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ABSTRACT. In [19], Thuyet and Wisbauer considered the extending property
for the class of (essentially) finitely generated submodules. A module M is
called ef-extending if every closed submodule which contains essentially a
finitely generated submodule is a direct summand of M. A ring R is called
right ef-extending if Ry is an ef-extending module. We show that a ring R
is QF if and only if R is a left Noetherian, right GP-injective and right ef-
extending ring. Moreover, we prove that R is right PF if and only if R is a

right cogenerator, right ef-extending and I-finite.
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1. Introduction

Throughout the paper, R represents an associative ring with identity 1 # 0 and
all modules are unitary R-modules. We write Mg (resp., g M) to indicate that M is
a right (resp., left) R-module. We also write J (resp., Z,) for the Jacobson radical
(resp., the right singular ideal) and E(Mp) (resp., Rad(Mpg)) for the injective hull
of Mg, (resp., radical of Mg). If X is a subset of R, the right (resp., left) annihilator
of X in R is denoted by rr(X) (resp., {g(X)) or simply r(X) (resp., I(X)) if no
confusion appears. If N is a submodule of M (resp., proper submodule), we denote
by N < M (resp., N < M). Moreover, we write N <¢ M and N <® M to indicate
that IV is an essential submodule and a direct summand of M, respectively. A
module M is called uniform if M # 0 and every non-zero submodule of M is
essential in M. A module M is finitely dimensional (or has finite rank) if E(M)
is a finite direct sum of indecomposable submodules; or equivalently, if M contains
no infinite independent family of non-zero submodules.

A ring R is called right P-injective if ir(a) = Ra for each a € R. A ring R is
called right GP-injective (resp., right AGP-injective ) if for each 0 # a € R, there
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exists n € N such that @™ # 0 and Ir(a™) = Ra™ (resp., Ir(a™) = Ra™ & X, with
X. < grR).

In [9] J. L. Gémez Pardo and P. A. Guil Asensio proved that every right Kasch
right CS ring has finitely generated essential right socle, and hence R is a right
PF ring if and only if R is a right cogenerator right CS ring. Their work extends
a well-known theorem of B. Osofsky which states that a right Kasch right self-
injective ring is semiperfect with finitely generated essential right socle (i.e. Rp
is an injective cogenerator). In this paper, we show that R is QF iff R is a left
Noetherian, right GP-injective and right ef-extending ring. Moreover, we prove

that R is right PF iff R is right cogenerator, right ef-extending and I-finite.
General background material can be found in [1], [6], [14], [20].

2. Definitions and results.

Definition 2.1. [19] A module M is called ef-extending if every closed submodule
which contains essentially a finitely generated submodule is a direct summand of

M. A ring R is called right ef-extending if Rg is an ef-extending module.

We refer to the following conditions on a module Mg:

C1: Every submodule of M is essential in a direct summand of M.

C2: Every submodule of M that is isomorphic to a direct summand of M is
itself a direct summand of M.

C3: My & M, is a direct summand of M for any two direct summand My, M,
of M with My N My = 0.

A module Mg is called extending or CS (quasi-continuous, continuous), if it
satisfies C1 ( both C1 and C3; both C1 and C2). A ring R is called right CS
(right quasi-continuous; right continuous), if Rp is CS-module (quasi-continuous,
continuous).

From the definition of ef-extending module and ring, we have:

i) A right CS ring is a right ef-extending ring. But the converse is not true in
general.
Ezample. Let K be a division ring and gV be a left K-vector space of infinite

dimension. Take S = End(xV), then it is well-known that S is regular but not

S S
R= ;

right self-injective. Let
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then R is also regular, which implies R is right P-injective and every finitely gen-
erated right ideal of R is a direct summand of R. Thus, R is a right C2, right
ef-extending ring. But R can not be right CS. For if R is right CS, then R is right
continuous. Hence R is right self-injective by [14, Theorem 1.35], a contradiction.

ii) Every finitely generated submodule of an ef-extending module M is essential

in direct summand of M.

Some properties of ef-extending module is studied in [5], [16], [17], [19]. In this
paper, we consider some other properties of ef-extending modules with condition
C3.

Let M, N be R-modules. M is said to be N- F -injective if for each R-homomorphism
f+ H — M from a finitely generated submodule H of N into M extends to V.

Modification in proving [10, Lemma 5], we have:

Lemma 2.2. Let a module M = My & My be a direct sum of submodules My, Ms.
Then the following conditions are equivalent:
(1) My is My-F-injective.
(2) For each finitely generated submodule N of M with NN My = 0, there exists
a submodule M’ of M such that M = M’ & My and N < M'.

Proof. (1) = (2). For i = 1,2, let m; : M — M, denote the projection mapping.

Consider the following diagram:

0 —— N —== M,
g P
K
M

where @ = m|ny, 8 = m2|n. It is easy to see that a is a monomorphism. By
(1), there exists a homomorphism ¢ : M; — My such that pa = 5. Let M’ =
{z + ¢(x)|z € M;}. Tt is easy to check that M = M’ & My and N < M.

(2) = (1). Let K be a finitely generated submodule of M7, and f: K — M, a
homomorphism. Let L = {y— f(y)|y € K}. Since K is finitely generated, then L is
also a finitely generated submodule of M with L N My = 0. By (ii), M = L' & M,
for some submodule L’ of M such that L < L’. Let # : M — M, denote the
canonical projection ( for the direct sum M = L' @ My). Let f = 7|ar, : My — My
and, for any y € K, we have f(y) = f(y — f(v) + f(y)) = f(y). It means that f is

an extension of f and so Ms is M;-F-injective. O
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Lemma 2.3. [10, Lemma 6 | The following statements are equivalent for a module
M.

(1) M satisfies C3.
(2) For all direct summands P,Q of M with PNQ = 0, there exists a submodule
P’ of M such that M = P ® P’ and Q < P’.

Proposition 2.4. An ef-extending module M has C3 if and only if whenever M =
My & My is a direct sum of submodules My, My, then My is My -F-injective.

Proof. (=) Assume that M is ef-extending satisfying C3. Let N be a finitely
generated submodule N of M with NNMs = 0. Since M is ef-extending, there exists
a direct summand N’ of M such that N is essential in N’. Clearly N’ N My = 0.
By Lemma 2.3, M = M’ & M, for some submodule M’ such that N’ < M’. Note
that N < N’. Thus M, is M;-F-injective by Lemma 2.2.

(<) Assume that My is M;-F-injective whenever M = M; & M,. By Lemma
2.2 and Lemma 2.3, M satisfies C3. O

Corollary 2.5. If M = M; ® My is ef-extending, satisfies C3, then M; is M;-F-
injective for all i,j € {1,2}, i # j.

From this we have the following result.

Theorem 2.6. The following conditions are equivalent for ring R:

(1) R s QF.
(2) (R®R)g is ef-extending, satisfies C3 and R has ACC on right annihilators.

Remark. Let p be a prime number. Then Z-modules Z/pZ, Z/p3Z are ef-
extending. But Z-module M = Z/pZ & Z/p*Z is not ef-extending. Because (1 +
pZ,p + p3Z)7Z is a closed submodule of M (which contains a finitely generated,

essential submodule) and not a direct summand of M.

We next consider some properties of ef-extending rings.
Lemma 2.7. [19] Every direct summand of an ef-extending module is ef-extending.

Lemma 2.8. Assume that Rg = eiRGesR®---® e, R, where each e; R is uniform
foralli=1,2,... n. If every monomorphism Rr — Rp is an epimorphism, then

R is semiperfect.

Proof. By [14, Lemma 4.26]. O
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A ring R is called I-finite if R contains no infinite orthogonal sets of idempotents
(see [14]).

Lemma 2.9. Assume that R is right AGP-injective, right ef-extending and I-finite.
Then R is semiperfect.

Proof. Since R is I-finite, there exists an orthogonal set of primitive idempotents
{e;}!, such that Rp = etR® eaR® --- @ e, R. Since R is right ef-extending,
e; R is ef-extending and so e; R is uniform for all ¢ = 1,2,...,n. We will claim
that every monomorphism f : R — R is an epimorphism. Let a = f(1). Then
r(a™) = 0,Vn > 1. Assume that aR # R. Since R is right AGP-injective, there exist
a positive integer m > 1 and X; < rR such that a™ # 0 and Ir(a™) = Ra™ @ X;.
It implies that R = Ra™ & X; (since r(a™) = 0) and so Ra™ = Re for some
e? = e € R. Then

0=r(a™)=r(Ra™)=r(Re)=r(e) = (1 -e)R,

and hence e = 1 or Ra”™ = R. It implies that R = Ra, i.e., ba = 1 for some b € R. If
ab # 1, then by [12, Example 21.26], there some e;; = a't! —a' '/ T € R, i,j €N
such that e;jer; = 0;j,e4 for all 4, j, k € N where §,;, are the Kronecker deltas. Notice
eij 7 0 for all ¢,j € N, by construction. Set e; = e;;. Then e;e; = d;5¢;, Vi, j € N.
Therefore we have
elR®esR® - Pe,RB---,

this is a contradiction(because R has finite dimensional). Hence ab = 1 and so
aR = R. This is a contradiction by our assumption. In short, f is an epimorphism.

Then R is semiperfect by Lemma 2.8. O

From this lemma we have:

Theorem 2.10. The following conditions are equivalent:
(1) R is QF.
(2) R is a left Noetherian, right GP-injective and right ef-extending ring.
(3) R is a right GP-injective, right ef-extending ring and satisfies ACC on right

annihilators.

Proof. (1) = (2),(3) is clear.

(2) = (1) By Lemma 2.9, R is semiperfect. But R is right GP-injective, J = Z,
and so R is right C2 by [14, Example 7.18].

We have R =e1R@ - @ e, R, {e;}7 is an orthogonal set of local idempotents.

For every ¢ # j (i,j € {1,2,...,n}) and f : e,R — e;R is a monomorphism.
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Then e;R = f(e;R) < e;R. Moreover, R satisfies the right C2, f(e;R) is a direct
summand of e;R or f(e;R) = e;R (because e;R is indecomposable). Hence f is
an isomorphism. Since R is right ef-extending, then every uniform right ideal of
R is essential in a direct summand of Rg. Therefore for every ig € {1,2,...,n},

e; R is e;, R-injective by [6, Corollary 8.9]. Since e; R is ef-extending,
{1,2,...,n 1\ {io}
indecomposable and so e; R is quasi-continuous. By [13, Theorem 2.13], R is right

quasi-continuous. Thus R is QF by [4, Corollary 5].
(3) = (1) By [2, Theorem 3.7], R is left Artinian. Argument of proving (2) = (1)
and [4, Theorem 5], it follows that R is QF. O

A ring R is called left Johns if R is left Noetherian such that every left ideal is a
left annihilator. Since every left Johns ring is left Noetherian right P-injective, the

next corollary follows from Theorem 2.10.
Corollary 2.11. If R is left Johns, right ef-extending, then R is QF.

Corollary 2.12. [3, Theorem 2.21] If R is left Noetherian, right P-injective and
right CS, then R is QF.

A ring R is called right mininjective if lr(a) = Ra, where aR is a simple right
ideal of R.

Proposition 2.13. Let R be a right GP-injective, right ef-extending ring and sat-
isfies ACC on left annihilators. If Soc(Rg) <¢ Rg, then R is QF.

Proof. By a similar proof of Theorem 2.10, R is semiperfect. Since R is right GP-
injective, R is right mininjective. Hence R is right Kasch by [14, Theorem 3.12].
It follows that Soc(Rgr) = Soc(gR) by [2, Theorem 2.3]. Now will claim that R is
left mininjective. In fact that, for every idempotent local e € R. Since R is right
ef-extending, eR is an ef-extending module and so uniform. It is easy to see that
Soc(eR) is simple (because Soc(Rr) <¢ Rgr). We have eSoc(gR) = eRNSoc(grR) =
eRNSoc(Rr) = Soc(eR) is simple. Therefore R is left mininjective by [14, Theorem
3.2]. Thus R is QF by [16, Theorem 2.7]. O

Note that in [17], the authors proved that if R is a right AGP-injective ring,
satisfying ACC on left (or right) annihilators and (R @ R)g is ef-extending, then
R is QF. But we do not know whether the condition ”Soc(Rg) <¢ Rg” in above

proposition can omit or not.
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A ring R is called left CF, if every cyclic left R-module can be embedded in a
free module. Now we consider the property of left CF, right ef-extending ring:

Proposition 2.14. Let R be left CF, right ef-extending ring. Then following con-

ditions are equivalent:

(1) R is QF.

Proof. (1) = (2), (1) = (4) = (3) are obvious.

(3) = (1) Since R is left CF, R is right P-injective and left Kasch. Let T be a
maximal left ideal of R. Since R is left Kasch, (T") # 0. There exists 0 # a € r(T)
or T' < l(a) which yields T = I(a) by maximality of T and so r(T') = ri(a). Since
R is right ef-extending, then aR <° eR for some e? = ¢ € R. On the other hand,
aR < ri(a) < eR and then rl(a) <° eR. Hence r(T) <° eR. It implies that
R is semiperfect by [14, Lemma 4.1]. By Theorem 2.10, R is right continuous.
Therefore S; <¢ Rp by [21, Theorem 10]. By (3) S, <¢ Rg. It is easy to see that
S, is finitely generated as right R-module. Hence R is left finitely cogenerated by
[14, Theorem 5.31]. Since R is left CF, it follows that R is left Artinian. Thus R is

QF.
(2) = (1) As above, R is semiperfect. So, by (2), S, = I(J) > I(Z;) > 5.
Arguing as above proves (1). O

J. L. Gémez Pardo and P. A. Guil Asensio proved that R is right PF iff R is

injective cogenerator in Mod-R. For a right ef-extending ring R, we have:

Firstly we have the following lemma:

Lemma 2.15. [14, Lemma 1.54] Let Pr # 0 be projective. Then the following are

equivalent:
(1) Rad(P) is a mazimal submodule of P that is small in P.
(2) End(P) is local.

Now we prove the main result:

Theorem 2.16. The following conditions are equivalent for a ring R:
(1) R is right PF.
(2) R is a right cogenerator, right ef-extending and I-finite.
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Proof. (1) = (2) is clear.

(2) = (1) By hypothesis, R = u1 R®- - -®u,, R where each u; R is indecomposable.
Since R is right ef-extending, w;R is uniform for every ¢ = 1,2,...,n. Hence
R has right finite dimensional and right Kasch, let {K;, K3, -, K,} be a set
of representatives of the simple right R-modules. If we write F; = E(K;), then
FEq,---, E, are pairwise nonisomorphic indecomposable injective modules. For each
i, since Rp is cogenerator, there exists an embedding o : E(K;) — RU) for some
set I. Then 7o # 0 for some projection 7 : RY) — R, so (70)|k, # 0 and hence
is monic. Thus wo : E(K;) — R is monic, and so E(K;) is projective. Hence
End(E;) is local for each i, and so by Lemma 2.15 shows that Rad(F;) is maximal
and small in E;. Hence T; = F;/Rad(E;) is simple and F; is a projective cover of
T;. Moreover, if T; = T} then E; = E; by [14, Corollary B.17], and hence i = j.
Thus {71, -+ ,T,} is a set of distinct representatives of the simple right R-modules
and it follows that every simple right R-module has a projective cover. Thus R is
semiperfect by [1, Lemma 25.4]. Let {ey,...,e,} be a basic set of local idempotents
in R. Since each E; = E(e;R/Rad(e; R)) is indecomposable and projective we have
E; 2 e, ;)R for some o(i) € {1,...,n}. Since the E; are pairwise nonisomorphic,
it follows that o is a bijection and hence that each e;R is injective with simple
essential socle. Thus R is right self-injective with Soc(Rgr) <¢ Rp and so it is a
right PF ring. (I

Question. Whether the condition ”I-finite” in Theorem 2.16 can omit or not?

Theorem 2.17. The following conditions are equivalent:

(1) R is right and left PF.
(2) R is a left cogenerator and (R ® R)g is ef-extending.
(3) R is a right cogenerator and r(R @ R) is ef-extending.

Proof. (1) = (2),(3) is clear.

(2) = (1) Since R is left cogenerator, R is left Kasch. Then by proving of [17,
Theorem 2.8] or by proving of Theorem 2.10 and [14, Example 7.18], R is right
self-injective. By [11, Theorem 12.1.1], R is two-sided PF.

(3) = (1) By a similar proof of (2) = (1). O
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