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Abstract. Let R be a ring. In this note we study some properties of GQP-

injective R−modules, some results on GP-injective rings and QP-injective

modules are extended to these modules. Some new properties of GP-injective

rings are obtained.
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1. Introduction

Throughout R is an associative ring with identity and modules are unitary. Re-

call that a right R−module M is called QP-injective [6, 7] if for every M -cyclic

submodule K of M , any R-homomorphism from K to M extends to an endomor-

phism of M . And a right R−module M is called GQP-injective [10] if for every

0 6= s ∈ S = end(MR), there exists a positive integer n such that sn 6= 0 and any

R-homomorphism from snM to M extends to an endomorphism of M . Clearly,

QP-injective modules are GQP-injective, R is right P-injective [4] if and only if RR

is QP-injective, R is right GP-injective [2] if and only if RR is GQP-injective. Since

GP-injective rings need not be P-injective [3], so GQP-injective modules need not

be QP-injective. Following Albu and Wisbauer [1], a module MR is called Kasch if

any simple module in σ[M ] embeds in M , where σ[M ] is the category consisting of

all M -subgenerated right R−modules. It is easy to see that a ring R is right Kasch

if and only if RR is Kasch. In this note we study some properties of GQP-injective

modules , especially GQP-injective Kasch modules. Some results on GP-injective

rings and QP-injective modules in articles [2,11] are obtained as corollaries and

some new results on GP-injective rings are obtained as well.

As usual, we denote the socle and the Jacobson radical of a module N by

Soc(N) and Rad(N) respectively. The Goldie dimension and the length of a

module N are denoted by G(N) and c(N) respectively. If the Goldie dimen-

sion of a module N is finite, then we call N finite dimensional. Let M be a
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right R−module with S = end(MR) and let X ⊆ M and Y ⊆ S, then we write

lS(X) = {s ∈ S | sx = 0,∀x ∈ X} and rM (Y ) = {m ∈ M | ym = 0, ∀y ∈ Y }. And

we write L E SS if L is an essential left ideal of S.

2. GQP-injective Modules

Proposition 2.1. If MR is a finitely generated GQP-injective Kasch module with

S = end(MR), then

(1) lS(RadM) E SS.

(2) Soc(SS) E SS.

(3) For any s ∈ S, Ss is a minimal left ideal of S if and only if s(M) is a simple

submodule of M .

Proof. (1) If 0 6= s ∈ S, then there exists a positive integer n such that sn 6= 0

and any R-homomorphism from snM to M extends to an endomorphism of M by

the GQP-injectivity of M . Choose a maximal submodule T of the right R−module

snM . Since M is Kasch, there exists a monomorphism f : snM/T → M . Define

g : snM → M by g(x) = f(x + T ). As M is GQP-injective, g = s′|snM for

some s′ ∈ S. Take y ∈ M such that sny∈T . Then s′sny = g(sny) = f(sny +

T ) 6= 0, and thus s′sn 6= 0. If sn(RadM) 6⊆ T , then Sn(RadM) + T = M . But

sn(RadM) << snM because M is finitely generated, so T = snM , a contradiction.

Hence sn(RadM) ⊆ T . Thus, (s′sn)(RadM) = g(sn(RadM)) = f(0) = 0, whence

0 6= s′sn ∈ Ssn ∩ lS(RadM). This implies that lS(RadM) E SS.

(2) Let 0 6= s ∈ S. Since MR is GQP-injective, there exists a positive integer n

such that sn 6= 0 and lS(Ker(sn)) = Ssn by [10,Theorem 3 ]. Let Ker(sn) ⊆ T

for some maximal submodule T of M , then Ss ⊇ Ssn = lS(Ker(sn)) ⊇ lS(T ). But

lS(T ) is minimal by [10, Theorem 12], so Soc(SS)∩Ss 6= 0, and hence Soc(SS)ESS.

(3) If Ss is minimal, then by [10, Theorem 12], Ker(s) is maximal, and so s(M) ∼=
M/Ker(s) is simple. Conversely, suppose that s(M) is simple. For any 0 6= ts ∈ Ss,

since MR is GQP-injective, there exists a positive integer n such that (ts)n 6= 0 and

any R-homomorphism from (ts)nM to M extends to an endomorphism of M . Now

we define ϕ : s(M) → (ts)nM such that ϕ(sm) = (ts)nm for all m ∈ M , then ϕ is

an isomorphism. Let i : s(M) → M be the inclusion map and let ψ = iϕ−1. Then

ψ is a homomorphism from (ts)nM to M with ψ((ts)nm) = sm for all m ∈ M ,

and so there exists v ∈ S such that v(ts)nm = sm for all m ∈ M . It means that

v(ts)n = s and then Ss = S(ts). Therefore, Ss is minimal. ¤
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Corollary 2.2. If R is a right GP-injective Kasch ring with J = J(R), then

(1) [2, Lemma 2.2(1), Theorem 2.3(1)] For any x ∈ R, Rx is a minimal left ideal

if and only if xR is a minimal right ideal.

(2) [2, Theorem 2.3(2)] Soc(RR) = Soc(RR) E RR.

(3) [2, Theorem 2.3(4)] lR(J) E RR.

Theorem 2.3. Let MR be a finitely generated GQP-injective Kasch module with

S = end(MR). Then M/RadM is semisimple if and only if S is left finite di-

mensional. In this case, Soc(SS) = lS(RadM), and G(SS) = c(SSoc(SS)) =

c(M/RadM)

Proof. (⇒) The case M = 0 is trivial. If M 6= 0, then M/RadM 6= 0 because

M is finitely generated. As M/RadM is semisimple, by [11, Lemma 8], there exist

maximal submodules T1, T2, · · · , Tn such that M/RadM ∼= ⊕n
i=1M/Ti. Hence, by

[11, Lemma 7] and [10,Theorem 12], lS(RadM) ∼= SHomR(M/RadM, SMR) ∼=
SHomR(⊕n

i=1M/Ti, SMR) ∼= ⊕n
i=1lS(Ti) is an n–generated semisimple module.

This implies that lS(RadM) = Soc(SS) E SS by Proposition 2.1, and therefore S

is left finite dimensional and G(SS) = n = c(SSoc(SS)).

(⇐) See [11, Proposition 6]. ¤

Our next result improves [2, Theorem 2.8]

Corollary 2.4. Let R be right GP-injective and right Kasch. Then R is semilocal

if and only if R is left finite dimensional. In this case, Soc(RR) = Soc(RR), and

G(RR) = c(RSoc(RR)) = c(RR), where R = R/J(R)

Proof. This is immediate from Theorem 2.3 and Corollary 2.2. ¤

Proposition 2.5. Let MR be a GQP-injective module with S = end(MR). Then

(1) If s, t ∈ S and sM ∼= tM are simple, then Ss ∼= St.

(2) If MR is a self-generator, then Soc(MR) ⊆ Soc(SM).

Proof. (1) By hypotheses, there exists a positive integer n such that sn 6= 0 and

any R-homomorphism from snM to M extends to an endomorphism of M . Since

sM is simple, snM = sM . Let σ : sM → tM be an isomorphism, then σ extends

to an endomorphism τ of M . Let φ : St → Ss be defined by φ(ut) = uτs. Then

φ is well defined since (τs)M ⊆ t(M). Now it is routine to verify that φ is an

isomorphism.

(2) Since MR is a self-generator, every simple submodule K of MR has the form

s(M) for some s ∈ S, thus by the proof of Proposition 2.1(3), Ss is simple. This
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follows that SsM ∼= Ss and hence SsM is a simple left S- module. Therefore,

K ⊆ Soc(MR), and (2) follows. ¤

Let S = end(MR), following [5], we write W (S) = {s ∈ S | ker(s) is essential in

M}.
Lemma 2.6. Let MR be GQP-injective which is a self-generator with S = End(MR).

If s /∈ W (S), then the inclusion Ker(s) ⊂ Ker(s− sts) is strict for some t ∈ S.

Proof. If s /∈ W (S), then Ker(s)∩K = 0 for some nonzero submodule K of M , and

so Ker(s)∩ s′(M) = 0 for some 0 6= s′ ∈ S because MR is a self-generator. Clearly,

ss′ 6= 0. Since MR is GQP-injective, there exists a positive integer n such that

(ss′)n 6= 0 and lS(Ker(ss′)n) = S(ss′)n. Thus, s′(ss′)n−1 ∈ lS(Ker(s′(ss′)n−1)) =

lS(Ker((ss′)n)) = S(ss′)n. Write s′(ss′)n−1 = t(ss′)n , then (1− ts)s′(ss′)n−1 = 0

and hence (s− sts)s′(ss′)n−1 = 0. It is obvious that Ker(s) ⊆ Ker(s− sts). Note

that (s′(ss′)n−1)M is contained in Ker(s − sts) but not contained in Ker(s), the

inclusion Ker(s) ⊆ Ker(s− sts) is strict. ¤

Theorem 2.7. Let MR be GQP -injective which is a self-generator with S =

end(MR). Then the following conditions are equivalent.

(1) S is right perfect.

(2) For any sequence {s1, s2, · · · } ⊆ S, the chain Ker(s1) ⊆ Ker(s2s1) ⊆ · · ·
terminates.

Proof. By using [10, Theorem 5], Lemma 2.6 and [12, Lemma 2.8] , one can

complete the proof in a similar way to that of [12, Theorem 2.9]. ¤

Following [8], a module MR is said to be GC2 if for any N ≤ M with N ∼= M ,

N is a direct summand of M .

Proposition 2.8. Let M be a right R-module with S = end(MR). Then the fol-

lowing conditions are equivalent.

(1) MR is GC2.

(2) If Ker(s) = 0 , s ∈ S, then S = Ss.

Proof. (1)⇒(2) Let s be given as in (2). Then the mapping σ : sM → M ; sm 7→ m

is an R-isomorphism. By (1), sM is a direct summand of M , so σ can be extended

to an endomorphism t of M . It then follows that 1 = ts ∈ Ss.

(2)⇒(1) Suppose that N is a submodule of M and N ∼= M . Let f : M → N be

an isomorphism and let i : N → M be the inclusion mapping, writing s = if , then

N = s(M) and Ker(s) = 0. So by (2), 1 = ts for some t ∈ S. This follows that

(st)2 = st and sM = (st)M . Whence N is a direct summand of M . ¤
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Theorem 2.9. If MR is a GQP-injective module, then it is GC2.

Proof. Let s ∈ S = end(MR) with Ker(s) = 0. Then Ker(sk) = 0 for each

positive integer k. Since MR is GQP-injective, there exists a positive integer n

such that sn 6= 0 and lS(Ker(sn)) = Ssn. Which implies that S = Ssn and then

S = Ss. ¤

Since the endomorphism ring of a finite dimensional GC2 module is semilocal

by [9, Lemma 1.1], we have immediately the following:

Corollary 2.10. Let MR be a GQP-injective module with S = end(MR). If MR

is finite dimensional, then S is semilocal.
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