CENTRAL AUTOMORPHISM GROUPS FIXING THE CENTER ELEMENT-WISE

S. Heydar Jafari

Received: 27 May 2010; Revised: 23 November 2010 Communicated by Sait Halıcıoğlu

ABSTRACT. Let G be a finite p-group. We find a necessary and sufficient condition on G such that each central automorphism of G fixes the center element-wise.

Mathematics Subject Classification (2000): 20D45, 20D15 Keywords: automorphisms, *p*-groups, nilpotent groups

1. Introduction

Let G be a finite group. An automorphism σ of G is said to be central if and only if it induces the identity on G/Z(G), or equivalently, $g^{-1}\sigma(g) \in Z(G)$ for all $g \in G$, where Z(G) is the center of G. The central automorphisms of G, denoted by $Aut_c(G)$, forms a normal subgroup of Aut(G), the group of automorphisms of G. Notice that $Aut_c(G) = C_{Aut(G)}(Inn(G))$. For a group H and an abelian group K, Hom(H, K) denotes the group of all homomorphisms from H to K. Let M and N be two normal subgroups of G. By $Aut^N(G)$ we mean the subgroup of Aut(G) consisting of all automorphisms which induces the identity on G/N. Also by $Aut_M(G)$ we mean the subgroup of $Aut(G) \subset Aut_M(G)$. we use the notation $G^{p^n} = \langle g^{p^n} | g \in G \rangle$ and C_t for cyclic group of order t.

The group of central automorphisms of a finite groups is of great importance in the investigation of Aut(G), and has been studied by several authors (see e.g., [1-7]). In the article of Attar [2], it is proved for a finite *p*-group G, $Aut_{Z(G)}^{Z(G)}(G) = Inn(G)$ if and only if G is nilpotent of class 2 and Z(G) is cyclic. M.K.Yadav in [7] obtained some necessary and sufficient conditions for the equality $Aut_c(G) = Aut_{Z(G)}^{Z(G)}(G)$ on *p*-groups of class 2.

We find a necessary and sufficient condition on G in the general case in order for $Aut_c(G) = Aut_{Z(G)}^{Z(G)}(G)$.

Theorem. Let G be a finite p-group. Then $Aut_c(G) = Aut_{Z(G)}^{Z(G)}(G)$ if and only if $Z(G)G' \subseteq G^{p^n}G'$ where $exp(Z(G)) = p^n$.

2. Proofs

Let G be a finite group and M be a central subgroup of G and $\sigma \in Aut^M(G)$. Then we can define a homomorphism f_{σ} from G into M such that $f_{\sigma}(x) = x^{-1}\sigma(x)$. On the other hand, given a homomorphism f from G to M, we can always define an endomorphism σ_f of G such that $\sigma_f(x) = xf(x)$. But σ_f is an automorphism of G if and only if for every non-trivial element $x \in M$, $f(x) \neq x^{-1}$.

A finite group G is said to be purely non-abelian if it has no nontrivial abelian direct factor. In [1], Adney and Yen proved that the correspondence $\sigma \mapsto f_{\sigma}$ defined above is a one-to-one map of $Aut_c(G)$ onto Hom(G/G', Z(G)) for purely non-abelian finite groups.

We recall that if $H \leq Z(G)$ and K/G' is a direct factor of G/G', then any element f of Hom(K/G', H) induces an element \overline{f} of Hom(G/G', H) which is trivial on the complement of K/G' in G/G'. To simplify the notation in the proof of the main theorem, we will identify f with the corresponding homomorphism from G into H.

The following Lemma can be obtained from Proposition 2.3 of [6] immediately.

Lemma 2.1. [7, Lemma 2.4] Let G be a finite non-abelian p-group such that $Aut_c(G) = Aut_{Z(G)}^{Z(G)}(G)$. Then G is purely non-abelian.

Proof. Suppose G has a nontrivial abelian direct factor. Let $G = A \times H$, where A is abelian and H is a non-abelian p-groups. Then $Z(H) \neq 1$ and so Hom(A, Z(H)) is nontrivial and by [6, Proposition 2.3] it can be assumed to be a subgroup of $Aut_c(G)$. It is clear that $Hom(A, Z(H)) \not\subseteq Aut_{Z(G)}^{Z(G)}(G)$, which is a contradiction.

Lemma 2.2. Let G be a finite abelian p-group and x an element of G. Then, there exist nontrivial elements $x_1, ..., x_t$ such that $G = \langle x_1 \rangle \times \cdots \times \langle x_t \rangle$ and $x = x_1^{p^{s_1}} ... x_t^{p^{s_t}}$, where $s_i \in \mathbf{N} \cup \{0\}$.

Proof. Let $G = \langle y_1 \rangle \times \cdots \times \langle y_t \rangle$ and $x = y_1^{r_1} \dots y_t^{r_t}$, where $r_i \ge 0$. There exist l_i and s_i such that $r_i = p^{s_i} l_i$ and $(p, l_i) = 1$. We have $\langle y_i \rangle = \langle y_i^{l_i} \rangle$ and hence $G = \langle y_1^{l_1} \rangle \times \cdots \times \langle y_t^{l_t} \rangle$. This completes the proof.

Lemma 2.3. Let $f \in Hom(G, Z(G))$ and $\sigma_f \in Aut_c(G)$. Then $\sigma_f \in Aut_{Z(G)}^{Z(G)}(G)$ if and only if $Z(G) \subseteq Ker(f)$.

Proof. This follows directly from the definition of σ_f .

Lemma 2.4. Let G be a finite p-group and $Z(G)G' \subseteq G^{p^n}G'$ where $exp(Z(G)) = p^n$. Then G is purely non-abelian.

Proof. Let $G = A \times H$ where $A \neq 1$ is abelian. Then $A \subseteq Z(G)$ and A is not a subset of $G^{p^n}G' = H^{p^n}H'$, which is a contradiction.

Proof of main theorem. By Lemmas 2.1 and 2.4 we can suppose that G is a purely non-abelian p-group. Let $Z(G)G' \subseteq G^{p^n}G'$ and $x \in Z(G)$. Then there exist elements a in G and b in G' such that $x = a^{p^n}b$. For any $f \in Hom(G, Z(G))$, since $exp(Z(G)) = p^n$ and $G' \subseteq Ker(f)$, we have $f(x) = f(a)^{p^n}f(b) = 1.1 = 1$. Hence $Z(G) \subseteq Ker(f)$ and $\sigma_f \in Aut_{Z(G)}^{Z(G)}(G)$.

Conversely, let $Aut_c(G) = Aut_{Z(G)}^{Z(G)}(G)$ and suppose $Z(G)G' \not\subseteq G^{p^n}G'$. So there exists x in Z(G) which is not in $G^{p^n}G'$. By Lemma 2.2, there exist $x_1, ..., x_t$ of G such that $G/G' = \langle x_1G' \rangle \times \cdots \times \langle x_tG' \rangle$ and $xG' = x_1^{p^{s_1}}G' \dots x_t^{p^{s_t}}G'$. Hence for some $j, x_j^{p^{s_j}}$ is not in G^{p^n} , so $p^{s_j} < p^n$. Select $z \in Z(G)$, where $O(z) = min(O(x_jG'), p^n)$, and define f by $x_jG' \longmapsto z$. Then f can be considered as a homomorphism of G/G' into Z(G) and so $\sigma_f \in Aut_c(G)$. We obtain $f(x) = f(xG') = f(x_1^{p^{s_1}}G' \dots x_t^{p^{s_t}}G') = f(x_j^{p^{s_j}}) = z^{p^{s_j}}$. On the other hand $z^{p^{s_j}}$ is a nontrivial element of Z(G). Therefore σ_f is not in $Aut_{Z(G)}^{Z(G)}(G)$, which is a contradiction.

In particular it is of interest for groups of class 2 with elementary abelian centers, and generalises a result of M. J. Curran [3, Proposition 2.7].

Corollary 2.5. Let G be a finite non-abelian p-group and exp(Z(G)) = p. Then $Aut_c(G) = Aut_{Z(G)}^{Z(G)}(G)$ if and only if $Z(G) \subseteq \phi(G)$, where $\phi(G)$ is frattini subgroup of G.

Lemma 2.6. Let $G = C_{p^{a_1}} \times C_{p^{a_2}} \times \cdots \times C_{p^{a_t}}$ where $a_1 \ge a_2 \ge \cdots \ge a_t$ and $H \le G^{p^n}$ for some integer n. If $n > a_k$ for some $k \in \{1, ..., t\}$ then, G/H and G have equal rank, and $G/H \cong (C_{p^{a_1}} \times C_{p^{a_2}} \times \cdots \times C_{p^{a_{k-1}}})/H \times (C_{p^{a_k}} \times \cdots \times C_{p^{a_t}})$. Moreover $(C_{p^{a_1}} \times C_{p^{a_2}} \times \cdots \times C_{p^{a_{k-1}}})/H \cong C_{p^n} \times C_{p^n} \times \cdots \times C_{p^n}$ if and only if $H = G^{p^n}$.

The proof immediately follows from the fact that $H \cap (C_{p^{a_k}} \times \cdots \times C_{p^{a_t}}) = 1$.

Let G be a finite p-group of class 2. Then G/Z(G) and G' have equal exponent p^c (say). Let $G/Z(G) = C_{p^{a_1}} \times C_{p^{a_2}} \times \cdots \times C_{p^{a_r}}$, where $a_1 \ge a_2 \ge \cdots \ge a_r > 0$. Let k be the largest integer between 1 and r such that $a_1 = a_2 = \cdots = a_k = c$. Let $\overline{M} = M/Z(G) = C_{p^{a_1}} \times C_{p^{a_2}} \times \cdots \times C_{p^{a_k}}$. Let $G/G' = C_{p^{b_1}} \times C_{p^{b_2}} \times \cdots \times C_{p^{b_s}}$, where $b_1 \ge b_2 \ge \cdots \ge b_s > 0$, be a cyclic decomposition of G/G' such that \overline{M} is isomorphic to a subgroup of $\overline{N} = N/G' = C_{p^{b_1}} \times C_{p^{b_2}} \times \cdots \times C_{p^{b_k}}$. Using the above terminology, we in particular obtain the main theorem of Yadav [7].

Corollary 2.7. Let G be a finite non-abelian p-group of class 2. Then the following are equivalent.

(a) $Aut_c(G) = Aut_{Z(G)}^{Z(G)}(G).$ (b) $Z(G) = G^{p^n}G'.$

(c) r = s, $(G/Z(G))/\overline{M} \cong (G/G')/\overline{N}$ and the exponent of Z(G) and G' are equal.

Proof. Since $exp(G/Z(G)) = exp(G') \le exp(Z(G))$, we have $G^{p^n} \subseteq Z(G)$. Therefore $G^{p^n}G' \subseteq Z(G)$, and by main theorem of article (a) and (b) are equivalent.

Let (b) hold. We first show exp(G') = exp(Z(G)). Let G' < Z(G). Then $Z(G)/G' = G^{p^n}G'/G'$ is nontrivial subgroup of abelian group G/G', so $exp((G/G')/(Z(G)/G')) = exp(G/Z(G)) = p^n$. On the other hand $exp(G/Z(G)) = exp(G') \le exp(Z(G))$. Thus exp(G') = exp(Z(G)). The case Z(G) = G', is trivial. Finally (b) and (c) are equivalent by Lemma 2.6.

Acknowledgement: The author would like to thank the referee for his/her very useful comments which improved the paper.

References

- J.E. Adney and T. Yen, Automorphims of a p-groups, Illinois J. Math, 9 (1965), 137-143.
- [2] M.S. Attar, On central automorphism that fix the central elementwise, Arch. Math., 89 (2007), 296-297.
- [3] M.J. Curran, Finite groups with Central automorphism group of minimal order, Math. Proc. Royal Irish Acad., 104 A(2) (2004), 223-229.
- [4] M.H. Jafari, Elementry abelian p-groups as central automorphism groups, Comm. Algebra, 29 (2001), 2081 -2087.
- [5] M.H. Jafari and A.R. Jamali, On the occurrance of some finite groups in the central automorphism group of finite groups, Math. Proc. Royal Irish Acad., 106 A(2) (2006), 139-148.
- [6] M.H. Jafari and A.R. Jamali, On the nilpotency and solubility of the central automorphism group of finite group, Algebra Coll., 15:3 (2008), 485-492.
- [7] Manoj K. Yadav, On central automorphisms fixing the center element-wise, Comm. Algebra, 37 (2009), 4325-4331.

S. Heydar Jafari

Department of Mathematics Shahrood University of Technology P. O. Box 3619995161-316, Shahrood, Iran e-mail: shjafari55@gmail.com

170