
International Electronic Journal of Algebra

Volume 7 (2010) 110-119

CLIFFORD SEMIGROUPS AND SEMINEAR-RINGS OF
ENDOMORPHISMS

Nick D. Gilbert and Mohammad Samman

Received: 18 April 2009; Revised: 7 September 2009

Communicated by Surender K. Jain

Abstract. We consider the structure of the semigroup of self-mappings of a

semigroup S under pointwise composition, generated by the endomorphisms

of S. We show that if S is a Clifford semigroup, with underlying semilattice

Λ, then the endomorphisms of S generate a Clifford semigroup E+(S) whose

underlying semilattice is the set of endomorphisms of Λ. These results con-

tribute to the wider theory of seminear-rings of endomorphisms, since E+(S)

has a natural structure as a distributively generated seminear-ring.
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Introduction

Let G be a group, and let M(G) be the set of all functions G → G. Then

M(G) admits two natural binary operations: it is a semigroup under composition

of functions (written multiplicatively) and a group under pointwise composition

(written additively) using the group operation in G. If we write maps on the right,

we find that function composition distributes on the left over pointwise composition,

so that f(g + h) = fg + fh for all f, g, h ∈ M(G). This endows the set M(G) with

the structure of a near-ring (see [9]). Within M(G) we have the subnear-ring

M0(G) consisting of all functions G → G that map the identity element of G to

itself. Then M0(G) contains the set End(G) of endomorphisms of G (a semigroup

under composition of functions), and these are precisely the elements that always

distribute on the right: (f + g)h = fh + gh for all f, g ∈ M0(G) if and only if

h ∈ End(G) (see [9, Lemma 9.6]). We let E(G) be the subnear-ring of M0(G)

generated by the subset End(G). The fact that End(G) is a right distributive

semigroup implies that E(G) is generated by End(G) as a group (that is, using

only the pointwise composition). An important result about this construction,

and a motivation for the more general theory of distributively generated near-rings

(originating in [12]) is Fröhlich’s theorem [3] that, for a finite non-abelian simple
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group G we have E(G) = M0(G). Further specific computations have been carried

out for dihedral groups [7] and general linear groups [8].

If we replace the group G by a semigroup S we may attempt to generalise these

ideas. The set M(S) of all functions S → S is now a seminear-ring: it is a semi-

group under both composition of functions and pointwise composition, and left

distributivity holds. We remark that the algebra of seminear-rings underlies one

approach to process algebra in the Bergstra-Klop axiomatization of the algebra of

communicating processes, see [1], and has also been considered in the context of

reversible computation [2]. We consider the subsemigroup E+(S) of M(S) gener-

ated by End(S) using pointwise composition. Since the elements of End(S) are also

right-distributive in M(S), it follows that E+(S) is in fact a subseminear-ring of

M(S). The structure of E+(S) for a Brandt semigroup S was considered in [4].

In this paper, building on results in [13] and [11], we study the structure of

E+(S) when S is a Clifford semigroup, that is an inverse semigroup with central

idempotents. The structure of Clifford semigroups is well known: they are precisely

the strong semilattices of groups. Our main result shows that if S is a strong semi-

lattice of groups in which all the linking maps are isomorphisms, then (E+(S),+)

has the same kind of structure, and moreover, if Λ is the semilattice underlying S,

then the semilattice underlying E+(S) is End(Λ).

1. Preliminaries

A (left) seminear-ring is a set L admitting two associative binary operations,

which we shall write as addition and multiplication, such that the left distributive

law is satisfied: for all a, b, c ∈ L, we have a(b + c) = ab + ac. An element d ∈ L is

called distributive if it also distributes on the right, so that for all a, b ∈ L we have

(a + b)d = ad + bd. The set of distributive elements is clearly a subsemigroup of

(L, ·).
Let S be a semigroup (written multiplicatively). Then the set M(S) of all

functions S → S is a seminear-ring under the multiplication operation given by

function composition, and the addition operation given by pointwise composition:

so for all f, g ∈ M(S) and s ∈ S we have

s(f + g) = (sf)(sg) and s(fg) = (sf)g.

Following [9, Lemma 9.6], we have:

Lemma 1.1. The semigroup of distributive elements in M(S) is the semigroup

End(S) of endomorphisms of S.
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Proof. It is clear that an endomorphism is distributive, so suppose that d : S → S

is a distributive element of M(S). For s ∈ S let cs : S → S be the constant map to

s. Then for any a, s, t ∈ S we have

a((cs + ct)d) = (st)d and a(csd + ctd) = (sd)(td)

and hence d is an endomorphism. ¤

A seminear-ring L is called distributively generated if (L, ·) contains a subsemi-

group of distributive elements that generates (L,+). Distributively generated

seminear-rings were first studied in [10]. Now let E+(S) be the subsemigroup

of (M(S), +) generated by End(S). It is clear that E+(S) is then a distributively

generated seminear-ring, called the endomorphism seminear-ring of S.

Now if S is commutative, then E+(S) = End(S) and (E+(S),+, ·) is a semiring

(see [5]). In particular, we have the following special case, which will be important

for our subsequent considerations.

Lemma 1.2. Let Λ be a semilattice. Then (End(Λ),+) is also a semilattice.

A study of the structure of the endomorphism semiring of a semilattice can be

found in [6].

We recall that the partial order on a semilattice Λ is determined by the multi-

plication as follows: if α, β ∈ Λ, then α > β if and only if αβ = β. A Clifford semi-

group, or a strong semilattice of groups, is a disjoint union of groups S =
⊔

α∈Λ Gα

indexed by a semilattice Λ, together with a group homomorphism φα,β : Gα → Gβ

whenever α > β in Λ, such that

• for each α ∈ Λ, the homomorphism φα,α is the identity,

• if α > β > γ then φα,γ = φα,βφβ,γ .

The semigroup operation on S is defined by ab = (aφα,αβ)(bφβ,αβ) if a ∈ Gα and

b ∈ Gβ .

2. Endomorphisms of Clifford semigroups

We begin this section with a routine lemma on endomorphisms of Clifford semi-

groups.

Lemma 2.1. Let S = (Λ, Gα, φα,β) be a strong semilattice of groups and let f ∈
End(S). Then the following hold:

(1) f induces an endomorphism of the semilattice Λ,

(2) for each α ∈ Gα we have Gαf ⊆ Gαf .
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Proof. Let eα be the identity element of Gα. Now Gαf ⊆ Gγ for some γ, and since

eαf is an idempotent, we have eαf = eγ , and we set αf = γ. Since eαeβ = eαβ it

follows that f is an endomorphism of Λ. ¤

The endomorphisms of Clifford semigroups were studied in detail in [11], under

various restrictions on the properties of the linking maps φα,β . To pursue our

study of the structure of E+(S), we shall assume the strongest of the conditions

considered in [11], namely that the linking maps are all isomorphisms. In this case,

we can simplify the description of S.

Lemma 2.2. Let S = (Λ, Gα, φα,β) be a strong semilattice of groups in which all

the linking maps φα,β are isomorphisms. For any λ ∈ Λ, let Sλ be the strong

semilattice of groups over Λ in which each group Gα, α ∈ Λ is equal to Gλ and all

the linking maps are the identity. Then S is isomorphic to Sλ.

Proof. We define an isomorphism ψ : S → Sλ as follows. Its restriction ψα to Gα

is defined to be ψα = φα,αλφ−1
λ,αλ. Then ψ is clearly bijective and we need only

check that it is a homomorphism. To this end, let a ∈ Gα and b ∈ Gβ , so that in

S we have ab = (aφααβ)(bφβ,αβ) ∈ Gαβ . Then

(aψ)(bψ) = (aψα)(bψβ)

= (aφα,αλφ−1
λ,αλ)(bφβ,βλφ−1

λ,βλ)

whereas

(ab)ψ = ((aφα,αβ)(bφβ,αβ))ψαβ

= (aφα,αβ)ψαβ(bφβ,αβ)ψαβ .

Now

(aφα,αβ)ψαβ = (aφα,αβ)φαβ,αβλφ−1
λ,αβλ

= aφα,αβλφ−1
λ,αβλ

= a(φα,αλφαλ,αβλ)(φ−1
αλ,αβλφ−1

λ,αλ)

= aφα,αλφ−1
λ,αλ.

Similarly, (bφβ,αβ)ψαβ = bφβ,βλφ−1
λ,βλ and ψ is indeed a homomorphism. ¤

By virtue of Lemma 2.2 we may now assume that S is a strong semilattice of

groups over Λ in which every group is equal to a fixed group G and with each

linking map equal to the identity. Hence S is the disjoint union of copies Gα of G,
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indexed by α ∈ Λ. If g ∈ G, then we denote by g(α) the copy of element g in Gα.

In this notation the multiplication in S is given by

g(α)h(β) = (gh)(αβ). (1)

Proposition 2.3. Any σ ∈ End(G) and f ∈ End(Λ) determine an endomorphism

σf ∈ End(S) defined by g(α)σf = (gσ)(αf) and every endomorphism of S arises in

this way. Hence we have

End(S) ∼= End(G)× End(Λ)

as semigroups of mappings.

Proof. To show that σf ∈ End(S) we have to check the preservation of the multi-

plication given in (1), but this is almost trivial:

(g(α))σf (h(β))σf = (gσ)(αf)(hσ)(βf)

= (gσhσ)((αf)(βf))

= ((gh)σ)((αβ)f)

= ((gh)(αβ))σf .

Now let σ ∈ End(S) and let f be the induced endomorphism of Λ. For each α ∈ Λ

we have σ : Gα → Gαf , and since Gα = G = Gαf , the restriction of σ to Gα

induces an endomorphism σα of G. Now for any g ∈ G and α, β ∈ Λ we have

1(αβ)
G = g(α)(g−1)(β). Applying σ, we obtain

1((αβ)f)
G = g(α)σ(g−1)(β)σ

= ((gσα)(g−1σβ))((αf)(βf)).

Therefore gσα = gσβ and σ ∈ End(S) induces the same endomorphism ρ on each

group Gα, with g(α)σ = (gρ)(αf). Therefore σ = ρf . It is now clear that (ρ, f) 7→ ρf

is a bijection End(G) × End(Λ) → End(S), and since gαρfσk = (gρ)(αf)σk =

(gρσ)αfk this bijection is a semigroup isomorphism. ¤

These considerations allow us to recover one of the main results of [11], by

reintroducing the isomorphic linking maps into S = (Λ, Gα, φα,β). For any λ ∈ Λ,

we may write an endomorphism τ of S in the form τ = ψσfψ−1 where σf ∈
End(Sλ), and hence for g ∈ Gα we have

gτ = gψασfψ−1
αf

= gφα,αλφ−1
λ,αλσfφαf,(αf)λφ−1

λ,(αf)λ

which is the formula for τ given in [11].
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3. Seminear-rings of endomorphisms

For the rest of the paper, we shall assume that the group G is finite. This implies

that any mapping in the group E(G) is a positive combination of endomorphisms,

and hence that the semigroup E+(G) generated by End(G) coincides with E(G).

For fixed f ∈ End(Λ) we have an embedding End(G) → End(S) by α 7→ αf . We

claim that this embedding induces a homomorphism γf : E(G) → E+(S). Suppose

that ξ = σ1 + · · ·+ σm ∈ E(G). We define ξf = (σ1)f + · · ·+ (σm)f . Then for each

α ∈ Λ and each g(α) ∈ Gα we have

g(α)ξf = ((gσ1)(αf)) . . . ((gσm)(αf)) = (gξ)(αf).

Hence ξf depends only on ξ and f , and γf : ξ 7→ ξf is a well-defined embedding

E(G) → E+(S). Moreover, if ξf = ηk then for all g ∈ G and α ∈ Λ we have

(gξ)(αf) = (gη)(αk). Hence f = k, and the images of the distinct embeddings

γf (f ∈ End(Λ)) are disjoint. We write E(G)f for the image of E(G) under the

embedding γf . For each f ∈ End(Λ), E(G)f is a subgroup of E+(S) isomorphic to

E(G).

Now if θ ∈ E+(S) we have θ = θ1 +θ2 + · · ·+θm for some θj ∈ End(S) and hence

there exist σj ∈ End(G) and fj ∈ End(Λ) such that ξ = (σ1)f1 + · · · + (σm)fm .

Therefore (E+(S),+) is generated by the collection of disjoint subgroups E(G)f

where f ∈ End(Λ).

Now take ξ1, ξ2 ∈ E(G) and f1, f2 ∈ End(Λ). Then for all g ∈ G and i =

0, 1, . . . n we have

g(α)((ξ1)f1 + (ξ2)f2)) = (gξi)αf1(gξ2)αf2

= ((gξ1)(gξ2))((αf1)(αf2)) = (g(ξ1 + ξ2))(α(f1+f2)).

A straightforward induction argument then shows that

(ξ1)f1 + · · ·+ (ξm)fm = (ξ1 + · · ·+ ξm)f1+···+fm .

Therefore

E+(S) =
⊔

f∈End(Λ)

E(G)f

and so E+(S) is a semilattice of groups.

We first look at the composition of maps in E+(S). For g(α) ∈ Gα we have

gαξfηk = (gξ)(αf)ηk = (gξη)(αfk)

and hence

ξfηk = (ξη)fk (2)
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Now we have linking homomorphisms φf1,f2 : E(G)f1 → E(G)f2 whenever f1 >
f2, defined by ξf1 7→ ξf2 . So the linking homomorphisms are identity maps between

the indexed copies of E(G) in E+(S), and for the addition of ξf1 , ηf2 ∈ E+(S) we

have

ξf1 + ηf2 = (ξ + η)f1+f2 (3)

= (ξf1)φf1,f1+f2 + (ηf2)φf2,f1+f2 (4)

and so E+(S) is a strong semilattice of its subgroups E(G)f . We summarize our

conclusions in the following theorem, returning to the case of a strong semilattice

of groups whose linking maps are isomorphisms:

Theorem 3.1. Let S = (Λ, Gα, φα,β) be a strong semilattice of finite groups in

which all the linking maps φα,β are isomorphisms.

(1) As a semigroup under composition of maps, E+(S) is isomorphic to E(G)×
E(Λ) = E(G)× End(Λ).

(2) As a semigroup under addition of maps, E+(S) is isomorphic to a strong

semilattice of groups over the semilattice End(Λ), with each group isomor-

phic to E(G).

4. Examples

4.1. Finite chains of finite groups. Let Λ be the finite chain 0 < 1 < · · · <

n. It is well-known that in this case |End(Λ)| =
(
2n+1

n

)
. If n = 1 there are

3 endomorphisms, and in this case (End(Λ),+) is again a finite chain. Hence if

S = G0tG1 with an isomorphism φ : G1 → G0 then E+(S) = E(G)tE(G)tE(G).

For n > 1 the semilattice (End(Λ),+) will not be a finite chain: for n = 2 it is the

10-element semilattice:
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4.2. Finite Clifford semigroups over the free 2–generator semilattice.

Let Λ = {α, β, αβ} be the free 2–generator semilattice, with isomorphisms Gα →
Gαβ ← Gβ . Then End(Λ) is the 9–element semilattice

The maximal elements at the left and right-hand end of this picture are the two

automorphisms of Λ. There are four endomorphisms in the principal order ideal

of End(Λ) generated by the identity id. In addition to id itself, we have a : α 7→
α, β 7→ αβ, b : α 7→ αβ, β 7→ β and the constant map c = cαβ at αβ. Consider the

subseminear-ring

E↓(id)(S) =
⊔

f∈End(Λ)
f6id

E(G)f = E(G)id t E(G)a t E(G)b t E(G)c.

A quick check reveals that the multiplication table for the subsemilattice {id, a, b, c}
(under +) coincides with its multiplication table under composition of maps. It

follows that E↓(id)(S) is a strong semilattice of near-rings (see [13]).

4.3. Non-isomorphic linking maps. If the linking maps φα,β in S are not iso-

morphisms, then further complications arise in the analysis of E+(S). As an il-

lustration, consider the case n = 1 in Example 4.1, so that S = G0 t G1 with

G0 and G1 finite, but with an arbitrary homomorphism φ : G1 → G0. The three

endomorphisms of the chain 0 < 1 give rise to three types of endomorphism of S.

Let f ∈ End(S). If f induces the endomorphism c0 which is constant at 0 on

the chain 0 < 1, then f is determined by f0 ∈ End(G0), so that f |G0 = f0 and

f |G1 = φf0. Similarly, if f induces the endomorphism c1 which is constant at 1

on the chain 0 < 1, then f is determined by f0 : G0 → G1, and again we have

f |G0 = f0 and f |G1 = φf0. However, if f induces the identity on the chain 0 < 1

then it is determined by two endomorphisms f1 ∈ End(G1) and f0 ∈ End(G0) such

that f1φ = φf0. Hence as a set End(S) can be identified with the disjoint union

End(G0) t Φ tHom(G0, G1) (5)

where

Φ = {(f0, f1) ∈ End(G0)× End(G1) : f1φ = φf0}.
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Clearly if (f0, f1) ∈ Φ then (im φ)f0 ⊆ im φ and (kerφ)f1 ⊆ kerφ. If φ is surjective,

then the condition (kerφ)f1 ⊆ kerφ also implies that f1 determines f0, and so we

may simplify the description of Φ to Φ = {f ∈ End(G1) : (kerφ)f1 ⊆ kerφ}. If φ is

injective, then f0 determines f1 and so we may simplify Φ to Φ = {f ∈ End(G0) :

(im φ)f0 ⊆ im φ}.
Now each subset shown in the partition (5) is a subsemigroup of (End(S), ·):

the composition in End(G0) and in Φ is the obvious one in each case, and if a, b ∈
Hom(G0, G1) then a · b = aφb. We let Ec0(S) be the subsemigroup of (E+(S),+)

generated by End(G0), Eid(S) be the subsemigroup of (E+(S), +) generated by

Φ, and Ec1(S) be the subsemigroup of (E+(S), +) generated by Hom(G0, G1). An

element of Ec0(S) is represented by some function ξ : G0 → G1: then ξ acts on G0,

and its action on S is given by defining gξ = gφξ if g ∈ G1. An element of Eid(S)

is represented by a pair of maps (ξ, η) with ξ : G0 → G0 and η : G1 → G1, that

satisfy φξ = ηφ. Finally an element of Ec0(S) is represented by ξ ∈ E(G0) acting

on G0, and its action on S is again given by defining gξ = gφξ if g ∈ G1. Then we

have a decomposition

E+(S) = Ec0(S) t Eid(S) t Ec1(S)

(with c0 < id < c1 as endomorphisms of the chain 0 < 1) of (E+(S),+) as a strong

semilattice of groups with linking maps

φc1,id : Ec1(S) → Eid(S), ξ 7→ (ξφ, ξ) ,

φid,c0 : Eid(S) → Ec0 , (ξ, η) 7→ ξ ,

and

φc1,id : Ec1(S) → Ec0(S), ξ 7→ ξφ .
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