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Abstract. In [19], Thuyet and Wisbauer considered the extending property

for the class of (essentially) finitely generated submodules. A module M is

called ef-extending if every closed submodule which contains essentially a

finitely generated submodule is a direct summand of M. A ring R is called

right ef-extending if RR is an ef-extending module. We show that a ring R

is QF if and only if R is a left Noetherian, right GP-injective and right ef-

extending ring. Moreover, we prove that R is right PF if and only if R is a

right cogenerator, right ef-extending and I-finite.
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1. Introduction

Throughout the paper, R represents an associative ring with identity 1 6= 0 and

all modules are unitary R-modules. We write MR (resp., RM) to indicate that M is

a right (resp., left) R-module. We also write J (resp., Zr) for the Jacobson radical

(resp., the right singular ideal) and E(MR) (resp., Rad(MR)) for the injective hull

of MR (resp., radical of MR). If X is a subset of R, the right (resp., left) annihilator

of X in R is denoted by rR(X) (resp., lR(X)) or simply r(X) (resp., l(X)) if no

confusion appears. If N is a submodule of M (resp., proper submodule), we denote

by N ≤ M (resp., N < M). Moreover, we write N ≤e M and N ≤⊕ M to indicate

that N is an essential submodule and a direct summand of M , respectively. A

module M is called uniform if M 6= 0 and every non-zero submodule of M is

essential in M . A module M is finitely dimensional (or has finite rank) if E(M)

is a finite direct sum of indecomposable submodules; or equivalently, if M contains

no infinite independent family of non-zero submodules.

A ring R is called right P-injective if lr(a) = Ra for each a ∈ R. A ring R is

called right GP-injective (resp., right AGP-injective ) if for each 0 6= a ∈ R, there
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exists n ∈ N such that an 6= 0 and lr(an) = Ran (resp., lr(an) = Ran ⊕Xa with

Xa ≤ RR).

In [9] J. L. Gómez Pardo and P. A. Guil Asensio proved that every right Kasch

right CS ring has finitely generated essential right socle, and hence R is a right

PF ring if and only if R is a right cogenerator right CS ring. Their work extends

a well-known theorem of B. Osofsky which states that a right Kasch right self-

injective ring is semiperfect with finitely generated essential right socle (i.e. RR

is an injective cogenerator). In this paper, we show that R is QF iff R is a left

Noetherian, right GP-injective and right ef-extending ring. Moreover, we prove

that R is right PF iff R is right cogenerator, right ef-extending and I-finite.

General background material can be found in [1], [6], [14], [20].

2. Definitions and results.

Definition 2.1. [19] A module M is called ef-extending if every closed submodule

which contains essentially a finitely generated submodule is a direct summand of

M . A ring R is called right ef-extending if RR is an ef-extending module.

We refer to the following conditions on a module MR:

C1: Every submodule of M is essential in a direct summand of M.

C2: Every submodule of M that is isomorphic to a direct summand of M is

itself a direct summand of M.

C3: M1 ⊕M2 is a direct summand of M for any two direct summand M1, M2

of M with M1 ∩M2 = 0.

A module MR is called extending or CS (quasi-continuous, continuous), if it

satisfies C1 ( both C1 and C3; both C1 and C2). A ring R is called right CS

(right quasi-continuous; right continuous), if RR is CS-module (quasi-continuous,

continuous).

From the definition of ef-extending module and ring, we have:

i) A right CS ring is a right ef-extending ring. But the converse is not true in

general.

Example. Let K be a division ring and KV be a left K-vector space of infinite

dimension. Take S = End(KV ), then it is well-known that S is regular but not

right self-injective. Let

R =

(
S S

S S

)
,
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then R is also regular, which implies R is right P-injective and every finitely gen-

erated right ideal of R is a direct summand of R. Thus, R is a right C2, right

ef-extending ring. But R can not be right CS. For if R is right CS, then R is right

continuous. Hence R is right self-injective by [14, Theorem 1.35], a contradiction.

ii) Every finitely generated submodule of an ef-extending module M is essential

in direct summand of M .

Some properties of ef-extending module is studied in [5], [16], [17], [19]. In this

paper, we consider some other properties of ef-extending modules with condition

C3.

Let M,N be R-modules. M is said to be N - F -injective if for each R-homomorphism

f : H → M from a finitely generated submodule H of N into M extends to N .

Modification in proving [10, Lemma 5], we have:

Lemma 2.2. Let a module M = M1 ⊕M2 be a direct sum of submodules M1,M2.

Then the following conditions are equivalent:

(1) M2 is M1-F-injective.

(2) For each finitely generated submodule N of M with N∩M2 = 0, there exists

a submodule M ′ of M such that M = M ′ ⊕M2 and N ≤ M ′.

Proof. (1) ⇒ (2). For i = 1, 2, let πi : M → Mi denote the projection mapping.

Consider the following diagram:

0 N M1

M2

-

?
β

-α

ppppppppª
φ

where α = π1|N , β = π2|N . It is easy to see that α is a monomorphism. By

(1), there exists a homomorphism φ : M1 → M2 such that φα = β. Let M ′ =

{x + φ(x)|x ∈ M1}. It is easy to check that M = M ′ ⊕M2 and N ≤ M ′.

(2) ⇒ (1). Let K be a finitely generated submodule of M1, and f : K → M2 a

homomorphism. Let L = {y−f(y)|y ∈ K}. Since K is finitely generated, then L is

also a finitely generated submodule of M with L ∩M2 = 0. By (ii), M = L′ ⊕M2

for some submodule L′ of M such that L ≤ L′. Let π : M → M2 denote the

canonical projection ( for the direct sum M = L′ ⊕M2). Let f̄ = π|M1 : M1 → M2

and, for any y ∈ K, we have f̄(y) = f̄(y − f(y) + f(y)) = f(y). It means that f̄ is

an extension of f and so M2 is M1-F-injective. ¤
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Lemma 2.3. [10, Lemma 6 ] The following statements are equivalent for a module

M.

(1) M satisfies C3.

(2) For all direct summands P, Q of M with P∩Q = 0, there exists a submodule

P ′ of M such that M = P ⊕ P ′ and Q ≤ P ′.

Proposition 2.4. An ef-extending module M has C3 if and only if whenever M =

M1 ⊕M2 is a direct sum of submodules M1,M2, then M2 is M1-F-injective.

Proof. (⇒) Assume that M is ef-extending satisfying C3. Let N be a finitely

generated submodule N of M with N∩M2 = 0. Since M is ef-extending, there exists

a direct summand N ′ of M such that N is essential in N ′. Clearly N ′ ∩M2 = 0.

By Lemma 2.3, M = M ′ ⊕M2 for some submodule M ′ such that N ′ ≤ M ′. Note

that N ≤ N ′. Thus M2 is M1-F-injective by Lemma 2.2.

(⇐) Assume that M2 is M1-F-injective whenever M = M1 ⊕ M2. By Lemma

2.2 and Lemma 2.3, M satisfies C3. ¤

Corollary 2.5. If M = M1 ⊕M2 is ef-extending, satisfies C3, then Mi is Mj-F-

injective for all i, j ∈ {1, 2}, i 6= j.

From this we have the following result.

Theorem 2.6. The following conditions are equivalent for ring R:

(1) R is QF.

(2) (R⊕R)R is ef-extending, satisfies C3 and R has ACC on right annihilators.

Remark. Let p be a prime number. Then Z-modules Z/pZ, Z/p3Z are ef-

extending. But Z-module M = Z/pZ ⊕ Z/p3Z is not ef-extending. Because (1 +

pZ, p + p3Z)Z is a closed submodule of M (which contains a finitely generated,

essential submodule) and not a direct summand of M .

We next consider some properties of ef-extending rings.

Lemma 2.7. [19] Every direct summand of an ef-extending module is ef-extending.

Lemma 2.8. Assume that RR = e1R⊕e2R⊕· · ·⊕enR, where each eiR is uniform

for all i = 1, 2, . . . , n. If every monomorphism RR −→ RR is an epimorphism, then

R is semiperfect.

Proof. By [14, Lemma 4.26]. ¤
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A ring R is called I-finite if R contains no infinite orthogonal sets of idempotents

(see [14]).

Lemma 2.9. Assume that R is right AGP-injective, right ef-extending and I-finite.

Then R is semiperfect.

Proof. Since R is I-finite, there exists an orthogonal set of primitive idempotents

{ei}n
i=1 such that RR = e1R ⊕ e2R ⊕ · · · ⊕ enR. Since R is right ef-extending,

eiR is ef-extending and so eiR is uniform for all i = 1, 2, . . . , n. We will claim

that every monomorphism f : R −→ R is an epimorphism. Let a = f(1). Then

r(an) = 0, ∀n ≥ 1. Assume that aR 6= R. Since R is right AGP-injective, there exist

a positive integer m ≥ 1 and X1 ≤ RR such that am 6= 0 and lr(am) = Ram ⊕X1.

It implies that R = Ram ⊕ X1 (since r(am) = 0) and so Ram = Re for some

e2 = e ∈ R. Then

0 = r(am) = r(Ram) = r(Re) = r(e) = (1− e)R,

and hence e = 1 or Ram = R. It implies that R = Ra, i.e., ba = 1 for some b ∈ R. If

ab 6= 1, then by [12, Example 21.26], there some eij = aibj − ai+1bj+1 ∈ R, i, j ∈ N
such that eijekl = δjkeil for all i, j, k ∈ N where δjk are the Kronecker deltas. Notice

eij 6= 0 for all i, j ∈ N, by construction. Set ei = eii. Then eiej = δijei, ∀i, j ∈ N.

Therefore we have

e1R⊕ e2R⊕ · · · ⊕ enR⊕ · · · ,

this is a contradiction(because R has finite dimensional). Hence ab = 1 and so

aR = R. This is a contradiction by our assumption. In short, f is an epimorphism.

Then R is semiperfect by Lemma 2.8. ¤

From this lemma we have:

Theorem 2.10. The following conditions are equivalent:

(1) R is QF.

(2) R is a left Noetherian, right GP-injective and right ef-extending ring.

(3) R is a right GP-injective, right ef-extending ring and satisfies ACC on right

annihilators.

Proof. (1) ⇒ (2), (3) is clear.

(2) ⇒ (1) By Lemma 2.9, R is semiperfect. But R is right GP-injective, J = Zr

and so R is right C2 by [14, Example 7.18].

We have R = e1R⊕ · · ·⊕ enR, {ei}n
i=1 is an orthogonal set of local idempotents.

For every i 6= j (i, j ∈ {1, 2, . . . , n}) and f : eiR → ejR is a monomorphism.
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Then eiR ∼= f(eiR) ≤ ejR. Moreover, R satisfies the right C2, f(eiR) is a direct

summand of ejR or f(eiR) = ejR (because ejR is indecomposable). Hence f is

an isomorphism. Since R is right ef-extending, then every uniform right ideal of

R is essential in a direct summand of RR. Therefore for every i0 ∈ {1, 2, . . . , n},⊕
{1,2,...,n}\{i0}

eiR is ei0R-injective by [6, Corollary 8.9]. Since eiR is ef-extending,

indecomposable and so eiR is quasi-continuous. By [13, Theorem 2.13], R is right

quasi-continuous. Thus R is QF by [4, Corollary 5].

(3) ⇒ (1) By [2, Theorem 3.7], R is left Artinian. Argument of proving (2) ⇒ (1)

and [4, Theorem 5], it follows that R is QF. ¤

A ring R is called left Johns if R is left Noetherian such that every left ideal is a

left annihilator. Since every left Johns ring is left Noetherian right P-injective, the

next corollary follows from Theorem 2.10.

Corollary 2.11. If R is left Johns, right ef-extending, then R is QF.

Corollary 2.12. [3, Theorem 2.21] If R is left Noetherian, right P-injective and

right CS, then R is QF.

A ring R is called right mininjective if lr(a) = Ra, where aR is a simple right

ideal of R.

Proposition 2.13. Let R be a right GP-injective, right ef-extending ring and sat-

isfies ACC on left annihilators. If Soc(RR) ≤e RR, then R is QF.

Proof. By a similar proof of Theorem 2.10, R is semiperfect. Since R is right GP-

injective, R is right mininjective. Hence R is right Kasch by [14, Theorem 3.12].

It follows that Soc(RR) = Soc(RR) by [2, Theorem 2.3]. Now will claim that R is

left mininjective. In fact that, for every idempotent local e ∈ R. Since R is right

ef-extending, eR is an ef-extending module and so uniform. It is easy to see that

Soc(eR) is simple (because Soc(RR) ≤e RR). We have eSoc(RR) = eR∩Soc(RR) =

eR∩Soc(RR) = Soc(eR) is simple. Therefore R is left mininjective by [14, Theorem

3.2]. Thus R is QF by [16, Theorem 2.7]. ¤

Note that in [17], the authors proved that if R is a right AGP-injective ring,

satisfying ACC on left (or right) annihilators and (R ⊕ R)R is ef-extending, then

R is QF. But we do not know whether the condition ”Soc(RR) ≤e RR” in above

proposition can omit or not.
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A ring R is called left CF, if every cyclic left R-module can be embedded in a

free module. Now we consider the property of left CF, right ef-extending ring:

Proposition 2.14. Let R be left CF, right ef-extending ring. Then following con-

ditions are equivalent:

(1) R is QF.

(2) J ≤ Zl.

(3) Sl ≤ Sr.

(4) R is a left mininjective ring.

Proof. (1) ⇒ (2), (1) ⇒ (4) ⇒ (3) are obvious.

(3) ⇒ (1) Since R is left CF, R is right P-injective and left Kasch. Let T be a

maximal left ideal of R. Since R is left Kasch, r(T ) 6= 0. There exists 0 6= a ∈ r(T )

or T ≤ l(a) which yields T = l(a) by maximality of T and so r(T ) = rl(a). Since

R is right ef-extending, then aR ≤e eR for some e2 = e ∈ R. On the other hand,

aR ≤ rl(a) ≤ eR and then rl(a) ≤e eR. Hence r(T ) ≤e eR. It implies that

R is semiperfect by [14, Lemma 4.1]. By Theorem 2.10, R is right continuous.

Therefore Sl ≤e RR by [21, Theorem 10]. By (3) Sr ≤e RR. It is easy to see that

Sr is finitely generated as right R-module. Hence R is left finitely cogenerated by

[14, Theorem 5.31]. Since R is left CF, it follows that R is left Artinian. Thus R is

QF.

(2) ⇒ (1) As above, R is semiperfect. So, by (2), Sr = l(J) ≥ l(Zl) ≥ Sl.

Arguing as above proves (1). ¤

J. L. Gómez Pardo and P. A. Guil Asensio proved that R is right PF iff R is

injective cogenerator in Mod-R. For a right ef-extending ring R, we have:

Firstly we have the following lemma:

Lemma 2.15. [14, Lemma 1.54] Let PR 6= 0 be projective. Then the following are

equivalent:

(1) Rad(P ) is a maximal submodule of P that is small in P.

(2) End(P ) is local.

Now we prove the main result:

Theorem 2.16. The following conditions are equivalent for a ring R:

(1) R is right PF.

(2) R is a right cogenerator, right ef-extending and I-finite.
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Proof. (1) ⇒ (2) is clear.

(2) ⇒ (1) By hypothesis, R = u1R⊕· · ·⊕unR where each uiR is indecomposable.

Since R is right ef-extending, uiR is uniform for every i = 1, 2, . . . , n. Hence

R has right finite dimensional and right Kasch, let {K1,K2, · · · ,Kn} be a set

of representatives of the simple right R-modules. If we write Ei = E(Ki), then

E1, · · · , En are pairwise nonisomorphic indecomposable injective modules. For each

i, since RR is cogenerator, there exists an embedding σ : E(Ki) −→ R(I) for some

set I. Then πσ 6= 0 for some projection π : R(I) −→ R, so (πσ)|Ki
6= 0 and hence

is monic. Thus πσ : E(Ki) −→ R is monic, and so E(Ki) is projective. Hence

End(Ei) is local for each i, and so by Lemma 2.15 shows that Rad(Ei) is maximal

and small in Ei. Hence Ti = Ei/Rad(Ei) is simple and Ei is a projective cover of

Ti. Moreover, if Ti
∼= Tj then Ei

∼= Ej by [14, Corollary B.17], and hence i = j.

Thus {T1, · · · , Tn} is a set of distinct representatives of the simple right R-modules

and it follows that every simple right R-module has a projective cover. Thus R is

semiperfect by [1, Lemma 25.4]. Let {e1, . . . , en} be a basic set of local idempotents

in R. Since each Ei = E(eiR/Rad(eiR)) is indecomposable and projective we have

Ei
∼= eσ(i)R for some σ(i) ∈ {1, . . . , n}. Since the Ei are pairwise nonisomorphic,

it follows that σ is a bijection and hence that each eiR is injective with simple

essential socle. Thus R is right self-injective with Soc(RR) ≤e RR and so it is a

right PF ring. ¤

Question. Whether the condition ”I-finite” in Theorem 2.16 can omit or not?

Theorem 2.17. The following conditions are equivalent:

(1) R is right and left PF.

(2) R is a left cogenerator and (R⊕R)R is ef-extending.

(3) R is a right cogenerator and R(R⊕R) is ef-extending.

Proof. (1) ⇒ (2), (3) is clear.

(2) ⇒ (1) Since R is left cogenerator, R is left Kasch. Then by proving of [17,

Theorem 2.8] or by proving of Theorem 2.10 and [14, Example 7.18], R is right

self-injective. By [11, Theorem 12.1.1], R is two-sided PF.

(3) ⇒ (1) By a similar proof of (2) ⇒ (1). ¤
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