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Abstract. This paper is a continuation of the papers J. Pure Appl. Alge-

bra, 210 (2007), 437–445 and J. Algebra Appl., 8 (2009), 219–227. Namely,

we introduce and study a doubly filtered set of classes of modules of finite

Gorenstein projective dimension, which are called (n, m)-strongly Gorenstein

projective ((n, m)-SG-projective for short)(for integers n ≥ 1 and m ≥ 0). We

are mainly interested in studying syzygies of these modules. As consequences,

we show that a module M has Gorenstein projective dimension at most m

if and only if M ⊕ G is (1, m)-SG-projective for some Gorenstein projective

module G. And, over rings of finite left finitistic flat dimension, that a module

of finite Gorenstein projective dimension has finite projective dimension if and

only if it has finite flat dimension.
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1. Introduction

Throughout this paper, R denotes a non-trivial associative ring with identity,

and all modules are left R-modules. For a module M , we use pd(M) and fd(M) to

denote, respectively, the classical projective and flat dimensions of M .

A module M is called Gorenstein projective (G-projective for short), if there

exists an exact sequence of projective modules,

P = · · · → P1 → P0 → P−1 → P−2 → · · · ,

such that M ∼= Im(P0 → P−1) and such that Hom(−, Q) leaves the sequence P

exact whenever Q is a projective module. The exact sequence P is called a complete

projective resolution of M .

For a positive integer n, we say that M has Gorenstein projective dimension at

most n, and we write GpdR(M) ≤ n (or simply Gpd(M) ≤ n), if there is an exact

sequence of modules,

0 → Gn → · · · → G0 → M → 0,
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where each Gi is Gorenstein projective (suitable background materials on the notion

of Gorenstein projective modules can be found in [7,8,12]).

The notion of Gorenstein projective modules was first introduced and studied

by Enochs et al. [9,10,11] as a generalization of the classical notion of projective

modules in the sense that a module is projective if and only if it is Gorenstein

projective with finite projective dimension (see also [8,12]). In an unpublished work

[7, Theorem 4.2.6 and Notes page 99], Avramov, Buchweitz, Martsinkovsky, and

Reiten proved, over Noetherian rings, that finitely generated Gorenstein projective

modules are just modules of Auslander’s Gorenstein dimension 0 ([1], see also [2]),

which are extensively studied by many others (part of the works on Gorenstein

dimension is summarized in Christensen’s book [7]).

The Gorenstein projective dimension has been extensively studied by many oth-

ers, who proved that this dimension shares many nice properties of the classical

projective dimension. In [3], Bennis and Mahdou introduced a particular case of

Gorenstein projective modules, which are defined as follows:

Definition 1.1 ([3]). A module M is said to be strongly Gorenstein projective

(SG-projective for short), if there exists an exact sequence of projective modules,

P = · · · f−→ P
f−→ P

f−→ P
f−→ · · · ,

such that M ∼= Im(f) and such that Hom(−, Q) leaves the sequence P exact when-

ever Q is a projective module.

It is proved that the class of all strongly Gorenstein projective modules is an

intermediate class between the ones of projective modules and Gorenstein projective

modules [3, Proposition 2.3]; i.e., we have the following inclusions

{projective modules} ⊆ {SG−projective modules}
⊆ {G−projective modules}

which are, in general, strict by [3, Examples 2.5 and 2.13]. The principal role of the

strongly Gorenstein projective modules is to give the following characterization of

Gorenstein projective modules [3, Theorem 2.7]: a module is Gorenstein projective

if and only if it is a direct summand of a strongly Gorenstein projective module.

The notion of strongly Gorenstein modules confirm that there is an analogy between

the notion of Gorenstein projective modules and the notion of the usual projective

modules. In fact, this is obtained because the strongly Gorenstein projective mod-

ules have simpler characterizations than their correspondent Gorenstein modules
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[3, Propositions 2.9]. For instance, a module M is strongly Gorenstein projective if

and only if there exists a short exact sequence of modules,

0 → M → P → M → 0,

where P is projective, and Ext(M, Q) = 0 for any projective module Q. Using the

results above, the notion of strongly Gorenstein projective modules was proven to

be a good tool for establishing results on Gorenstein projective dimension (see, for

instance, [4,5,6]). In [4], an extension of the notion of strongly Gorenstein projective

modules is introduced as follows: for an integer n > 0, a module M is called n-

strongly Gorenstein projective (n-SG-projective for short), if there exists an exact

sequence of modules,

0 → M → Pn → · · · → P1 → M → 0,

where each Pi is projective, such that Hom(−, Q) leaves the sequence exact when-

ever Q is a projective module (equivalently, Exti(M, Q) = 0 for j+1 ≤ i ≤ j+n for

some positive integer j and for any projective module Q [4, Theorem 2.8]). Then,

1-strongly Gorenstein projective modules are just strongly Gorenstein projective

modules. In [4, Proposition 2.2], it is proved that an n-strongly Gorenstein projec-

tive module is projective if and only if it has finite flat dimension. In [13], Zhao

and Huang, continued the study of n-strongly Gorenstein projective modules. They

gave more examples and they investigated the relations between n-strongly Goren-

stein projective modules and m-strongly Gorenstein projective modules whenever

n 6= m. They also proved, for two modules M and N projectively equivalent (that

is, there exist two projective modules P and Q such that M ⊕ P ∼= N ⊕ Q), that

M is n-strongly Gorenstein projective if and only if N is n-strongly Gorenstein

projective [13, Theorem 3.14] (see Lemma 2.5 for a generalization of this result).

So using this result, we prove the following lemma, which we use in the proof of

the main results of this paper.

Recall, for a projective resolution of a module M ,

· · · → P1 → P0 → M → 0,

that the module Ki = Im(Pi → Pi−1) for i ≥ 1, is called an ith syzygy of M .

Lemma 1.2. If M is an n-strongly Gorenstein projective module for some integer

n > 0, then:

(1) Every ith syzygy of M is n-strongly Gorenstein projective.
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(2) For every complete projective resolution of M ,

P = · · · → P1 → P0 → P−1 → P−2 → · · · ,

every Im(Pi → Pi−1) is n-strongly Gorenstein projective.

Proof. First note that M admits a complete projective resolution

Q = · · · → Q2 → Q1 → Q0 → Q−1 → · · ·

in which all images Im(Qi → Qi−1) are n-strongly Gorenstein projective modules.

Indeed, M is n-strongly Gorenstein projective module, then there exists an exact

sequence,

(∗) 0 → M → Qn−1 → · · · → Q0 → M → 0,

where each Qi is a projective module, such that Hom(−, Q) leaves the sequence

exact whenever Q is a projective module. For every i = 1, ..., n− 1, we decompose

the exact sequence (∗) into two short exact sequences as follows:

0 → M → Qn−1 → · · · → Qi → Ni → 0

and

0 → Ni → Qi−1 → · · · → Q0 → M → 0

Assembling these sequences so that we obtain the following exact sequence

0 → Ni → Qi−1 → · · · → Q0 → Qn−1 → · · · → Qi → Ni → 0

This shows that each Im(Qi → Qi−1) is n-strongly Gorenstein projective. Then,

the desired complete projective resolution Q is obtained by assembling the sequence

(∗) with itself as done in the proof of [4, Proposition 2.5(2)].

Now, using the left half of Q, · · · → Q1 → Q0 → M → 0, and the fact that

every two ith syzygies of a module are projectively equivalent [14, Theorem 9.4],

the assertion 1 follows from [13, Theorem 3.14].

We prove the second assertion. From 1 it remains to prove the result for the images

of the right half of P. Using [12, Proposition 1.8], a dual proof of the one of [14,

Theorem 9.4] shows that the two module Im(Qi → Qi−1) and Im(Pi → Pi−1) are

projectively equivalent for every i ≤ −1, and therefore the result follows from [13,

Theorem 3.14]. ¤

The aim of this paper is to generalize the notions above to a more general context

(Definition 2.1). Namely, we introduce and study a doubly filtered set of classes

of modules with finite Gorenstein projective dimension, which are called (n,m)-

strongly Gorenstein projective ((n,m)-SG-projective for short), (for integers n ≥ 1

and m ≥ 0). First, we study the relations between them (Proposition 2.2), and the
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stability of this new class of modules under direct sum (Proposition 2.3). Then, we

set our first main result in this paper (Theorem 2.4), which shows, for an (n,m)-

SG-projective module M , that Gpd(M) = k ≤ m for some positive integer k. In

particular, any ith syzygy of M is (n,m− i)-SG-projective for 1 ≤ i ≤ k, and any

ith syzygy of M is (n, 0)-SG-projective for i ≥ k. The second main purpose of the

paper is to investigate the converse of the first main result. Namely, we ask: if an

ith syzygy of a module M is (n,m)-SG-projective, is M an (n,m+ i)-SG-projective

module? In the second main result (Theorem 2.7), we give an affirmative answer

when n = 1 as follows: for two integers d ≥ 1 and m ≥ 0, if a dth syzygy of a module

M is (1,m)-SG-projective, then Gpd(M) = k ≤ d + m for some positive integer

k and M is (1, k)-SG-projective. These results lead to two results on modules of

finite Gorenstein projective dimension:

The first one shows that (1,m)-SG-projective modules can serve to character-

ize modules of finite Gorenstein projective dimension similarly to the character-

ization of Gorenstein projective modules by strongly Gorenstein projective mod-

ules. Namely, we prove (Corollary 2.8): for a module M and a positive integer m,

Gpd(M) ≤ m if and only if M ⊕ G is (1,m)-SG-projective for some Gorenstein

projective module G.

The second one shows, over rings of finite left finitistic flat dimension, that a

module of finite Gorenstein projective dimension has finite projective dimension if

and only if it has finite flat dimension (Proposition 2.10). This, in fact, holds since

we establish the following extension of [4, Proposition 2.2] (Corollary 2.9): let M

be an (n, m)-SG-projective module for some integers n ≥ 1 and m ≥ 0. Then,

pd(M) < ∞ if and only if fd(M) < ∞.

2. Main results

In this paper, we investigate the following kind of modules:

Definition 2.1. Let n ≥ 1 and m ≥ 0 be integers. A module M is called (n,m)-

strongly Gorenstein projective ((n, m)-SG-projective for short) if there exists an

exact sequence of modules,

0 → M → Qn → · · · → Q1 → M → 0,

where pd(Qi) ≤ m for 1 ≤ i ≤ n, such that Exti(M, Q) = 0 for any i > m and for

any projective module Q.

Consequently, (1, 0)-SG-projective modules are just strongly Gorenstein projec-

tive modules (by [3, Proposition 2.9]), and, generally, (n, 0)-SG-projective modules
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are just n-strongly Gorenstein projective modules (by [4, Theorem 2.8]).

One can show easily that modules of projective dimension at most an integer m

are particular examples of (n,m)-SG-projective modules for every integer n ≥ 1.

The converse is not true in general unless the (n,m)-SG-projective modules have

finite flat dimension (see Corollary 2.9). To give examples of (n,m)-SG-projective

modules with infinite projective dimension, we can take any (n, 0)-SG-projective

module M which is not projective (use, for instance, [4, Examples 2.4 and 2.6] and

[13, Example 3.2]) and any module Q with projective dimension at most m, then

we can show easily that the direct sum M ⊕Q is an (n, m)-SG-projective module

with infinite projective dimension.

The main purpose of the paper is to investigate the syzygies of (n,m)-SG-

projective modules. In particular, we show that (n,m)-SG-projective modules are

particular examples of modules with Gorenstein projective dimension at most m.

Before, we give some elementary properties of (n,m)-SG-projective modules.

Proposition 2.2. Let M be a module and consider two integers n ≥ 1 and m ≥ 0.

We have the following assertions:

(1) If M is (n,m)-SG-projective, then it is (n,m′)-SG-projective for every m′ ≥
m.

(2) If M is (n, m)-SG-projective, then it is (nk, m)-SG-projective for every k ≥
1.

In particular, every (1, m)-SG-projective module is (n,m)-SG-projective for

every n ≥ 1.

Proof. 1. Obvious.

2. Since M is (n, m)-SG-projective, there exists an exact sequence of modules

0 → M → Qn → · · · → Q1 → M → 0, where pd(Qi) ≤ m for 1 ≤ i ≤ n, such that

Exti(M,Q) = 0 for any i > m and for any projective module Q. Assembling this

sequence with itself k times, we can show that M is also (nk, m)-SG-projective. ¤

Proposition 2.3. Let (Mi)i∈I be a family of modules and consider the bounded

families of integers (ni ≥ 1)i∈I and (mi ≥ 0)i∈I .

If, for any i ∈ I, Mi is (ni, mi)-SG-projective, then the direct sum ⊕i Mi is (n,m)-

SG-projective, where m = max{mi} and n is the least common multiple of ni for

i ∈ I.

Proof. First, note that m and n exist since the families (ni)i and (mi)i are

bounded. Now, from Proposition 2.2, Mi is (n,m)-SG-projective for any i ∈ I.
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Then, using standard arguments, we can show that the direct sum ⊕i Mi is (n,m)-

SG-projective. ¤

Note, by [13, Example 3.13], that the family of (n,m)-SG-projective modules is

not closed under direct summands. However, in Lemma 2.5 given later, we give a

situation in which a direct summand of an (n,m)-SG-projective module is (n,m)-

SG-projective.

Now we give our first main result, in which we study the syzygies of an (n,m)-

SG-projective.

Recall, for a projective resolution of a module M ,

· · · −→ P1 −→ P0 −→ M −→ 0,

that the module Ki = Im(Pi → Pi−1) for i ≥ 1 is called an ith syzygy of M .

Theorem 2.4. If a module M is (n,m)-SG-projective for some integers n ≥ 1 and

m ≥ 0, then:

(1) Gpd(M) = k ≤ m for some positive integer k;

(2) Any ith syzygy Ki of M is (n,m− i)-SG-projective for 1 ≤ i ≤ k;

(3) Any ith syzygy Ki of M is (n, 0)-SG-projective for i ≥ k.

Proof. 1 and 2. Since M is (n,m)-SG-projective, there exists an exact sequence

of modules,

(∗) 0 → M → Qn → · · · → Q1 → M → 0,

where pd(Qi) ≤ m for 1 ≤ i ≤ n, such that Exti(M, Q) = 0 for any i > m and for

any projective module Q. Consider a short exact sequence of modules

0 → K1 → P0 → M → 0,

where P0 is projective. We prove that K1 is (n,m− 1)-SG-projective. First, from

[14, Theorem 9.4], Exti(K1, Q) = 0 for any i > m − 1 and for any projective

module Q. Then, it remains to prove the existence of the exact sequence. For that,

decompose the exact sequence above (∗) into short exact sequences

0 → Hi → Qi → Hi−1 → 0,

where Hn = M = H0 and Hi = Ker(Qi → Hi−1) for i = 1, ..., n− 1. And consider,

for i = 0, ..., n, a short exact sequence

0 → Ki,1 → Pi,0 → Hi → 0,
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where Pi,0 is projective for i = 1, ..., n − 1, and Pn,0 = P0,0 = P0, and Kn,1 =

K0,1 = K1. Applying the Horseshoe Lemma [14, Lemma 6.20], we get the following

diagram for i = n, ..., 1:

0 0 0

↑ ↑ ↑
0 → Hi → Qi → Hi−1 → 0

↑ ↑ ↑
0 → Pi,0 → Pi,0 ⊕ Pi−1,0 → Pi−1,0 → 0

↑ ↑ ↑
0 → Ki,1 → Q′

i → Ki−1,1 → 0

↑ ↑ ↑
0 0 0

Assembling these diagrams we get the following diagram :

0 0 0 0

↑ ↑ ↑ ↑
0 → M → Qn → · · · → Q1 → M → 0

↑ ↑ ↑ ↑
0 → P0 → P0 ⊕ Pn−1,0 → · · · → P1,0 ⊕ P0 → P0 → 0

↑ ↑ ↑ ↑
0 → K1 → Q′

n → · · · → Q′1 → K1 → 0

↑ ↑ ↑ ↑
0 0 0 0

It is easy to show that pd(Q′i) ≤ m − 1 for 1 ≤ i ≤ n. Hence, the bottom exact

sequence of the diagram is the desired sequence. Therefore, K1 is (n,m − 1)-SG-

projective.

Then, by induction and using the same arguments above, we get that Ki is (n,m−
i)-SG-projective for i = 1, ..., m. Particularly, Km is (n, 0)-SG-projective, then

Gorenstein projective (from [4, Proposition 2.5]), and so Gpd(M) = k ≤ m for

some positive integer k.

3. Now, we prove that any ith syzygy of M is (n, 0)-SG-projective for i ≥ k.

Consider first Kk: a kth syzygy of M . Since Kk is Gorenstein projective, we can

chose a projective resolution of Kk as a left half of any of its complete projective

resolution, and so we get an exact sequence

0 → K ′
m−k → Fm−k−1 → · · · → F1 → F0 → Kk → 0,
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where K ′
m−k = Im(Fm−k → Fm−k−1), such that Hom(−, Q) leaves this sequence

exact whenever Q is a projective module. From the first part of the proof, K ′
m−k

is (n, 0)-SG-projective (since it is an mth syzygy of M). Then, dually to the first

part of the proof, the dual version of the Horseshoe Lemma [12, Lemma 1.7] gives

a raise to an exact sequence of modules of the form:

0 → Kk → Ln → · · · → L1 → Kk → 0,

where Li is projective for 1 ≤ i ≤ n. Then, with the fact that Exti(Kk, Q) = 0

for any i > 0 and for any projective module Q (since Kk is Gorenstein projective

and by [12, Proposition 2.3]), we deduce that Kk is (n, 0)-SG-projective. Therefore,

from Lemma 1.2 with [13, Theorem 3.14], we show that any ith syzygy Ki of M is

(n, 0)-SG-projective for i ≥ k. ¤

It is natural to ask for the converse of Theorem 2.4. Namely, we ask: if an ith

syzygy of a module M is (n,m)-SG-projective, is M an (n,m + i)-SG-projective

module? In the second main result, we give an affirmative answer when n = 1. For

that, we need the following two lemmas, which are of independent interest.

The first one gives a situation in which a direct summand of an (n,m)-SG-

projective module is (n, m)-SG-projective.

Lemma 2.5. Let M and N be two modules such that M ⊕ P ∼= N ⊕ Q for some

modules P and Q with finite projective dimension. Then, for two integers n ≥ 1

and m ≥ max{pd(P ), pd(Q)}, M is (n,m)-SG-projective if and only if N is (n,m)-

SG-projective.

Proof. By symmetry, we only need to prove the direct implication. The proof is

analogous to the one of [13, Theorem 3.14]. For completeness, we give a proof here.

Since M is (n,m)-SG-projective, the direct sum M ⊕ P ∼= N ⊕ Q is also (n,m)-

SG-projective (by Proposition 2.3). Then, there exists for H = N ⊕ Q an exact

sequence of modules,

0 → H → Qn → · · · → Q1 → H → 0,

where pd(Qi) ≤ m for 1 ≤ i ≤ n, such that Exti(H,L) = 0 for any i > m and

for any projective module L. Then, from [14, Theorem 7.13], Exti(N, L) = 0

for any i > m and for any projective module L. Now, we have to construct the

exact sequence associated to N . Decomposing the above sequence into three exact
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sequences:

0 → H → Qn → E → 0,

0 → E → Qn−1 → · · · → Q2 → F → 0, and

0 → F → Q1 → H → 0

Using the first and the last short exact sequences above with, respectively, the
trivial sequences 0 → Q → H → N → 0 and 0 → N → H → Q → 0, we get,
respectively, the following pushout and pullback diagrams:

0

²²

0

²²
0 // Q // H

²²

// N

²²Â
Â
Â

// 0

0 // Q // Qn

²²

//___ Gn

²²

// 0

E

²²

E

²²
0 0

0

²²

0

²²
F

²²

F

²²
0 // G1

²²Â
Â
Â

//___ Q1

²²

// Q // 0

0 // N //

²²

H

²²

// Q // 0

0 0
From Theorem 2.4, H, E, and F have Gorenstein projective dimensions at most m.

Then, from the diagrams above, G1 and Gn have finite Gorenstein projective dimensions

which are, by standard arguments, at most m. But, from the middle sequence of each

diagram, G1 and Gn have finite projective dimensions. Then, from [12, Proposition 2.27],

pd(G1) = Gpd(G1) ≤ m and pd(Gn) = Gpd(Gn) ≤ m. Finally, assembling the exact

sequences:

0 → N → Gn → E → 0,

0 → E → Qn−1 → · · · → Q2 → F → 0, and

0 → F → G1 → N → 0

we get the following exact sequence:

0 → N → Gn → Qn−1 → · · · → Q2 → G1 → N → 0.

This completes the proof. ¤

Lemma 2.6. Let M be a module and let n ≥ 1 and m ≥ 0 be integers. Then,

(1) If M is both Gorenstein projective and (n,m)-SG-projective, then it is

(n, 0)-SG-projective.

(2) If a dth syzygy of M is (n,m)-SG-projective (for d ≥ 1), then Gpd(M) =

k ≤ d + m for some positive integer k and any ith syzygy Ki of M is

(n, 0)-SG-projective for i ≥ k.
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Proof. 1. The proof is analogous to the last part of the proof of Theorem 2.4.

2. Since a dth syzygy of M is (n,m)-SG-projective, we can show that Gpd(M) =

k ≤ d + m for some positive integer k. Then, there exists an exact sequence of

modules,

0 → Kk → Pk−1 → · · · → P0 → M → 0,

where Pi is projective for i = 0, ..., k−1, and Kk is Gorenstein projective. Consider

a projective resolution of Kk which is extracted from a left half of one of its complete

projective resolutions:

0 → Kd → Qd−1 → · · ·Qk+1 → Qk → Kk → 0,

where Qk+i is projective for i = 0, ..., d − k − 1, and Kd is Gorenstein projective.

Clearly, Kd is a dth syzygy of M . Hence, by hypothesis, Lemma 2.5, and since any

two ith syzygies of M are projectively equivalent, Kd is (n,m)-SG-projective, and

then, from (1), it is (n, 0)-SG-projective. This implies, by Lemma 1.2, that every

Im(Qi → Qi−1) is (n, 0)-SG-projective for i ≥ k + 1. Therefore, from Lemma 2.5,

any ith syzygy Ki of M is (n, 0)-SG-projective for i ≥ k. ¤

Now, we can prove the second main result:

Theorem 2.7. Consider two integers d ≥ 1 and m ≥ 0. If a dth syzygy of a module

M is (1,m)-SG-projective, then Gpd(M) = k ≤ d + m for some positive integer k

and M is (1, k)-SG-projective.

Proof. By Lemma 2.6 (2), Gpd(M) = k ≤ d + m for some positive integer k and

any ith syzygy Ki of M is (1, 0)-SG-projective for i ≥ k. In particular, we have an

exact sequence of modules,

0 → Kk → Pk−1 → · · · → P0 → M → 0,

where Pi is projective for i = 0, ..., k− 1, and the kth syzygy Kk of M is (1, 0)-SG-

projective. Then, there exists an exact sequence of modules,

0 → Kk → P → Kk → 0,

where P is projective. Then, by [4, Proposition 2.5(1) and its proof], Kk is (k, 0)-

SG-projective such that, by assembling the short exact sequence above with itself

k times, we have an exact sequence of the form 0 → Kk → P → · · ·P → Kk → 0.

Then, using the same proof as the one of [12, Theorem 2.10], we get the following

exact sequence:

0 → Qk → Qk−1 → · · ·Q1 → G → M → 0,
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where Qk = P , Qi = P ⊕ Pi−1 for i = 1, ..., k − 1, and G = Kk ⊕ P0. The module

G = Kk ⊕ P0 is (1, 0)-SG-projective with a short exact sequence 0 → G → Q →
G → 0, where Q = P ⊕ P0 ⊕ P0. Then, from the Horseshoe Lemma [14, Lemma

6.20], we get the following diagram:

0 0

↑ ↑
0 → M M → 0

↑ ↑
0 → G → Q → G → 0

↑ ↑ ↑
0 → Q1 → Q1 ⊕Q1 → Q1 → 0

↑ ↑ ↑
...

...
...

↑ ↑ ↑
0 → Qk−1 → Qk−1 ⊕Qk−1 → Qk−1 → 0

↑ ↑ ↑
0 → Qk → Q′k → Qk → 0

↑ ↑ ↑
0 0 0

Since Qk is projective, Q′
k is projective. Putting the cokernel into this diagram, we

obtain an exact sequence 0 → M → P ′ → M → 0 such that, by the middle exact

sequence, pd(P ′) ≤ k. Therefore, M is (1, k)-SG-projective. ¤

As consequences of the two main results, we get some results on modules with

finite Gorenstein projective dimension.

The first one extends the role of strongly Gorenstein projective modules (i.e.,

(1, 0)-SG-projective modules), which serve to characterize Gorenstein projective

modules, to the setting of (1, m)-SG-projective modules as follows:

Corollary 2.8. Let M be a module and let m be a positive integer. Then, Gpd(M) ≤
m if and only if there exists a Gorenstein projective module G such that the direct

sum M ⊕G is (1,m)-SG-projective.

Proof. ⇐ . Follows from Theorem 2.4(1) and [12, Proposition 2.19].

⇒ . Since Gpd(M) ≤ m, there exists an exact sequence of modules,

(∗) 0 → Km → Pm−1 → · · · → P0 → M → 0,
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where Pi is projective for i = 0, ...,m− 1 and Km is Gorenstein projective. Then,

from [3, Theorem 2.7], there exists a Gorenstein projective module G′ such that

Km ⊕G′ is (1, 0)-SG-projective. From the right half of a complete projective reso-

lution of G′, we get an exact sequence,

0 → G′ → Qm−1 → · · · → Q0 → G → 0,

where Qi is projective for i = 0, ..., m− 1 and G is Gorenstein projective. Adding

this sequence with the sequence (∗), we get the following exact sequence

0 → Km ⊕G′ → Pm−1 ⊕Qm−1 → · · · → P0 ⊕Q0 → M ⊕G → 0.

This means that the mth syzygy Km⊕G′ of M ⊕G is (1, 0)-SG-projective. There-

fore, from Theorem 2.7, M ⊕G is (1, m)-SG-projective. ¤

The second corollary investigates the relation between (n,m)-SG-projective mod-

ules and the usual projective dimension. It is known, for a module M , that

Gpd(M) ≤ pd(M) with equality if pd(M) < ∞. For (n,m)-SG-projective modules

we have the following result, which is an extension of [4, Proposition 2.2]:

Corollary 2.9. Let M be an (n,m)-SG-projective module for some integers n ≥ 1

and m ≥ 0. Then, pd(M) < ∞ if and only if fd(M) < ∞.

Proof. We only need to proof the converse implication. Assume that fd(M) < ∞,

then so every syzygy of M has finite flat dimension. From Theorem 2.4, an mth

syzygy of M is (n, 0)-SG-projective, and so it is projective from [4, Proposition 2.2].

This implies that pd(M) < ∞, as desired. ¤

The above result leads us to conjecture that every module of finite Gorenstein

projective dimension has finite projective dimension if it has finite flat dimension.

From [4, Corollary 2.3], we have an affirmative answer over rings with finite weak

global dimension. In the following result, we give an affirmative answer in a more

general context. Recall that the left finitistic flat dimension of R is the quantity

l.FFD(R) = sup{fdR(M) | M is an R−module with fdR(M) < ∞}.

Proposition 2.10. If l.FFD(R) < ∞, then every module with both finite Goren-

stein projective dimension and finite flat dimension has finite projective dimension.

Proof. Assume that l.FFD(R) = n for some positive integer n. Let M be a

module such that fd(M) < ∞ and Gpd(M) = k < ∞. To see that pd(M) < ∞, it

is sufficient, from Corollary 2.8 and its proof, to show that Km ⊕ G′ is projective

(we use the notation of Corollary 2.8 and its proof). From the proof of [3, Theorem
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2.7], Km ⊕G′ can be considered as the direct sum of all the images of a complete

projective resolution of Km. Now, since fd(Km) ≤ n (since fd(M) < ∞), all the

images of this complete projective resolution have finite flat dimension, which is at

most n (since l.FFD(R) = n). This implies that fd(Km⊕G′) ≤ n. Therefore, from

[4, Proposition 2.2], pd(Km ⊕G′) < ∞, as desired. ¤

Finally, it is convenient to note that one could define and study (n,m)-SG-

injective modules as a dual notion to the current one of (n,m)-SG-projective mod-

ules. Then, every result established here for (n,m)-SG-projective modules, except

Corollary 2.9 and Proposition 2.10, has a dual version for (n,m)-SG-injective mod-

ules.
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