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1. Introduction

This work takes part in the efforts to understand the categorification of rings

and other related algebraic structures. The idea of categorification of algebraic

structures has been around for several decades and has gradually become better

appreciated and understood. The expanding scope and applications of the notion

of categorification has been greatly influenced by the works of Baez-Dolan [2,3],

Crane-Frenkel [10], Crane-Yetter [11], Khovanov [24], among others. The basic

idea is that it is worthwhile to look at the categorical foundations of set theoretical

structures. Often sets arise as the equivalences classes of objects in a category.

Going from a category to the set of equivalences classes of its objects is the pro-

cess of decategorification. Categorification goes in the reverse direction, uncovering

categories whose set of equivalences classes of objects reproduces a given set. Cat-

egorifications always exist but are no unique. Thus two general problems arise:

the classification of categorifications and the extraction of information regarding a

given set theoretical construction from its categorical counterpart.

Our approach to the categorification of rings, reviewed in Section 2, was first

discussed in [17] with a view towards the categorification of the ring of functions

on non-commutative spaces and the categorification of the algebra of annihilation

and creation operators. Further developments aimed at the elaboration of a general

setting for the study of the combinatorial properties of rational numbers were re-

ported in [6,7], where the combinatorics of Bernoulli numbers and hypergeometric
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functions, respectively, are discussed. Our aim in this work is to study the cate-

gorification of Rota-Baxter rings [26], an algebraic structure under current active

research because of its capability to unify notions coming from probability theory,

combinatorics, symmetric functions, renormalization of Feynman integrals, among

others. Applications of Rota-Baxter categories in the context of renormalization of

Feynman integrals will be study in the forthcoming works [8,14].

This paper is organized as follows. In Section 2 we introduce Rota-Baxter cate-

gories and provide a couple of basic examples. In Section 3 we provided the simplest

and most ubiquitous example of Rota-Baxter category. This sort of Rota-Baxter

category are constructed from any distributive category and may be thought as

categorifications of the Rota-Baxter ring of formal Laurent series. In Section 4 we

construct Rota-Baxter categories associated with an arbitrary comonoidal category

and a given Rota-Baxter category. This construction should be thought as the

categorification of the ring of formal power series with coefficients in a Rota-Baxter

ring. In Sections 5 and 6 we construct Rota-Baxter categories from idempotent

and arbitrary bimonoidal functors, respectively. In Sections 7 and 8 we define cat-

egorical integration and show in three different contexts, categorical Riemannian

integration, discrete analogues of integration and categorical Jackson integrals from

q-calculus, that functorial integration provides examples of (twisted) Rota-Baxter

categories of various weights. In Section 9 and 10 we construct Rota-Baxter cate-

gories naturally arising from classical and quantum field theory, respectively.

2. Categorification of rings

We assume the reader to be familiar with basic notions of category theory [25].

Let us begin recalling the notion of categorification of rings and semi-rings from

[7,17].

Definition 2.1. A category C is distributive if it is equipped with functors ⊕ : C×
C → C and ⊗ : C × C → C called sum and product, respectively; There are

distinguished objects 0 and 1 in C; (C,⊕, 0) is a symmetric monoidal category with

unit 0; (C,⊗, 1) is a monoidal category with unit 1; There are natural isomorphisms

x⊗ (y ⊕ z) ' (x⊗ y)⊕ (x⊗ z) and (x⊕ y)⊗ z ' (x⊗ z)⊕ (y ⊗ z),

for x, y, z objects of C. A distributive category have negative objects if it comes

with a functor − : C → C and for x, y objects of C there are natural isomorphisms

−(x⊕ y) ' −x⊕−y, −0 ' 0, and − (−x) ' x.
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Coherence theorems for distributive categories were studied by Laplaza [23]. An

interesting research problem is to find coherence theorems for distributive categories

with negative objects.

Definition 2.2. Let C be a distributive category. A functor P : C → C is additive

if for x, y objects of C there are natural isomorphisms P (x ⊕ y) ' P (x) ⊕ P (y).

If C has a negative functor we also demand the existence of natural isomorphisms

P (−x) ' −P (x). P is bimonoidal if it is additive and in addition there are natural

isomorphisms P (x⊗ y) ' P (x)⊗ P (y).

Definition 2.3. A categorification of a ring R is a distributive category C with

negative functor together with a valuation map | | : Ob(C) → R such that:

|x| = |y| if x ' y, |x⊕ y| = |x|+ |y|, |x⊗ y| = |x||y|,

|1| = 1, |0| = 0, and | − x| = −|x|.

If we omit the existence of the negative functor in the definition above we arrive

to the notion of categorification of semi-rings, which will be used quite often in

this work. Next we introduce the main concept of this work, the notion of Rota-

Baxter categories. A Rota-Baxter ring, see [26] and the references therein, is a

triple (R, λ, p) where R is a ring, λ ∈ {−1, 0, 1}, and p : R −→ R is a morphism of

abelian groups satisfying:

p(x)p(y) = p(xp(y)) + p(p(x)y) + λp(xy).

R may or may not have a unit, and may or may not be commutative. Notice that

the notion of Rota-Baxter semi-ring makes perfect sense; for λ = −1, the required

identity is

p(x)p(y) + p(xy) = p(xp(y)) + p(p(x)y).

Definition 2.4. A Rota-Baxter category of weight λ ∈ {−1, 0, 1} is a distributive

category C together with an additive functor P : C −→ C and natural isomor-

phisms

P (x)⊗ P (y)⊕ P (x⊗ y) ' P (P (x)⊗ y)⊕ P (x⊗ P (y))

P (x)⊗ P (y) ' P (P (x)⊗ y)⊕ P (x⊗ P (y))

P (x)⊗ P (y) ' P (P (x)⊗ y)⊕ P (x⊗ P (y))⊕ P (x⊗ y).

for x, y objects of C and λ = −1, 0, 1, respectively.
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Definition 2.5. A categorification of a Rota-Baxter ring (R, p) is a Rota-Baxter

category (C, P ) together with a valuation map | | : Ob(C) → R such that |P (x)| =
p(|x|) for x object of C.

A Rota-Baxter ring may be regarded as a Rota-Baxter category and, as such,

it is a categorification of itself. In the next sections the reader will find interesting

examples of Rota-Baxter categories making this notion worth studying; we begin

pointing out a couple of simple but useful examples. Any ring may be regarded as

a Rota-Baxter ring with vanishing p. Any abelian group R provided with a group

morphisms P : R → R may be regarded as a Rota-Baxter ring with multiplication

constantly equal to zero. The analogues of these simple facts hold in the categorical

context as well.

Proposition 2.6. A distributive category may be regarded as a Rota-Baxter cate-

gory with functor P constantly equal to zero. A distributive category may be regarded

as a Rota-Baxter category of weight −1 with P equal to the identity functor. A sym-

metric monoidal category C together with an additive functor P : C → C may be

regarded as a Rota-Baxter category with ⊗ constantly equal to zero.

Rota-Baxter rings with vanishing p play a fundamental role in the theory of

renormalization as formalized by Connes and Kreimer [13]. Rota-Baxter rings with

vanishing product, though less studied, should not be overlooked. If (C,P ) is a

Rota-Baxter category then we let Ker(P ) be the full subcategory of C such that c

is an object of Ker(P ) iff P (c) ' 0. Similarly, let Im(P ) be the full subcategory

of C whose objects are isomorphic to objects of the form P (c) for some c ∈ Ob(C).

The axioms for Rota-Baxter categories imply the following result.

Proposition 2.7. (Ker(P ), 0) is a Rota-Baxter category. (Im(P ), I) is a Rota-

Baxter category.

3. Main examples

The reason why the examples considered in this section are Rota-Baxter cate-

gories is succinctly encoded in the identity between sets with multiplicities shown in

Figure 1. Let us start with the simplest and most prominent example. Let Z-vectb

be the category of Z-graded vector spaces V =
⊕

Vn such that: Vn is finite dimen-

sional and there exists k ≤ 0 such that Vn = 0 for n ≤ k. Z-vectb is a distributive

category with direct sums and tensor products given as usual by

(V ⊕W )n = (Vn ⊕Wn) and (V ⊗W )n =
⊕

k+l=n

(Vk ⊗Wl).
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Figure 1. Geometric meaning of the Rota-Baxter identity.

Let N[z−1, z]] be the semi-ring of formal Laurent series with integral coefficients, it

is known that the map p : N[z−1, z]] → N[z−1] turns N[z−1, z]] into a Rota-Baxter

semi-ring of weight −1.

Proposition 3.1. The functor P : Z-vectb → Z-vectb given for k < 0 by

P
( ⊕

k≤n

Vn

)
=

⊕

k≤n<0

Vn,

turns Z-vectb into a Rota-Baxter category of weight −1. Z-vectb is a categori-

fication of N[z−1, z]] with valuation map | | : Z-vectb → N[z−1, z]] given by

|V | = ∑
n dim(Vn)zn.

Proposition 3.1 is an instance of a general construction of Rota-Baxter categories

to be developed presently. For a distributive category C let CZb be the category

whose objects are maps f : Z→ C, such that there exists k ≤ 0 with f(n) ' 0 for

n < k. Morphisms in CZb are given by

CZb (f, g) =
∏

n∈Z
C(f(n), g(n)).

The category CZb is distributive category with ⊕, ⊗, and negative functor given by:

(f ⊕g)(n) = f(n)⊕g(n), (f ⊗g)(n) =
⊕

k+l=n

f(k)⊗g(l), and (−f)(n) = −f(n),

where f, g belong to CZb and k, l, n ∈ Z.

Theorem 3.2. The category CZb together with the functor P : CZb → CZb given by

P (f) = f<0 where

f<0(n) =

{
0 if n ≥ 0

f(n) if n < 0

is a Rota-Baxter category of weight −1. If C is a categorification of R, then CZb is

a categorification of R[z−1, z]].
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Proof. For f and g objects of CZb , we have that:

P (f ⊗ g) = (f ⊗ g)<0

P (f)⊗ P (g) = f<0 ⊗ g<0

P (f ⊗ P (g)) = (f ⊗ g<0)<0

P (P (f)⊗ g) = (f<0 ⊗ g)<0.

We have to check that there are canonical isomorphisms

(f ⊗ g)<0 ⊕ f<0 ⊗ g<0 ' (f<0 ⊗ g)<0 ⊕ (f ⊗ g<0)<0,

which we do evaluating both sides at n ∈ Z. If n ≥ 0 we obtain the identity

0⊕0 = 0⊕0. If n < 0, then we have to show that there are canonical isomorphisms
⊕

k+l=n

f(k)⊗ g(l)
⊕ ⊕

k+l=n,k<0,l<0

f(k)⊗ g(l) '

⊕

k+l=n,k<0

f(k)⊗ g(l)
⊕ ⊕

k+l=n,l<0

f(k)⊗ g(l),

which is clear. This proves the first statement of the theorem. For the second

statement consider the valuation map | | : CZb → R[z−1, z]] given by

|f | =
∑

n∈Z
|f(n)|zn

satisfies all required axioms. ¤

Proposition 3.1 is obtained from Theorem 3.2 letting C be vect the category of

finite dimensional vector spaces with valuation map |V | = dim(V ).

Let Z-set be the category of Z-graded finite sets, i.e. an object of Z-set is a pair

(x, f) where x is a finite set and f : x → Z is a map. Morphisms in Z-set from

(x, f) to (y, g) are maps α : x → y such that g◦α = f. Disjoint union and Cartesian

product are given, respectively, by

(x, f) t (y, g) = (x t y, f t g) and (x, f)× (y, g) = (x× y, f ◦ πx + g ◦ πy),

where πx and πy are the canonical projections of x× y onto x and y, respectively.

Consider the functor P : Z-set −→ Z-set given by

P (x, f) = (f−1(−∞, 0), f |f−1(−∞,0)).

Proposition 3.3. (Z-set, P ) is a Rota-Baxter category of weight −1. Z-set is a

categorification of N[z−1, z].
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Proof. The result follows from Theorem 3.2 since there is a natural functor i : Z-

set → setZb which exhibits Z-set as a full subcategory of setZb closed under sum,

product and P . The valuation map on setZb , induced from the valuation map on

set sending x into its cardinality |x|, restricts to a valuation map on Z-set. ¤

4. Comonoidal categories

If C is a co-ring, i.e., an abelian group provided with a co-product, and R is a

Rota-Baxter ring, then the set Hom(C, R) of morphisms of abelian groups from

C to R is Rota-Baxter ring with product fg(x) = (f ⊗ g)∆(x) and operator p

given by p(f)(c) = p(f(c)) for f ∈ Hom(C, R) and c ∈ C. We proceed to state the

corresponding facts for Rota-Baxter categories.

Let Cat be the category whose objects are essentially small categories, morphisms

in Cat are functors. We a define a functor ⊗ : Cat× Cat −→ Cat as follows. The

tensor product category C ⊗ D of the categories C and D has as objects triples

(x, f, g) where x is a finite set, f : x → Ob(C) and g : x → Ob(D) are maps.

Morphisms from (x1, f1, g1) to (x2, f2, g2), objects of C ⊗D, are given by

C ⊗D((x1, f1, g1), (x2, f2, g2)) =
⊔

α:x1→x2

∏

i∈x

C(f1(i), f2(α(i)))×D(g1(i), g2(α(i))),

where α : x1 → x2 is an arbitrary bijection.

The following definition formalizes the categorical analogue of the notion of a

co-ring without co-unit.

Definition 4.1. A category D is comonoidal if it comes equipped with a functor

δ : D −→ D⊗D such that there is a natural isomorphisms (δ⊗ 1D)δ −→ (1D⊗ δ)δ

satisfying Mac Lane’s pentagon axiom.

Theorem 4.2. Suppose D with a functor δ : D −→ D⊗D is a comonoidal category

and C a Rota-Baxter category. Then CD, the category of functors from D to C, is

a Rota-Baxter category with functor P given by P (F )(x) = P (F (x)).

Proof. First we show that CD is distributive. Define sum and product by

(F + G)(x) = F (x)⊕G(x)

(FG)(x) =
∑

dδ(x)

F (δ1(x))⊗G(δ2(x)),
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where δ(x) : dδ(x) −→ Ob(D) ⊗ Ob(D), where dδ(x) is the domain of δ(x). The

negative functor is (−F )(x) = −F (x). Next assume C is a Rota-Baxter category

of weight −1, the other cases being similar. The desired result follows from the

natural isomorphisms

P (F )⊗P (G)(x)⊕P (F⊗G)(x) '
⊕

dδ(x)

P (F (δ1(x))⊗P (G(δ2(x)))⊕P (F (δ1(x))⊗G(δ2(x))),

P (P (F )⊗G)(x)⊕P (F⊗P (G)) '
⊕

dδ(x)

P (F (δ1(x)))⊗G(δ2(x))⊕F (δ1(x))⊗P (G(δ2(x))).

¤

Given a positive integer n we use the notation [n] = {1, 2, ..., n}. A category D

may be regarded as a comonoidal category with functor δ : D −→ D ⊗D sending

an object x in D to the map δ(x) : [1] → D ×D such that δ(x)(1) = (x, x). This

canonical comonoidal structure induces the monoidal structure on CD given by

FG(x) = F (x)G(x).

Corollary 4.3. Assume C is a Rota-Baxter category. Then CD is a Rota-Baxter

category with functor P : CD → CD given by P (F )(x) = P (F (x)), and the product

of functors given by FG(x) = F (x)G(x).

Let us consider a rather simple example of comonoidal category. Recall that a set

x may be regarded as the category with objects x and identity morphisms only. The

category [n]× [n] is comonoidal with functor δ : [n]× [n] −→ ([n]× [n])⊗ ([n]× [n])

such that δ(i, j) is the map

δ(i, j) : [n] −→ ([n]× [n])⊗ ([n]× [n])

given by

δ(i, j)(k) = ((i, k), (k, j)).

If C is a distributive category then Mn(C) = C [n]×[n], the category of n×n matrices

with values in C, is also a distributive category. Concretely, an object A in Mn(C)

is a family Aij of objects in C, for 1 ≤ i, j ≤ n. Sum and product of objects in

Mn(C) are given, respectively, by

(A⊕B)ij = Aij ⊕Bij and (A⊗B)ij =
⊕

k

(Aik ⊗Bkj),

for A,B ∈ Mn(C).

Corollary 4.4. If C is a distributive category then Mn(C) is a distributive category.

If C is a Rota-Baxter category, then Mn(C) is a Rota-Baxter category. If C is a

categorification of R, then Mn(C) is a categorification of Mn(R).
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For our next constructions we need the theory of species introduced by Joyal

[22] and further elaborated by Bergeron, Labelle, and Leroux [4]. Let Bn be the

category whose objects are pairs (x, f) where x is a finite set and f : x → [n] is any

map. Morphisms in Bn from (x, f) to (y, g) are maps α : x → y such that g ◦α = f .

For a distributive category C we let CB
n

, the category of C-species in n variables,

be the category of functors from Bn to C.

The category Bn is comonoidal with functor δ : Bn → Bn ⊗ Bn given on (x, f)

in Bn by the map

δ(x, f) : Par2(x) → Ob(Bn)⊗Ob(Bn) such that

δ(x, f)(x1, x2) = ((x1, f |x1), (x2, f |x2)),

where Par2(x) is the set of pairs (x1, x2) such that x1tx2 = x. It follows that CB
n

is a distributive category with sum and product given by

(F+G)(x, f) = F (x, f)tG(x, f) and (FG)(x, f) =
⊕

x1tx2=x

F (x1, f |x1)⊗G(x2, f |x2).

If R is a ring then we let R[[x1, ..., xn]] be the ring of formal divided power series in

variables x1, ..., xn. The latter algebra is the free R-module generated by symbols:

xk

k!
where k ∈ Nn, xk = xk1

1 ...xkn
n , and k! = k1!...kn!.

The product is defined on generators via the identity

xk

k!
xs

s!
=

(
k + s

s

)
xk+s

(k + s)!
, where

(
k + s

s

)
=

n∏

i=1

(
ki + si

si

)
.

Corollary 4.5. If (C,P ) is Rota-Baxter category of weight λ, then CB
n

is a Rota-

Baxter category of weight λ with functor P given by P (F )(x, f) = P (F (x, f)),

for F in CB
n

and (x, f) in Bn. If C is a categorification of R, then CB
n

is a

categorification of R[[x1, ..., xn]].

Proof. Follows from Theorem 4.2. The valuation map | | : CB
n → R[[x1, ..., xn]]

is defined by

F =
∑

k∈Nn

F ([k])
xk

k!
where [k] = ([k1], ..., [kn]).

¤
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Next we consider non-commutative species introduced in [17]. Let R〈〈x1, . . . , xn〉〉
be the ring of formal power series in non-commutative variables x1, . . . , xn and co-

efficients in R. We construct a categorification CLn of R〈〈x1, . . . , xn〉〉 with the

property that each valuation map | | : Ob(C) → R, induces a valuation map

| | : Ob(CLn) → R〈〈x1, · · · , xn〉〉.

Let Ln be the category whose objects are triples (x, <, f) where x is a finite set, <

is a linear order on x, f : x → [n] is a map. Morphisms from (x, <, f) to (y,<, g)

are given by

Lm((x,<, f), (y, <, g)) = {ϕ : x → y | g ◦ ϕ = f, and ϕ(i) < ϕ(j) for all i < j}.

The disjoint union (x1, <1)t(x2, <2) of linearly order sets is (x1tx2, <), where the

order on x1 t x2 extends the order on x1 and the order on x2, and i < j for i ∈ x1,

j ∈ x2. An order partition in n-blocks of (x, <) is a n-tuple (x1, <1), · · · , (xn, <n) of

posets such that (x1, <)t· · ·t(xn, <) = (x,<). Let OParn(x,<) be the set of order

partitions of (x, <) in n blocks. Ln is comonoidal category with δ : Ln → Ln ⊗ Ln

sending (x,<, f) into the map

δ(x,<) : OPar2(x,<) −→ Ob(Ln)×Ob(Ln)

such that

δ(x,<)((x1, <1), (x1, <2)) = (x1, <1, f |x1), (x1, <2, f |x2).

It follows that CLn is distributive with sum

(F + G)(x,<, f) = F (x,<, f)⊕G(x,<, f)

and product

(FG)(x,<, f) =
⊕

F (x1, <1, f |x1)⊗G(x2, <2, f |x2),

where the sum runs over all pairs ((x1, <), (x2, <1)) ∈ OPar2(x,<2).

Corollary 4.6. If C is a categorification of a Rota-Baxter ring R, then CLn is a

categorification of the Rota-Baxter ring R〈〈x1, . . . , xn〉〉.

Proof. By Theorem 4.2 we only need to define the valuation map | | : CLn →
R〈〈x1, . . . , xn〉〉 which is given by |F | = ∑

f :[m]→[n] |F ([m], <, f)|xf , where xf =

xf(1)...xf(m). ¤
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5. Idempotent bimonoidal functors

In this section we provided a general construction which generates a wide variety

of examples of Rota-Baxter categories.

Theorem 5.1. Let C be a distributive category and P : C → C a bimonoidal

functor such that there is a natural isomorphisms P 2 ' P . Then (C, P ) is a Rota-

Baxter category of weight −1.

Proof. Since P is bimonoidal and P 2 = P we have natural isomorphisms

P (P (x)⊗ y) ' P (x⊗ P (y)) ' P (x⊗ y) ' P (x)⊗ P (y). ¤

Theorem 5.2. Let C1 and C2 be distributive categories. The product C1 × C2 is

a distributive category with sum, product, and negative functor given by (c1, c2)⊕
(d1, d2) = (c1 ⊕ c2, d1 ⊕ d2), (c1, c2) ⊗ (d1, d2) = (c1 ⊗ c2, d1 ⊗ d2) and −(c1, c2) =

(−c1,−c2). The functor π1 : C1 × C2 → C1 × C2 sending (c1, c2) into (c1, 0) turns

C1 × C2 into a Rota-Baxter category of weight −1.

Proof. Follows from Theorem 5.1 and the fact that π1 is bimonoidal and π2
1 = π1.

Equivalently, one can check the identities

P ((c1, c2)⊗(d1, d2)) = P (c1, c2)⊗P (d1, d2) = P (P (c1, c2)⊗(d1, d2)) = P ((c1, c2)⊗
P (d1, d2)) = (c1 ⊗ d1, 0). ¤

Next we consider examples of Rota-Baxter categories all of which arise from The-

orem 5.1. The examples will gradually become closer to geometric and topological

matters. In particular, we will see that the intersection homology for stratified

manifolds can be naturally recast within our settings. Given f a morphism in a

category C, we let df and cf be the domain and codomain of f , respectively. If

x is an object of C we let 1x be the identity morphisms from x to itself, thus

d1x = c1x = x. We let C(1) be the category whose objects are morphisms in C.

A morphisms in C(1) from f to g is a pair of morphisms (α1, α2) in C such that

α2 ◦ f = g ◦ α1. If C is a distributive category, then we have naturally induced

functors ⊕ : C(1) × C(1) → C(1) and ⊗ : C(1) × C(1) → C(1) turning C(1) into a

distributive category.

Theorem 5.3. If C is a distributive category, then C(1) is a Rota-Baxter category

of weight −1 with functor P : C(1) → C(1) given by P (f) = 1df .

Proof. Follows from the natural isomorphisms

P (f ⊗ g) ' P (f)⊗ P (g) ' P (P (f)⊗ g) ' P (f ⊗ P (g)) ' 1df ⊗ 1dg. ¤
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Recall that a morphisms f in a category C is called injective or monic if g ◦ f =

h◦ f implies f = g for all morphisms f, g in C(1). Let IC(1) be the full subcategory

of C(1) whose objects are injective morphisms. Assume that C is a distributive

category and that the functors ⊕ and ⊗ on C(1) induce by restriction functors ⊕
and ⊗ on IC(1). The functor P on C(1) induces, by restriction, a functor P on

IC(1).

Corollary 5.4. (IC(1), P ) is a Rota-Baxter category of weight −1.

Consider the category Top⊆ whose objects are pairs of topological spaces (X1, X2)

with X1 ⊆ X2. A morphism from (X1, X2) to (Y1, Y2) is a continuous map

f : X2 → Y2 such that f(X1) ⊆ Y1. Componentwise disjoint union and Carte-

sian product give Top⊆ the structure of a distributive category. The functor

P : Top⊆ → Top⊆ given by P (X1, X2) = (X1, X1) is bimonoidal and idempo-

tent P 2 = P.

Corollary 5.5. (Top⊆, P ) is a Rota-Baxter category of weight −1.

Consider V ect⊆ the category whose objects are pairs (V,W ) where W is a vector

space and V a subspace of W . Morphisms are linear transformations between the

bigger spaces that preserve the given subspaces. V ect⊆ is a distributive category

with sum and product given by componentwise direct sum and tensor product. The

functor P : V ect⊆ → V ect⊆ given by P (V, W ) = (V, V ) is bimonoidal and satisfies

P 2 = P .

Corollary 5.6. (V ect⊆, P ) is a Rota-Baxter category of weight −1.

Let vect⊆ be the full subcategory of V ect⊆ whose objects are pairs of finite

dimensional vector spaces. Let P : vect⊆ → vect⊆ be the functor given by

P (V, W ) = (0,W/V ), where W/V is the quotient vector space and 0 the vector

space with one element. Again it is easy to check that P is bimonoidal and that

P 2 = P.

Corollary 5.7. (vect⊆, P ) is a Rota-Baxter category of weight −1.

Let T be the category whose objects are triples (x, y, f) where x ⊆ y are sets

and f : y → y is a map. Morphisms in T from (x1, y1, f1) to (x2, y2, f2) are maps

α : y → y such that α(x1) ⊆ x2 and α ◦ f1 = f2 ◦ α. Sum and product are given by

(x1, y1, f1) t (x2, y2, f2) = (x1 t x2, y1 t y2, f1 t f2),

(x1, y1, f1)× (x2, y2, f2) = (x1 × x2, y1 × y2, f1 × f2).
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The functor P : T→ T given by P (x, y, f) = (a, a, g), where a = {i ∈ x | f(i) ∈ x}
and g = f |a, is bimonoidal and P 2 = P.

Corollary 5.8. (T, P ) is a Rota-Baxter category of weight −1.

An interesting refinement of T is the category TG where G is a group. Objects

in TG are triples (x, y, ρ) where x ⊆ y are sets and ρ : G× x → x is a group action

of G on x. The distributive structure on TG is defined just as for T. The functor

P : TG → TG given by P (x, y, ρ) = (a, a, ρ|a), where a = {i ∈ x | gi ∈ x for all g ∈
G} and ρ|a is the restriction of the action of ρ on x to a, is bimonoidal and P 2 = P.

Corollary 5.9. (TG, P ) is a Rota-Baxter category of weight −1.

Consider the category Comp⊆ whose objects are triples (V, W, d), where V ⊆ W

are Z-graded vector spaces and ∂ : W → W is a degree −1 linear map such that

∂ ◦∂ = 0. Componentwise direct sum and tensor product of Z-graded vector spaces

give Comp⊆ the structure of a distributive category. The differential on the sum

and tensor product is given by dV⊕W = dV ⊕dW and dV⊗W = dV ⊗1W ⊕1V ⊗dW .

The homology of (V, W, d) in Comp⊆ is by definition given by

H((V,W, d)) = H(W,d)).

The functor P : Comp⊆ → Comp⊆ given by P (V,W, d) = (Z,Z, dZ), where for

i ∈ Z we set

Zi = {v ∈ Vi | dv ∈ Vi−1}
and dZ is the restriction of d to Z, is bimonoidal and idempotent P 2 = P .

Corollary 5.10. (Comp⊆, P ) is a Rota-Baxter category of weight −1.

Let us point out the relation between the Corollary 5.10 above and the notion of

intersection homology introduced by Goresky and McPhearson [21]. In a nutshell

the construction of intersection homology may be summarized as follows. Fix a

map p : Z≥1 → Z, called the perversity, satisfying

p(k) ≤ p(k + 1) ≤ p(k) + 1 and p(1) = p(2) = 0.

Construct functor Cp : sman → Comp⊆. An object in sman the groupoid of

stratified manifolds of dimension n is a topological space X together with a filtration

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ ... ⊆ Xn = X

such that Xj \Xj−1 with the induced topology is a smooth manifold of dimension j.

Morphisms are homeomorphisms which are smooth when restricted to the smooth
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pieces Xj \Xj−1.

Given a stratified manifold and a perversity p, let (Cp(X), C(X)) be the object

of Comp⊆ where C(X) is the complex of chains on X, i.e. Ci(X) is the space of

continuous maps from ∆i into X, and Cp
i (X) is the subspace of Ci(X) generated by

the ”allowed chains” of dimension i, i.e. the space generated by chains c : ∆i −→ X

such that c−1(Xj\Xj−1), for j < n, is included in the union of sub-simplices of ∆i of

dimension less or equal to i+ j−n+p(j). The intersection homology IHp(X) with

perversity p of a stratified manifold X is defined to be the homology of P (Cp(X)),

i.e. IHp(X) = H(P (Cp(X))). The discovery of the intersection homology for

stratified manifolds has been regarded as one of the greatest achievements of twenty

century mathematics. One may only wonder at the fact that a Rota-Baxter functor

was already lurking around its very definition.

6. Bimonoidal functors

In this section we assume that C is a distributive category with infinite sums

and infinite distributivity.

Theorem 6.1. Let F : C → C be a bimonoidal functor. The functor P : C → C

given by

P (x) =
∞⊕

n=0

Fn(x)

makes C a Rota-Baxter category of weight −1.

Proof. The desired result follows from the following natural isomorphisms

P (x)⊗ P (y) '
∞⊕

n,m=0

(Fn(x)⊗ Fm(y)), P (x⊗ y) '
∞⊕

n=0

(Fn(x)⊗ Fn(y)),

P (x⊗ P (y)) '
∞⊕

0=n≤m

(Fn(x)⊗ Fm(y)), P (P (x)⊗ y) '
∞⊕

0=m≤n

(Fn(x)⊗ Fm(y)).

¤

Corollary 6.2. Fix species Fi in CB
n

0 for 1 ≤ i ≤ n. The functor (F1, ..., Fn) :

CB
n

0 −→ CB
n

0 given by (F1, ..., Fn)(F ) = F ◦ (F1, ..., Fn) is bimonoidal. The functor

P = P (F1, ..., Fn) : CB
n

0 −→ CB
n

0 given by

P (F ) =
∞∑

m=0

F ◦ (F1, · · · , Fm)◦m

gives CB
n

0 the structure of a Rota-Baxter category of weight −1.
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Let CLn
0 be the full subcategory of CLn whose objects are functors F such that

F (∅) = 0 ∈ Ob(C). Let F, F1, · · · , Fn be non-commutative species in CLn
0 and

(x,<, f) an object of Ln. The composition or substitution of non-commutative

species is given by

F ◦ (F1, · · · , Fn)(x, <, f) =
⊕
p,g

F (p,<p, g)⊗
⊗

B∈p

Fp(B)(B, <B , f |B),

where the sum runs over p ∈ OPar(x,<) and g : p → [n].

Corollary 6.3. Fix species Fi in CLn

0 for 1 ≤ i ≤ n. The functor (F1, ..., Fn) :

CLn

0 −→ CLn

0 given by

(F1, ..., Fn)(F ) = F ◦ (F1, ..., Fn)

is bimonoidal. The functor P = P (F1, ..., Fn) : CLn

0 −→ CLn

0 given by

P (F ) =
∞∑

m=0

F ◦ (F1, · · · , Fm)◦m

gives CLn

0 the structure of a Rota-Baxter category of weight −1.

Let us close this section with an example of Rota-Baxter category related with

q-calculus. For a nice introduction to q-calculus the reader may consult [13]. Recent

results on q-calculus related with Gaussian and Feynman integration are given in

[15,16,19]. In Section 8 we discuss further applications to q-calculus. Consider

the ring R[[x, q]] of formal power series in variables x, q with coefficients in R. A

fundamental role in q-calculus is play by the shift operator

s : R[[x, q]] −→ R[[x, q]]

given by

s(f)(x, q) = f(qx, q)

for f ∈ R[[x, q]]. Suppose C is a categorification of R, then CB
2

is a categorification

of R[[x, q]]. Our next goal is to find a categorification of the shift operator, namely,

we define functor S : CB
2 −→ CB

2
such that |S(F )| = s(|F |) for any F in CB

2
. Let

Inj : B2 −→ B be the species such that

Inj(x, y) = {α : x → y | α is injective },

and define S : CB
2 −→ CB

2
by the rule

S(F )(x, y) =
⊕

α∈Inj(x,y)

F (x, y \ α(x)).
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Theorem 6.4. The functor S : CB
2 −→ CB

2
given by the formula above is bi-

monoidal and satisfies |S(F )| = s(|F |). The functor PS : CB
2 −→ CB

2
given by

PS(F )(x, y) =
⊕

k≥0

⊕

α∈Inj(x,y)k

F (x, y \ ∪k
i=1αi(x)),

where α = (α1, ...αk) and αi(x)∩αj(x) = ∅, turns CB
2

into a Rota-Baxter category

of weight −1.

Proof. The first part follows from the identities

|S(F )| =
∑

k≤n

|S(F )([k], [n])|x
k

k!
xn

n!
=

∑

k≤n

k!
(

n

k

)
fk,n−k

xk

k!
xn

n!
= s(|F |).

From Theorem 6.1 we know that the functor PS(F ) =
∞⊕

n=0

Sn(F ) is Rota-Baxter of

weight −1. It is easy to check that PS is given by the formula above. ¤

From the expression above for PS we can easily compute that

ps(f) = |PS(F )| =
∑

k≤n

(
∑

pk≤n

n!Fn,n−pk

(n− pk)!
)
xk

k!
xn

n!
.

7. Functorial integration

The most prominent example of a Rota-Baxter ring of weight 0 is the ring of

continuous functions on the real line. The Rota-Baxter operator is just integration

P (f) =
∫ x

0

fdt.

The Rota-Baxter identity in this case is equivalent to the integration by parts for-

mula. We consider categorical analogues of this construction, what is needed are

categorifications of continuous functions such that it is possible to define categor-

ical analogues of the notion of integration. Since we do not have at our disposal

a surjective categorification of the ring of continuous or smooth functions on the

real line, we restrict our attention to the sub-ring of polynomial functions. Indeed,

we work with formal power series instead of polynomial functions. Thus, we are

looking for categorifications | | : Ob(C) → R[[x]] of the ring of formal power series

with coefficients in a commutative ring R, with the property that there exists a

Rota-Baxter functor P : C → C such that |P (c)| =
∫ x

0
|c|dt. The categories with

these properties we know of are categories of functors, and thus P provides a notion

of functorial integration.
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Let L be the category of finite linearly order sets. Morphisms in L are order

preserving bijections. If x is a linearly order set and x1 t x2 = x, then x1 and x2

are linearly order with the induced orders. If x is a linearly order finite set, then

for k ≤ |x|, we let mk(x) be the maximal interval of length k of x. For example

m(x) = m1(x) is the maximal element of x. Suppose that C is a categorification

of R and let CL be the category of functors from L to C. Objects of CL are called

non-symmetric or linear C-species. Sum and product of linear species are given by

F + G(x) = F (x)⊕G(x) and

FG(x) =
⊕

x1tx2=x

F (x1)⊗ F (x2),

for F,G in CL and x in L. Define functor P : CL → CL by the rule P (F )(x) =

F (x \m(x)).

Theorem 7.1. (CL, P ) is a Rota-Baxter category of weight 0. The valuation map

| | : CL → R[[x]] given by

|F | =
∑

n∈N
|F (n)|x

n

n!

satisfies |P (F )| = ∫ x

0
|F |dt for any linear C-species F .

There is a forgetful functor f : L → B which sends an ordered set (x,<) into x.

The functor f induces by pullback the bimonoidal functor f∗ : CB → CL and the

commutative diagram

CB
| |

//

f∗

²²

R[[x]]

I
²²

CL
| |

// R[[x]]

Unfortunately the functor P : CL → CL is not well defined on CB since there is no

canonical way to choose an element from an unordered set. We see that in order

to define P we should break the symmetries of B, i.e. reduce the isotropy groups

to the identity and work with L. The proof that CL is a distributive category

may be found in [17]. We show that P is a Rota-Baxter functor using graphical

notation, the reader should bare in mind that the grammatical codification of the

pictorial proof is purely mechanical. For example the evaluation of the species F

on the set x = {1, 2, 3, 4, 5, 6, 7} is shown in Figure 2. If we do not need, and this is

usually the case, to specify the elements of x, then we prefer the use the abstract

representation shown in Figure 3.
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1
2

3

64

5

7
F

Figure 2. Evaluation

of a species.

F

Figure 3. Abstract

representation.

1
2

3

64

5

7

1
2

3

64

5

FP(F)

Figure 4. Graphical

representation of P .

P(F) F
m

Figure 5. Abstract

representation.

The action of P on a species F is graphically represented in Figures 4 and 5.

With this conventions the Rota-Baxter isomorphism for P is represented in Figure

6. Both sides are isomorphic because either n < m and then the graph on the left

agrees with the first graph on the right, or m < n and in that case it agrees with

the second graph on the right hand side.

As in [18] one can show that in any Rota-Baxter category of weight zero there

are natural isomorphisms

P a(x)P b(y) '
a⊕

i=1

(
b− 1 + a− i

b− 1

)
P a+b−i(P i(x)⊗y)⊕

b⊕

i=1

(
a− 1 + b− i

a− 1

)
P a+b−i(F⊗P i(G)).
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F

G

m

n G

FF

G

Figure 6. Graphical representation of the Rota-Baxter identity.

m i

ma

mb

F

G

a+b−im

F

G

m i

a+b−im

G

F

Figure 7. Graphical representation of the Rota-Baxter identity.

where a, b > 1 and c ≥ 0 are integers, and by convention nx is the sum of n copies

of x, for n a non-negative integer and x an object of a distributive category. It

is interesting to elucidate the meaning of the natural isomorphisms above in the

Rota-Baxter category (CL, P ). For species F and G, the species

P a(F )P b(G), P a+b−i(P i(F )⊗G) and P a+b−i(F ⊗ P i(G))

are represented graphically in Figure 7. Let us see how the desired isomorphisms

arise. Each application of the Rota-Baxter isomorphisms to P a(F )P b(G) yields a

couple of the form

P a+b−1(P (F )⊗G) and P a+b−1(F ⊗ P (G)).

Thus it should be clear that we can apply recursively the Rota-Baxter isomorphisms

until we reach elements of the form

P a+b−i(P i(F )⊗G) and P a+b−i(F ⊗ P i(G)),

where the process stop since then no further application of the Rota-Baxter isomor-

phisms is possible. Consider an application of the functor P a(F )P b(G) on a finite

set x. The object P a(F )P b(G)(x) is sum of a family of objects of C constructed

in several steps. First, x is partitioned in two blocks x1 and x2, then the top a,

respectively b, elements are removed from x1 and x2, thus we obtain object

F (x1 \ma(x1))⊗ F (x2 \mb(x2)).
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This case corresponds with the left most picture in Figure 7. We need to count

how many copies of

P a+b−i(P i(F )⊗G)

arise in this process. The species P a+b−i(P i(F )⊗G) applied to a finite set x yields

the sum of the following objects of C: first we remove the top a + b− i elements of

x, the resulting set is partitioned in two blocks x′1 and x′2, then we remove the top

i elements from x′1, thus we obtain an object F (x′1 \mi(x′1))⊗F (x′2). Assume now

that the maximal element of x lies in x2. The pairs x1 and x2 given rise to pairs x′1
and x′2 as above are constructed in the following way: from the a+b−i top elements

of x the maximal element should lie in x2, thus we should choose a subsect s of

cardinality b−1 from the a+b−i−1 top elements (excluding the maximal element),

once this choice has been made x1 and x2 are uniquely determined from x′1 and x′2
via the identities x1 = x′1 ∪ma+b−i(x) \ (s ∪ {m(x)}) and x2 = x′2 ∪ s ∪ {m(x)}.
Clearly there are as many as

(
b− 1 + a− i

b− 1

)

different choices for s, thus justifying the claimed isomorphisms.

We closed this section describing a family of Rota-Baxter categories that may

be regarded as categorical analogues of discrete integration. These examples are

based on two techniques strongly promoted by Rota, the incidence algebra of posets

free Rota-Baxter [26]. The reader will find other approaches to free Rota-Baxter

algebras in [1,9,20]. Assume C is a distributive category and (X,≤) is a partially

order set. Let CX be the category whose objects are maps f : X → Ob(C).

Morphisms in CX from f to g are given by

CX(f, g) =
∏

i∈X

C(f(i), g(i)).

Sum and product on CX are given by

(f ⊗ g)(i) = f(i)⊗ g(i) and (f ⊗ g)(i) = f(i)⊗ g(i),

respectively. Define the functors P< : CX → CX and P≤ : CX → CX by

P (f)(j) = ⊕i<jf(i) and P (f)(j) = ⊕i≤jf(i).

Theorem 7.2. (CX , P<) is a Rota-Baxter category of weight 1. (CX , P≤) is a

Rota-Baxter category of weight −1.
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Proof. The statements follow from the identities between set with multiplicities

depicted in Figure 8 and Figure 9, respectively. ¤

Figure 8. Rota-Baxter identity of weight 1.

Figure 9. Rota-Baxter identity of weight −1.

For any distributive category C and finite poset X we define the incidence cat-

egory I(X, C) as the full subcategory of CX×X whose objects A : X × X −→ C

are such A(i, j) = 0 unless i ≤ j. I(X, C) is a distributive category with sum and

product given by (A+B)(i, j) = A(i, j)⊕B(i, j) and (AB)(i, k) =
⊕

i≤j≤k A(i, j)⊗
B(j, k). There is functor P : I(X,C)×CX −→ CX sending (A, f) into PA(f) given

by PA(f)(j) =
⊕

i≤j A(i, j)f(i). Letting ξ be given by ξ(i, j) = 1 for i ≤ j and 0

otherwise, then Pξ = P≤ is a Rota-Baxter operator of weight −1. Similarly, letting

ξ be given by ξ(i, j) = 1 for i < j and 0 otherwise, we obtain that Pξ = P< is a

Rota-Baxter operator of weight 1. Unfortunately, PA is not a Rota-Baxter functor

for arbitrary A.

8. Categorification of q-calculus

Most applications of q-calculus assume that q is a real number in the interval

(0, 1). As q approaches 1 one recovers computations in classical calculus. However,

it is often the case that computations in q-calculus make sense for q ≥ 0. In this

section we adopt the convention that q is a non-negative integer. Setting q = 1 one

recovers the theory of species from the theory of q-species developed in this section.

Given a commutative ring R we let R[[x]]q be the ring of formal q-divided powers

series defined as the free R-module generated by symbols

xk

[k]q!
with k ∈ N,
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with product
xk

[k]q!
xs

[s]q!
=

(
k + s

s

)

q

xk+s

[k + s]q!
,

where

(
k + s

s

)

q

=
[k + s]q!
[k]q![s]q!

, [n]q! =
n∏

k=1

[k], and [k] = 1 + q + ... + qk−1.

We define operators ∂q : R[[x]]q −→ R[[x]]q,
∫

q
: R[[x]]q −→ R[[x]]q and sq :

R[[x]]q −→ R[[x]]q by:

∂q

( ∞∑
n=0

fn
xn

[n]q!

)
=

∞∑
n=0

fn+1
xn

[n]q!
,

∫

q

( ∞∑
n=0

fn
xn

[n]q!

)
=

∞∑
n=1

fn−1
xn

[n]q!
,

sq

( ∞∑
n=0

fn
xn

[n]q!

)
=

∞∑
n=0

qnfn
xn

[n]q!
.

The operators ∂q and
∫

q
are the formal analogues of the notions of q-derivation

and q-integration. The operator sq is called the shift operator and plays a dis-

tinguished role in our next result. We are going to show that
∫

q
is a twisted1

Rota-Baxter operator.

Proposition 8.1. For f, g ∈ R[[x]]q the following identity holds:
(∫

q

f

)(∫

q

g

)
=

∫

q

(∫

q

f

)
g +

∫

q

(
fsq

(∫

q

g

))
.

Proof. Assume that

f =
∞∑

n=0

fn
xn

[n]q!
and g =

∞∑
n=0

gn
xn

[n]q!
.

The desired result follows from the identities:

(
∫

q

f)(
∫

q

g) =
∞∑

n=2

(
n−1∑

k=1

(
n

k

)

q

fk−1gn−k−1

)
xn

[n]q!
,

∫

q

(
∫

q

f)g =
∞∑

n=2

(
n−1∑

k=1

(
n− 1

k

)

q

fk−1gn−k−1

)
xn

[n]q!
,

∫

q

(fsq(
∫

q

g)) =
∞∑

n=2

(
n−1∑

k=1

(
n− 1
k − 1

)

q

fk−1gn−k−1

)
xn

[n]q!
,

1We thank Dominique Manchon for helping us clarify this subtle point.
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(
n

k

)

q

=
(

n− 1
k

)

q

+ qn−k

(
n− 1
k − 1

)

q

.

¤

Let C be a distributive category, we are going to define a q-deformed distributive

structure on CLn as follows: sum of species is given by (F + G)(x) = F (x)⊕G(x),

and the q-product of species is given by

(FG)(x) =
⊕

x1tx2=x

[q]c(x1,x2)F (x1)⊗G(x2), where

c(x1, x2) = {(i, j) | i ∈ x1, j ∈ x2 and i > j}.

In the definition above we used the following convention: if x is a finite set and c

an object of a distributive category then we set

xc =
⊕

i∈x

c.

We write CLn
q instead of CLn to emphasize that we are using the q-deformed prod-

uct. Notice that if q = 1 then [q]c(x1,x2) is a set with one element and plays no

significant role, thus we recover the product of species of Section 7. We define

functors Pq : CL
q −→ CL

q and Sq : CL
q −→ CL

q as follows. For species F, G in CL
q

and a linearly order set x we set:

∂q(F )(x) = F (x t {x}), Pq(F )(x) = F (x′),

where x′ = x \m(x) if x is non-empty and Pq(F )(∅) = ∅. The functor Sq is given

by

Sq(F )(x) = [q]xF (x).

One can check that ∂q and Pq are almost inverse of each other, indeed, we have

that

∂qPqF = F and Pq∂qF = F+,

where F+(x) = F (x) if x in non-empty and F+(∅) = ∅.

Theorem 8.2. (CL
q , Pq, Sq) is a twisted Rota-Baxter category, i.e. there are natural

isomorphisms

Pq(F )Pq(G) ' Pq(Pq(F )G)⊕ P (FSqPq(G)).

If C is a categorification of R, then (CL
q , Pq, Sq) is a categorification of (R[[x]]q,

∫
q
, sq).
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Proof. Let us show that Pq is a twisted Rota-Baxter functor. We have the iden-

tities

Pq(F )Pq(G)(x) =
⊕

x1tx2=x

[q]c(x1,x2)F (x′1)⊗G(x′2),

Pq(Pq(F )G)(x) =
⊕

x1tx2=x′
[q]c(x1,x2)F (x′1)⊗G(x2),

Pq(FSqP (G))(x) =
⊕

x1tx2=x′
[q]c(x1,x2)tx2F (x1)⊗G(x′2),

The desired natural isomorphisms are constructed as follows. Consider the sum-

mand in Pq(F )Pq(G)(x) corresponding with the partition x1 t x2 = x. Then m(x)

lies either in x1 or in x2. If m(x) ∈ x2, then x1 t x′2 = x′ and the summands

corresponding to (x1, x2) and (x1, x
′
2) in Pq(F )Pq(G)(x) and Pq(Pq(F )G)(x), re-

spectively, agree since in this case c(x1, x2) = c(x1, x
′
2). On the other hand, if

m(x) ∈ x1, then x′1 t x2 = x′ and the summands corresponding to (x1, x2) and

(x1, x
′
2) in Pq(F )Pq(G)(x) and Pq(FSqP (G))(x), respectively, are naturally iso-

morphic since in this case c(x1, x2) = c(x′1, x2) t x2.

The valuation map | | : CL
q −→ R[[x]]q is given by |F | = ∑∞

n=0 |F ([n])| xn

[n]q ! . Let

us check that it satisfies the multiplicative property:

|FG| =
∞∑

n=0

|(FG)([n])| xn

[n]q!

=
∞∑

n=0

∑

x1tx2=[n]

q|c(x1,x2)||F (x1)||G(x2)| xn

[n]q!

=
∞∑

n=0

n∑

k=0


 ∑

x1tx2=[n],|x1|=k

q|c(x1,x2)|


 |F (k)||G(n− k)| xn

[n]q!

=
∞∑

n=0

n∑

k=0

(
n

k

)

q

|F (k)||G(n− k)| xn

[n]q!

= |F ||G|. ¤

9. Categorification of classical field theory

Let K be a set and J a subset of K. For a commutative ring R we let R[[K]] be

the ring of formal divided power series on variables k ∈ K, and R[[J ]] the subring

of R[[K]] consisting of formal divided power series with variables k ∈ J . Formally

R[[K]] is defined as follows. Let M(K) be the set of maps

m : K −→ N
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with finite support s(m) = {i ∈ K | m(i) 6= 0}, then we set

R[[K]] = Maps(M(K), R).

The structural operations on R[[K]] are given by

(f + g)(m) = f(m) + g(m)

and

(fg)(m) =
∑

m1+m2=m

(
m

m1

)
f(m1)g(m2),

where m,m1,m2 ∈ M(K) and
(

m

m1

)
=

∏

i∈s(m)

(
m(i)
m1(i)

)
.

Consider the operator pJ : R[[K]] −→ R[[J ]] ⊆ R[[K]] given by

pJ(f)(m) =

{
f(m) if s(m) ⊆ x

0 otherwise

It is easy to see that the operator pJ is Rota-Baxter of weight −1 since pJ is an

idempotent ring morphism.

The construction above can be generalized to the categorical context without

difficulties. Let B(K) be the category whose objects are pairs (x, f) where x is

a finite set and f : x −→ K is a map. Morphisms in B(K) from (x, f) to (y, g)

are bijections α : x → y such that g ◦ α = f . Let C be a distributive category

with negative objects, see [5,6,7,17] for examples; and let CB
(K)

be the category of

functors from B(K) to C. We define the sum and product of functors as follows,

given (x, f) in B(K) and F, G in CB
(K)

then

(F + G)(x, f) = F (x, f)⊕G(x, f)

and

FG(x, f) =
⊕

x1tx2=x

F (x1, f |x1)⊗G(x2, f |x2).

These structural functors turn CB
(K)

into a distributive category. Assume that C is

a categorification of a ring R and let R[[K]] be the ring of formal series in variables

K with coefficients in R. Consider the functor PJ : CB
(K) −→ CB

(K)
given by

PJ(F )(x, f) =

{
F (x, f) if f(x) ⊆ J

0 otherwise

The following result is easy to check.
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Theorem 9.1. (CB
(K)

, PJ) is a Rota-Baxter category of weight −1. Moreover

(CB
(K)

, PJ ) is a categorification of (R[[K]], pJ) with valuation map given by

|F |(m) = |F (xm, fm)|,

where xm =
∐

k∈K

[m(k)] and the map fm :
∐

k∈K

[m(k)] −→ K

is such that fm(i) = k if i ∈ [m(k)].

Let us now see how a Lagrangian field theory may be described from a categorical

point. The basic objects appearing in a field theory, namely the fields, are locally

identified with maps

ϕ : Rd −→ Rk,

where d is the dimension of the space-time manifold and n is the number of scalar

fields involved in the construction of ϕ. A Lagrangian theory is completely deter-

mined by a function l, the Lagrangian, depending on fields and its derivative. Fixing

coordinates x1, ..., xd on Rd and writing ϕ as ϕ = (ϕ1, ..., ϕk), then a translation

invariant Lagrangian may be regarded as a polynomial or formal power series in

variables ∂Iϕ
j , where for j ∈ [k] and I ∈ Nd we set

∂Iϕ
j = ∂

I(1)
1 ...∂

I(d)
d ϕj .

Thus we see that a Lagrangian l may be regarded as an element of the ring of

formal divided powers

R[[Nd × [k]]] = R[[∂Iϕ
j ]],

where (I, j) ∈ Nd×[k] and ∂Iϕ
j is regarded as a formal variable. Theorem 9.1 tell us

that if C is a categorification of R, then CB
(Nd×[k])

is a categorification of R[[∂Iϕ
j ]].

Objects in CB
(Nd×[k])

are triples (x, f, g) where x is a finite set, f : x −→ Nd and

g : x −→ [k]. The valuation map

| | : CB
(Nd×[k]) −→ R[[∂Iϕ

j ]]

sends a species F ∈ CB
(Nd×[k])

into the formal divided power series

|F | =
∑

f∈M(Nd×[k])

F (
⊔

(I,j)

[(f, g)−1(I, j)])
ϕf

f !
,

where
ϕf

f !
=

∏

(I,j)

(∂Iϕ
j)f(I,j)

f(I, j)!
.

For (I, j) ∈ Nd × [k] we have the partial derivation functors

∂(I,j) : CB
(Nd×[k]) −→ CB

(Nd×[k])
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given by

∂(I,j)F (x, f) = F ((x, f) t (∗, (I, j)).

Notice that the ring R[[∂Iϕ
j ]] comes with additional natural vector fields

∂i : R[[∂Iϕ
j ]] −→ R[[∂Iϕ

j ]]

given by

∂i(∂Iϕ
j) = ∂I+εi

ϕj

where the vectors εi are the canonical generators of Nd. In the categorical context

we have functors

∂i : CB
(Nd×[k]) −→ CB

(Nd×[k])

given for 1 ≤ i ≤ n by

∂i(F )(x, f, g) =
⊕
a∈x

F (x, f + δaεi, g)

where δa : x −→ {0, 1} is the Kronecker delta function. More generally for I ∈ Nd

we have differential functor

∂I : CB
(Nd×[k]) −→ CB

(Nd×[k])

given by

∂I(F )(x, f, g) =
⊕

ai∈xI(i)

F (x, f +
l∑

i=1

δai,j εi, g).

The categorification of a Lagrangian l is thus obtained by finding a functor L in

CB
(Nd×[k])

such that |L| = l. Classical field theory main concern is understanding

the solutions of a system of partial differential equations ej(l) = 0, j ∈ [k], called

the Euler-Lagrange equations which are determined by the Lagrangian l. The the

first step in the categorification of this system of partial differential equations is to

find a categorification for each of the equations appearing in the Euler-Lagrange

equations, namely, we need species Ej(l) in CB
(Nd×[k])

such that |Ej(L)| = ej(l).

Theorem 9.2. The functors Ej(L) : CB
(Nd×[k]) −→ CB

(Nd×[k])
given by

Ej(L)(x, f, g) =
⊕

I∈Nd

⊕

ai∈(xt{∗})I(i)

(−1)|I|L(xt{∗}, (ft(∗, I))+
∑

i,m

εiδai,m , gt(∗, j))

are such that |Ej(L)| = ej(L).

Proof. Follows from the definitions given above and the well-know formula

ej(l) =
∑

I∈Nd

(−1)|I|∂I
∂l

∂(∂Iϕj)
.

¤
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10. Categorification of quantum field theory

As discussed in the previous section the ring of functions on the configuration

space of a field theory may be identified with R[[K]] where K = Nd× [k]. Moreover

CB
(K)

provides a categorification of the ring of functions on configuration space.

In order to proceed to consider quantum structures in field theory, we consider

functions in phase space which may be identified with the ring

R[[K tK]].

An element of the first copy of K is denoted by k, the corresponding element in

the second copy is denoted k. So we have an involution

K tK −→ K tK

sending k into k and k into k. Clearly CB
(KtK)

is a categorification of R[[K tK]].

The new algebraic structure present in the ring of functions on phase space is the

Poisson bracket

{ , } : R[[K tK]]× R[[K tK]] −→ R[[K tK]]

which is determined by the fact that it is antisymmetric, a derivation on each

variable, and is given on generators by

{k, k} = δk,k, {k, s} = 0, and {s, k} = 0.

So our first task is to define a bifunctor

{ , } : CB
(KtK) × CB

(KtK) −→ CB
(KtK)

which plays the role of the Poisson bracket in the categorical context. The Poisson

bracket of functors F and G in CB
(KtK)

turns out to be given by:

{F, G}(x, f) =
⊕

x1tx2=x,k∈K

F (x1 t {∗}, f t (∗, k))⊗G(x2 t {∗}, f t (∗, k))

−
⊕

x1tx2=x,k∈K

F (x1 t {∗}, f t (∗, k))⊗G(x2 t {∗}, f t (∗, k)).

Theorem 10.1. For F, G in CB
(KtK)

the following identity holds

|{F, G}| = {|F |, |G|}.

Proof. The result follows from the fact that the Poisson bracket of functions on

phase space is given by

{f, g} =
∑

k∈K

∂f

∂k

∂g

∂k
− ∂f

∂k

∂g

∂k
,
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and the fact that the formula for the Poisson bracket of species given above may

be also be defined by

{F,G} =
∑

k∈K ∂kF∂kG− ∂kF∂kG. ¤

The commutative product of functions on phase space comes equipped with

a natural deformation into a quantum product, often called the Moyal product,

which is determined by the Poisson bracket. Our next goal is to describe the Moyal

product at the categorical level. Recall that quantum phase space possesses an

extra dimension parameterized by a formal variable ~. Thus a categorification of

formal power series in quantum phase space is given by CB
(KtKt~)

with the natural

valuation map into R[[K tK t ~]]. Objects in B(KtKt~) are triples (x, f, h) where

x is a finite set, f : x −→ K tK is a map, and h is another finite set. Given a map

α : h → K tK, we define s(α) the sign of α as follows: ±1 according to the parity

of α−1(K).

s(α) =

{
1 if |α−1(K)| is even

−1 if |α−1(K)| is odd.

We define the Moyal star product of species F and G in CB
(KtKt~)

is given by

F ? G(x, f, h) =
⊕

s(α)F (x1 t h3, f t α, h1)⊗G(x2 t h3, f t α, h2)),

where the sum runs over finite sets x1, x2, h1, h2, h3 such x1tx2 = x, h1th2th3 = h

and α : h3 → K tK.

Theorem 10.2. For F, G in CB
(KtKt~)

the following identity holds

|F ? G| = |F | ? |G|.

Proof. The result is an instance of a general categorification theorem for the Kont-

sevich’s star product proved in [17]. Alternatively, one notices that the expression

given for the ?-product of species is the categorical version of the following expres-

sion for the ?-product of functions on phase space

f ? g =
∞∑

n=0

hn

n!
m(

∑

k∈K

∂

∂k
⊗ ∂

∂k
− ∂

∂k
⊗ ∂

∂k
)n(f ⊗ g),

where for m denotes the product of functions on phase space. ¤

We close the paper with an example of a quantum-like Rota-Baxter category.

Fix a subset J of K. Consider the functor PJ : CB
(KtKt~) −→ CB

(KtKt~)
given by

PJ(F )(x, f, h) =

{
F (x, f, h) if f(x) ⊆ J t J

0 otherwise.
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Theorem 10.3. (CB
(KtKt~)

, ?, PJ) is Rota-Baxter category of weight −1.

(CB
(KtKt~)

, ?, PJ) is a categorification of the Rota-Baxter algebra

(R[[K tK t ~]], ?, pJ)

with valuation map given by

|F |(m) = |F (xm, fm, [m(~)])|,

where xm =
∐

k∈K [m(k)] t [m(k)] and fm :
∐

k∈K [m(k)] t [m(k)] −→ K is such

that

fm(i) =

{
k if i ∈ [m(k)]

k i ∈ [m(k)].

Acknowledgments. Thanks to Takashi Kimura, Dominique Manchon, Marcelo

Páez, Raymundo Popper, Steven Rosenberg and Sylvie Paycha.
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Defférentielle Catég., 39 (1998), 3-25.

[12] P. Cheung and V. Kac, Quantum Calculus, Springer-Verlag, Berlin, 2002.

[13] A. Connes and D. Kreimer, Renormalization in quantum field theory and

Riemann-Hilbert problem I, Comm. Math. Phys., 210 (2000), 249-273.

[14] R. Dı́az and E. Pariguan, Categorification of Feynman Integrals, in prepara-

tion.

[15] R. Dı́az and E. Pariguan, Feynman-Jackson integrals, J. Nonlinear Math.

Phys., 13 (2006), 365-376.

[16] R. Dı́az and E. Pariguan, An example of Feynman-Jackson integral, J. Phys.

A, 40 (2007), 1265-1272.

[17] R. Dı́az and E. Pariguan, Super, quantum and noncommutative species,

preprint, arXiv:math.CT/0509674.
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