)′ and y = −,

0, if λ̃i 6= (λ̃i)′.
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Case 4. λ̃i−1 = (λ̃i−1)′ and α̃i = (α̃i)′. Then, in particular, λ̃i 6= (λ̃i)′, by

Lemma A.3. Thus we may set zi := xi−1 and xi := 0.

Note that this construction ensures that xm = y. Moreover, by [2], for i =

1, . . . , m, we get a path of length 2 from [λ̃i−1, xi−1] to [λ̃i, xi] in Γ(An), hence a

path of length 2m from [λ, x] to [µ, y]. Note further that these considerations also

show the following: in the case where µ = µ′ there are both a path of length 2m

from [λ, x] to [µ, +] and a path of length 2m from [λ, x] to [µ,−].

In order to prove (2), let conversely λ, µ ∈ V (n) such that 2 ≤ d(λ, µ) =: 2m, let

x, y ∈ {0, +,−} be appropriate signs, and let

[β1, z1]

HHHHHHHHHHH
· · · [βr, zr]

JJJJJJJJJJ

[λ, x]
= [λ0, x0]

[λ1, x1] · · · [λr−1, xr−1]
[λr, xr]
= [µ, y]

be a shortest path from [λ, x] to [µ, y] in Γ(An). Then r ≤ m, by what we have

shown above. We also observe that the partitions λ0, λ1, . . . , λr must be pairwise

different. To see this, assume that λi = λj , for some 0 ≤ i < j ≤ r. Then we

may suppose that xi = + and xj = −. As we have seen above, there is a path of

length 2 from [λi, xi] to [λj , xj ] so that j = i + 1, since the given path is as short

as possible. If j < r then λi+2 6= λi = λi+1, by the minimality of r. But, since

there is a path of length 2 from [λi+1, xi+1] = [λi, xi+1] to [λi+2, xi+2], there is also

a path of length 2 from [λi, xi] to [λi+2, xi+2], as we have proved above. But this

contradicts the minimality of r. If i + 1 = r then i > 0 and λi−1 6= λi = λi+1. This

implies that there is a path of length 2 from [λi−1, xi−1] to [λi+1, xi+1], which is

again a contradiction to the minimality of r.

We now set λ̃0 := λ0 = λ. Since 〈χβ1

z1
↓An , χλ

x〉 6= 0 6= 〈χβ1

z1
↓An , χλ1

x1
〉, there is

some β̃1 ∈ {β1, (β1)′} such that 〈χβ̃1 ↓Sn , χλ〉 6= 0. Having fixed β̃1, we can find

λ̃1 ∈ {λ1, (λ1)′} such that also 〈χβ̃1 ↓Sn , χλ̃1〉 6= 0. Let now i ≥ 2. We may argue

inductively, and suppose that we have a path

β̃1

EE
EE

EE
EE

E β̃2

??
??

??
?

· · · β̃i−1

EE
EE

EE
EE

λ = λ̃0 λ̃1 λ̃2 · · · λ̃i−2 λ̃i−1
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in Γ(Sn), for appropriate β̃j ∈ {βj , (βj)′}, λ̃j ∈ {λj , (λj)′}, and all j = 1, . . . , i−1.

We then choose β̃i ∈ {βi, (βi)′} and λ̃i ∈ {λi, (λi)′} such that 〈χβ̃i ↓Sn
, χλ̃i−1〉 6=

0 6= 〈χβ̃i ↓Sn
, χλ̃i〉. In this way we obtain in Γ(Sn) a path of length 2r from λ to

µ, or from λ to µ′.

Now let λ := (n), and let µ ∈ Pn be such that

{1, . . . , b√nc} × {1, . . . , b√nc} ⊆ [µ] ∩ [µ′],

[µ] ∪ [µ′] ⊆ {1, . . . , d√ne} × {1, . . . , d√ne},

and such that µ ≥ µ′. Then 2 ≤ d(λ, µ) = 2(n − d√ne), and 2(n − d√ne) ≤
d(λ, µ′) ≤ 2(n − d√ne) + 2. Assume that in Γ(An) there is a path of length

2r < 2(n − d√ne) from [(n), 0] to [µ, y], for some admissible y ∈ {0,+,−}. Then,

by the above considerations, in Γ(Sn) there is a path of length 2r from (n) to µ,

or from (n) to µ′. But, since 2r < min{d((n), µ), d((n), µ′)}, this is impossible, by

Proposition A.2. Therefore, we have now also shown (2), and the assertion of the

proposition follows. ¤

Remark A.6. Note that the ring extensions CS1 ⊆ CS2 and CA2 ⊆ CA3 are

clearly of depth 2, since S1 £ S2 and A2 £ A3.

Appendix B. Inclusions of dihedral groups in symmetric groups

Lemma B.1. Let n ≥ 4, let G := Sn, and let H := 〈a〉 where a is an n-cycle in

G. Then the ring extension CH ⊆ CG has depth 3.

Proof. We may suppose that a = (1, 2, . . . , n). Since H is not normal in G,

CH ⊆ CG is not of depth 2. We set g := (2, n − 2)(n − 1, n) and ã := ag =

(1, n− 2, 3, 4, . . . , n− 3, 2, n, n− 1). In the case where n = 4, this means g = (3, 4)

and thus ã = (1, 2, 4, 3). It suffices to show that 〈a〉 ∩ 〈ã〉 = 1. For n = 4 this is

obviously true. Let now n > 4. Assume, for a contradiction, that 〈a〉 ∩ 〈ã〉 6= 1.

Then there are some 1 6= l ∈ N, some k ∈ N, and some i ∈ {1, . . . , l − 1} such that

n = kl and aki = ãk 6= 1. If k ∈ {2, . . . , n−4} then 1+ki = aki(1) = ãk(1) = 1+k.

Thus i = 1, and if k < n − 4 then we have the contradiction 2 + k = ãk(n − 2) =

ak(n − 2) ≡ n − 2 + k (mod n). If k = n − 4 then 2 = ãk(n − 2) = ak(n − 2) ≡
n − 2 + k (mod n), hence k = 4 and n = 8. But then a4(n) = 4 6= 3 = ã4(n), a

contradiction. If k = 1 then 1 + i = ai(1) = ã(1) = n − 2, thus i = n − 3. But

an−3(2) = n− 1 6= n = ã(2), a contradiction. Finally, let k ∈ {n− 1, n− 2, n− 3}.
Since n = kl ≥ 2k ≥ 2(n − 3) = 2n − 6, we get n ≤ 6. Thus n = 6, k = 3, l = 2,

i = 1, and we have a contradiction. ¤
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Proposition B.2. Let n > 5, and let H := D2n be the dihedral subgroup of Sn

of order 2n, with generators a := (1, 2, . . . , n) and b := (1, n)(2, n − 1)(3, n −
2) · · · (bn

2 c, dn+2
2 e). Then the ring extension CH ⊆ CSn has depth 3.

Proof. Since H is not normal in Sn, the extension CH ⊆ CSn is not of depth 2.

Again we set g := (2, n−2)(n−1, n), ã := ag = (1, n−2, 3, . . . , n−3, 2, n, n−1), and

b̃ := bg = (1, n− 1)(n− 2, n)(2, 3)(4, n− 3) · · · (bn
2 c, dn+2

2 e). Also here it suffices to

show that H ∩Hg = 1. For n = 6 this is obviously true. Thus, for the remainder of

the proof, let n ≥ 7. Assume, for a contradiction, that there is some 1 6= x ∈ H∩Hg.

Note that H = {ai, aib | i = 0, . . . , n − 1} and Hg = {ãi, ãib̃ | i = 0, . . . , n − 1}.
We distinguish between four cases.

Case 1. x = ai = ãj , for some i, j ∈ {1, . . . , n − 1}. Then the proof of Lemma

B.1 leads to a contradiction.

Case 2. x = ai = ãj b̃, for some i, j ∈ {0, . . . , n − 1}. That is a2i = ãj b̃ãj b̃ =

ãj ã−j = 1, hence n is even, and i = n/2. In particular,

5 ≤ 1 +
n

2
= ai(1) = ãj(b̃(1)) = ãj(n− 1)

which implies j = 1 + n/2. So 4 + n/2 = ai(4) = ãj(b̃(4)) = ãj(n− 3). But, on the

other hand, ãj(8− 3) = 6, ãj(10− 3) = 3, and ãj(n− 3) = (n− 4)/2 for n > 10. In

any case this is not equal to 4 + n/2, a contradiction.

Case 3. x = aib = ãj , for some i, j ∈ {0, . . . , n − 1}. But then xg = aj = ãib̃

which is impossible, by the considerations in case 2 above.

Case 4. x = aib = ãj b̃, for some i, j ∈ {0, . . . , n− 1}. Therefore, 1 + i = ai(1) =

ai(b(n)) = ãj(b̃(n)) = ãj(n− 2). Suppose that 1 ≤ j ≤ n− 5 so that 1 + i = ãj(n−
2) = aj(2) = 2+j. That is i = j+1 ∈ {2, . . . , n−4}. However, if i = j+1 = 2 then

ãj(b̃(1)) = 1 6= 2 = ai(b(1)), if i = j + 1 = 3 then ãj(b̃(1)) = n− 2 6= 3 = ai(b(1)),

and if 3 < i = j + 1 ≤ n− 4 then ãj(b̃(1)) = j 6= j + 1 = i = ai(b(1)). Moreover, if

j = 0 then we have 1 + i = n− 2, thus i = n− 3. But ã0(b̃(1)) = n− 1 6= n− 3 =

an−3(b(1)). Consequently, we must have j ∈ {n− 4, n− 3, n− 2, n− 1}.
Suppose j = n − 1 so that aib = ã−1b̃. Then 1 + i = ai(1) = ai(b(n)) =

ã−1(b̃(n)) = ã−1(n− 2) = 1, thus i = 0 and b = ã−1b̃. But b(n− 1) = 2 6= n− 1 =

ã−1(b̃(n− 1)), a contradiction.

Next suppose that j = n−2 where aib = ã−2b̃, and 1+i = ai(b(n)) = ã−2(b̃(n)) =

n − 1. Hence i = n − 2 which gives the contradiction a−2(b(2)) = a−2(n − 1) =

n− 3 6= 1 = ã−2(3) = ã−2(b̃(2)).

If j = n − 3 then aib = ã−3b̃, and so i = n − 1. But this time we get the

contradiction 1 = ã−3(4) = ã−3(b̃(n− 3)) = a−1(b(n− 3)) = a−1(4) = 3.
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Lastly, assume that j = n − 4 so that aib = ã−4b̃, and i = 1. But, for n 6= 8,

this implies n − 6 = ã−4(2) = ã−4(b̃(3)) = a(b(3)) = a(n − 2) = n − 1, and for

n = 8 we get 6 = ã−4(2) = ã−4(b̃(3)) = a(b(3)) = a(6) = 7. Hence we have again a

contradiction.

To summarize, neither of the four cases above can occur, and the assertion of

the proposition follows. ¤

Remark B.3. (a) By Example 2.4, we know that the ring extension CD8 ⊆ CS4

has depth 4.

(b) The inclusion matrix of the groups D10 < S5 is

M =




1 0 1 0 1 0 1

0 0 0 2 0 0 0

0 1 1 1 1 1 0

0 1 1 1 1 1 0




,

which has depth 5. Hence the same applies to the ring extension CD10 ⊆ CS5.
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