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Abstract. In the present paper, we define generalized (amply) cofinitely sup-

plemented modules, and generalized ⊕-cofinitely supplemented modules are

defined as a generalization of (amply) cofinitely supplemented modules and

⊕-cofinitely supplemented modules, respectively, and show, among others, the

following results:

(1) The class of generalized cofinitely supplemented modules is closed under

taking homomorphic images, generalized covers and arbitrary direct sums.

(2) Any finite direct sum of generalized ⊕-cofinitely supplemented modules

is a generalized ⊕-cofinitely supplemented module.

(3) M is a generalized cofinitely semiperfect module if and only if M is a

generalized cofinitely supplemented -module by supplements which have gen-

eralized projective covers.
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1. Introduction

Supplemented modules have been discussed by several authors (see [9], [14]) in

the literature, and these modules are useful in characterizing semiperfect modules

and rings. Azumaya [3] introduced the notion of generalized projective covers to

characterize semiperfect modules. Recently, in [12], Wang and Ding studied on

generalized (amply) supplemented modules to characterize semiperfect modules

and rings.

Alizade et al. studied certain modules whose maximal submodules have sup-

plements, and introduced cofinitely supplemented modules [1]. In [5], Çalışıcı and

Pancar studied cofinitely semiperfect modules as a generalization of semiperfect

modules.

In this study, generalized (amply)cofinitely supplemented modules are defined

as analogues of (amply) cofinitely supplemented modules. In Section 3, we obtain
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some basic properties of generalized (amply) cofinitely supplemented modules and

generalized ⊕-cofinitely supplemented modules.

In Section 4, we characterize generalized cofinitely semiperfect modules via gen-

eralized projective covers of the generalized supplement submodules. For more

detailed discussion on generalized supplements and generalized covers, we refer to

[13]. Here, we also prove that;

Theorem. For any module M the following statements are equivalent:

(1) M is a generalized cofinitely semiperfect module.

(2) M is a generalized amply cofinitely supplemented module by supplements

which have generalized projective covers.

(3) M is a generalized cofinitely supplemented module by supplements which have

generalized projective covers.

2. Conventions and Notations

Unless otherwise stated, we use the following conventions and notations.

All rings are associative with unity and all R-modules are unital right R-modules.

A submodule N of a module M is called small, written N ¿ M , if M 6= N+L for

every proper submodule L of M . Rad(M) denotes the radical of M . The symbols,

“≤” will denote a submodule, “≤d” a module direct summand. For submodules

A and B of M with M = A + B, B is called a supplement of A if it is minimal

with respect to this property, equivalently if A ∩B is small in B. A submodule N

of M has ample supplements in M if every submodule L such that M = N + L

contains a supplement of N in M . The module M is called (amply) supplemented

if every submodule of M has a (an ample) supplement submodule. M is called a

⊕-supplemented module if every submodule of M has a supplement that is a direct

summand of M .

Following Wisbauer [14], M is said to be an (amply) f -supplemented module if

every finitely generated submodule of M has an/a (amply) supplement in M . A

submodule N of M is called cofinite (in M) if the factor module M/N is finitely

generated. The module M is called (amply)cofinitely supplemented if every cofinite

submodule of M has a (an ample) supplement in M ([1] and [11]).

Definition 2.1. Let M be a module. For submodules A and B of M with M =

A + B, B is called a generalized supplement of A in M in case A ∩ B ⊆ Rad(B).

Clearly, each supplement is a generalized supplement submodule. Adapting this

concept, M is called generalized (amply) cofinitely supplemented if every cofinite
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submodule of M has (ample) generalized supplements in M and denoted by gcs

(gacs)-module, respectively (see [4]).

Following [7] , M is called⊕-cofinitely supplemented or briefly⊕-cof-supplemented

if every cofinite submodule of M has a supplement that is a direct summand of M .

We call M a generalized ⊕-cofinitely supplemented module if every cofinite submod-

ule of M has a generalized supplement that is a direct summand of M , denoted by

g−⊕− cs-module. It is easy to see that, ⊕-supplemented modules are generalized

⊕-cofinitely supplemented modules and converse is true if the modules is finitely

generated. Note that hollow modules are generalized ⊕-supplemented so that local

modules are also generalized ⊕-supplemented.

Definition 2.2. If P and M are modules, we call an epimorphism p : P → M

a (generalized) small cover in case (Ker(p) ⊆ Rad(P )) Ker(p) ¿ P , respectively.

Since Rad(P ) is the sum of all small submodules of P , every small cover is a

generalized cover. If P is a projective module, it is called (generalized) projective

cover. As observed in [3], every projective cover is a generalized projective cover.

We have the following basic properties of generalized covers.

Lemma 2.3. ([13, Lemmas 1.1 and 1.2]) (1) If f : P → M and g : M → N are

generalized covers for M and N , respectively, then gf : P → N is a generalized

cover for N .

(2) Let M = M1 ⊕ M2 ⊕ · · · ⊕ Mn be such that all pi : Pi → Mi are generalized

covers. Let P = P1⊕P2⊕ · · · ⊕Pn. Then p = ⊕pi : P → M is a generalized cover.

An R-module M is called semiperfect if every factor module of M has a projective

cover. If RR is semiperfect, then R is called a semiperfect ring. Following [5], an

R-module M is called cofinitely semiperfect if every finitely generated factor module

of M has a projective cover. Clearly, semiperfect modules are cofinitely semiperfect

and finitely generated cofinitely semiperfect modules are semiperfect.

Hence, we call an R-module M generalized cofinitely semiperfect if every finitely

generated factor module of M has a generalized projective cover.

An account of these concepts can be found in the texts by Mohammed and Müller

and Wisbauer, referenced in the manuscript as [9] and [14], respectively.

3. Generalized Cofinitely Supplemented Modules

In this section, we give some characterizations of gcs (gacs)-modules.

Lemma 3.1. If f : M → N is a homomorphism and L is a generalized supplement

in M with Kerf ≤ L, then f(L) is a generalized supplement in f(M).
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Proof. Assume that L is a generalized supplement of K in M . Then M = L + K

and L∩K ⊆ Rad(L). Then f(M) = f(L+K) = f(L)+f(K). Since L∩K ⊆ Rad(L)

and Ker(f) ≤ L, we have f(L) ∩ f(K) = f(L ∩K) ≤ Radf(L) by [2, Proposition

9.14]. So f(L) is a generalized supplement of f(K) in f(M). ¤

Proposition 3.2. Any homomorphic image of a gcs (gacs)-module is a gcs (gacs)-

module, respectively.

Proof. Let M be an R-module. By [4, Theorem 3.5], any homomorphic image of

M is a gcs-module. By adapting this argument, we can show similarly that any

homomorphic image of M is a gacs-module. ¤

Lemma 3.3. Let M be an R-module and K,L, N ≤ M . Then;

(1) If K is a generalized supplement of N in M and T ≤ Rad(M) then K is a

generalized supplement of N + T in M .

(2) If f : M → N is a generalized cover epimorphism, then, the submodule L of M

is a generalized supplement in M if and only if f(L) is a generalized supplement in

N .

(3) If K is a gcs-module, L is cofinite and K + L has a generalized supplement

U in M , then K ∩ (L + U) has a generalized supplement V in K and U + V is a

generalized supplement of L in M .

Proof. (1) Let K be a generalized supplement of N in M . Then M = N + K and

N ∩ K ≤ Rad(K). We consider the homomorphism f : M → (M/N) ⊕ (M/K),

g : (M/N) ⊕ (M/K) → (M/(N + T )) ⊕ (M/K) and canonical epimorphism

π : M → M/N . Since Ker(f) = N ∩ K ≤ Rad(K), the homomorphism f is a

generalized cover epimorphism . Note that Ker(g) = (N + T )/N ⊕ (0). Since

(N + T )/N = π(T ) =≤ Rad(M/N) by [2, Proposition 9.14]. Hence g is a general-

ized cover epimorphism. By Lemma 2.3, fg is a generalized cover epimorphism, i.e.,

Ker(fg) ≤ Rad(M). Since (N +T )∩K = Ker(fg), K is a generalized supplement

of N + T in M .

(2) Let L be a generalized supplement of K in M . Then K is a generalized sup-

plement of L + Ker(f) by (1). By Lemma 3.1, f(L) = f(L + Kerf) is also a

generalized supplement in N . Conversely, let f(L) be a generalized supplement

of a submodule T in N , i.e., N = f(L) + T and f(L) ∩ T ≤ Rad(f(L)). Then

M = L + f−1(T ). Because L ∩ f−1(T ) ≤ f−1(f(L) ∩ T ) ≤ Rad(f−1(T )) by [6,

Corollary 9.1.5], f−1(T ) is a generalized supplement of L in M .

(3) Let U be generalized supplement of K + L in M . Then M = (K + L) + U
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and (K + L) ∩ U ≤ Rad(U). Note that M/(L + U) ∼= K/(K ∩ (L + U)). We con-

sider the homomorphism f : M/L → M/(L + U). Since M/L is finitely generated,

M/(L+U) is finitely generated and so K ∩ (L+U) a cofinite submodule of K. Be-

cause K is a gcs-module, K∩(L+U) has a generalized supplement V in K. That is

K = [K∩(L+U)]+V and [K∩(L+U)]∩V ≤ Rad(V ). Since V is a submodule of K,

we have [K∩(L+U)]∩V = V ∩(L+U) ≤ Rad(V ). Then M = L+(U +V ). By [14,

Lemma 19.3], L∩(U+V ) ≤ [U∩(K+L)]+[V ∩(L+U)]. Since U∩(K+L) ≤ Rad(U)

and V ∩(L+U) ≤ Rad(V ), then L∩(U+V ) ≤ Rad(U)+Rad(V ) ≤ Rad(U+V ). ¤

Theorem 3.4. The class of gcs-modules is closed under taking generalized cover

and arbitrary direct sums.

Proof. By Lemma 3.3(2), a generalized cover of a gcs-module is a gcs-module. By

[4, Theorem 3.5], the class of gcs-modules is closed under taking arbitrary direct

sums. ¤

Theorem 3.5. Let M be a gcs-module and let A be a cofinite submodule of M . If

A is a generalized supplement in M , then Rad(A) = A.

Proof. Let K be a generalized supplement of M with M/K finitely generated.

Then M = N + K and N ∩K ≤ Rad(K), where N is a cofinite submodule of M .

Since M/N
f∼= K/(N ∩K) and M/N is finitely generated, we have K/(N ∩K) =

Rad(K/(N ∩K)). By [2, Proposition 9.15], Rad(K/(N ∩K)) = Rad(K)/(N ∩K)

because Ker(f) = N ∩ K ≤ Rad(K). Hence K/(N ∩ K) = Rad(K/(N ∩ K)) =

Rad(K)/(N ∩K). This implies that K = Rad(K). ¤

We consider the following condition for a module M .

(∗) Every cofinite submodule of the module M/Rad(M) is a direct summand.

Proposition 3.6. Every gcs-module satisfies the (∗)-condition.

Proof. Let M be a gcs-module and Rad(M) ≤ N ≤ M with N a cofinite submod-

ule of M . Since M is a gcs-module, there exist X ≤ M such that M = N + X and

N ∩X ≤ Rad(X) and so N ∩X ≤ Rad(M). Then

M/Rad(M)) = N/Rad(M) + ((X + Rad(M))/Rad(M))

= N/Rad(M)⊕ ((X + Rad(M))/Rad(M))

because N ∩ (X + Rad(M)) = (N ∩X) + Rad(M) = Rad(M). ¤
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A module M is called local if the sum of all proper submodules of M is a proper

submodule of M . Note that 0 is a local submodule and also a cofinitely supple-

mented submodule of M , and so is a generalized cofinitely supplemented submodule

of M .

For any module M , we shall denote the socle of M by Soc(M).

Lemma 3.7. ( See [1, Lemma 2.7] ) Let R be a ring. The following statements

are equivalent for an R-module M .

1. Every cofinite submodule of M is a direct summand of M .

2. Every maximal submodule of M is a direct summand of M .

3. M/Soc(M) does not contain a maximal submodule.

For any module M , Cof(M) will denote the sum of all cofinitely supplemented

submodules of M , Loc(M) will denote the sum of all local submodules of M ( see

[1] ) and g−Cof(M) will denote the sum of all generalized cofinitely supplemented

submodules of M , respectively. In case M does not contain a local submodule,

Loc(M) is the zero submodule. Thus Loc(M) ≤ Cof ≤ g − Cof .

Theorem 3.8. Let R be a ring and M be a right R-module. Then the following

statements are equivalent:

(1) M is gcs-module.

(2) Every maximal submodule of M has a generalized supplement in M .

(3) The module M/Loc(M) does not contain a maximal submodule.

(4) The module M/g − Cof(M) does not contain a maximal submodule.

Proof. Similar to [1, Theorem 2.8]. ¤

Through the rest of this section, we focus on the notion of generalized⊕-cofinitely

supplemented modules.

Lemma 3.9. For any ring R, finite direct sum of g-⊕-cs R-modules is a g-⊕-cs-

module.

Proof. Let Mi be a g-⊕-cs-module for each 1 ≤ i ≤ n and M = ⊕n
i=1Mi. To

prove that M is a g-⊕-cs-module, it is sufficient to prove that this is the case when

n = 2. Let L be any cofinite submodule of M . Then M = M1 + M2 + L so that

M1 +M2 +L has a generalized supplement 0 in M . Since L is cofinite submodule of

M , then M/L is finitely generated and so M/(M1 + L) is finitely generated. Note

that
M

M1 + L
=

M1 + M2 + L

M1 + L
=

M2 + (M1 + L)
M1 + L

∼= M2

M2 ∩ (M1 + L)
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so that M2/(M2∩ (M1 +L)) is finitely generated. Then M2∩ (M1 +L) is a cofinite

submodule of M2. Since M2 is a g-⊕-cs-module, there exist a direct summand

generalized supplement H of M2∩(M1 +L) in M2, namely M2 = [M2∩(M1 +L)]+

H = H ⊕H
′
for some H ′ ≤ M2 and [M2 ∩ (M1 + L)] ∩H ≤ Rad(H). By Lemma

3.4, H is a generalized supplement of M1 + L in M . That is M = (M1 + L) + H

and (M1 + L) ∩H ≤ Rad(H). Note that

M

L + H
=

M1 + (L + H)
L + H

∼= M1

M1 ∩ (L + H)

so that M1/(M1 ∩ (L + H)) is finitely generated. Then M1 ∩ (L + H) is a cofinite

submodule of M1. Since M1 is a g-⊕-cs-module, there exist a direct summand

generalized supplement K of M1∩(L+H) in M1, namely M1 = [M1∩(L+H)]+K =

K⊕K
′
for some K ′ ≤ M1 and [M1∩(L+H)]∩K ≤ Rad(K). Since K is a submodule

of M1, (L + H) ∩K ≤ Rad(K). By Lemma 3.4, L is a generalized supplement of

H + K in M . Since H is a direct summand of M2 and K is a direct summand of

M1, then H + K = H ⊕K is a direct summand of M . Clearly, M = L + (H + K)

and L ∩ (H + K) ≤ Rad(H + K). Hence M = M1 ⊕M2 is a g-⊕-cs-module. ¤

Theorem 3.10. Any finite direct sum of g-⊕-cs-modules is a g-⊕-cs-module.

Proof. By Lemma 3.9. ¤

Let M be a module. A submodule X of M is called fully invariant if for every

h ∈ EndR(M), h(X) ⊆ X. The module M is called duo , if every submodule of M

is fully invariant.

Lemma 3.11. Let M be a duo module. If M = M1 ⊕M2, then A = (A ∩M1) ⊕
(A ∩M2) for A is submodule of M .

Proof. See [8]. ¤

One of the our aims in this section is to investigate conditions which ensure that

a factor submodule of a g-⊕-cs-module will be a g-⊕-cs-module.

Proposition 3.12. Assume that M is a g-⊕-cs-duo module and N ≤ M . Then

M/N is a g-⊕-cs-module.

Proof. Let N ≤ K ≤ M with K/N a cofinite submodule of M/N . Then M/K ∼=
(M/N)/(K/N) is finitely generated. Since M is a g-⊕-cs-module, there exists a

submodule L and L
′
of M such that M = K + L = L⊕ L

′
, and K ∩ L ≤ Rad(K).

Note that M/N = K/N +(L+N)/N , by modularity, K ∩ (L+N) = (K ∩L)+N .

Since K ∩L ≤ Rad(L), we have K/N ∩ (L+N)/N = [(K ∩L)+N ]/N ≤ Rad((L+
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N)/N). This implies that (L + N)/N is a generalized supplemented of K/N in

M/N . Now N = (N ∩ L)⊕ (N ∩ L
′
) by Lemma 3.11, implies that

(L + N) ∩ (L
′
+ N) ≤ N + (L + N ∩ L + N ∩ L

′
) ∩ L

′
.

It follows that (L + N)∩ (L
′
+ N) ≤ N and M/N = ((L + N)/N)⊕ ((L

′
+ N)/N).

Then (L + N)/N is a direct summand of M/N . Consequently, M/N is a g-⊕-cs-

module. ¤

A module M is called distributive if its lattice of submodules is a distributive

lattice, equivalently for submodules K, L, N of M , N +(K∩L) = (N +K)∩(N +L)

or N ∩ (K + L) = (N ∩K) + (N ∩ L).

A module M is said to have the Summand Sum Property (SSP ) if the sum of

any pair of direct summands of M is a direct summand of M , i.e., if N and K are

direct summands of M then N + K is also a direct summand of M .

Theorem 3.13. (1) Let M be a g-⊕-cs-module and N a submodule of M . If for

every direct summand K of M , (N + K)/N is a direct summand of M/N then

M/N is a g-⊕-cs-module.

(2) Let M be a g-⊕-cs-module with the SSP. Then every direct summand of M is

a g-⊕-cs-module.

(3) Let M be a g-⊕-cs-distributive module. Then M/N is a g-⊕-cs-module for

every submodule N of M .

Proof. (1) Any cofinite submodule of M/N has the form T/N where T is a cofinite

submodule of M and N ⊆ T . Since M is a g-⊕-cs-module, there exists a direct

summand D of M such that M = T + D = D⊕D
′
and T ∩D ≤ Rad(D) for some

submodule D′ of M . Now M/N = T/N +(D+N)/N . By hypothesis, (D+N)/N is

a direct summand of M/N . Note that (T/N)∩ ((D +N)/N) = [T ∩ (D +N)]/N =

[N + (D ∩ T )]/N . Since T ∩D ≤ Rad(D), we have [(D ∩ T ) + N ]/N ≤ Rad((D +

N)/N). This implies that (D + N)/N is a generalized supplement submodule of

T/N in M/N . Hence M/N is a g-⊕-cs-module.

(2) Let N be a direct summand of M . Let M = N⊕N ′ for some N ′ ≤ M . We want

to show that M/N ′ is a g-⊕-cs-module. Assume that L is a direct summand of M .

Since M has the SSP, L + N
′

is a direct summand of M . Let M = (L + N ′)⊕K

for some K ≤ M . Then M/N ′ = (L + N ′)/N ′ ⊕ (K + N ′)/N ′. Therefore M/N ′ is

a g-⊕-cs-module by (1).

(3) Let D be a direct summand of M . Then M = D ⊕ D′ for some submodule

D′ of M . Now M/N = [(D + N)/N ] + [(D′ + N)/N ] and N = N + (D ∩ D′) =
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(N +D)∩(N +D′) by distributivity of M . This implies that M/N = [(D+N)/N ]⊕
[(D′ + N)/N ]. By (1), M/N is a g-⊕-cs-module. ¤

A module M is said to have the Summand Intersection Property (SIP ) if the

intersection of any pair of direct summands of M is a direct summand of M , i.e., if

N and K are direct summands of M then N ∩K is also a direct summand of M .

Lemma 3.14. ([8, Corollary 18]) Let M be a duo module. Then M has the SIP

and the SSP.

As a result of Theorem 3.13 and Lemma 3.14, we can obtain the following corol-

lary.

Corollary 3.15. Let M be a g-⊕-cs-duo module. Then every direct summand of

M is a g-⊕-cs-module.

4. Generalized Cofinitely Semiperfect Modules

We start with a connection between generalized projective covers and cofinitely

generalized supplements.

Lemma 4.1. Let N be a submodule of the module M and f : M → M/N be

the canonical epimorphism. Also let P be any module, g : P → M/N and h :

P → M such that g is h composed with f . Then the map g is a generalized cover

epimorphism if and only if Im(h) is a generalized supplement of N and Ker(h) ≤
Rad(P ).

Proof. If g is a generalized cover epimorphism then N ∩ Im(h) = h(Ker(g)) ≤
Rad(Im(h)) = Rad(h(P )). This implies that Im(h) = h(P ) is a generalized sup-

plement of N since g is an epimorphism. Note that Ker(h) ⊆ Ker(g). Therefore,

we can obtain Ker(h) ≤ Rad(P ). The converse is clear by Lemma 2.3. ¤

We come now to our main result.

Theorem 4.2. For any module M the following statements are equivalent:

(1) M is a generalized cofinitely semiperfect module.

(2) M is a gacs-module by supplements which have generalized projective covers.

(3) M is a gcs-module by supplements which have generalized projective covers.

Proof. (1) ⇒ (2) Let M = A + B with M/A finitely generated and let f : P →
M/A be a generalized projective cover. Since P is projective and M/A is isomorphic

to B/(A ∩B), the map f lifts to a map g : P → B. Since f is a generalized cover,
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then Im(g) is a generalized supplement of A ∩B in B and g is a generalized cover

by Lemma 4.1. Hence P is a generalized projective cover of Im(g) which is clearly

contained in B.

(2) ⇒ (3) Clear.

(3) ⇒ (1) Let M/N be a finitely generated factor module of M . Then N is a cofinite

submodule. Let K denote a generalized supplement of N and let f : P → K be

a generalized projective cover. K is a generalized cover of K/(N ∩ K), i.e., the

natural epimorphism g : K → K/(N ∩K)
h∼= (N + K)/N = M/N is a generalized

cover. Hence hgf : P → M/N is a generalized projective cover by Lemma 2.3. ¤

Theorem 4.3. For any finitely generated module M the following statements are

equivalent:

(1) M is a generalized semiperfect module.

(2) M is a generalized cofinitely semiperfect module.

(3) M is an amply f -supplemented module by finitely generated supplements which

have generalized projective covers.

(4) M is an f -supplemented module by finitely generated supplements which have

generalized projective covers.

Proof. The proof is an easy modification of the proof of Theorem 4.2. ¤

Proposition 4.4. (1) Every homomorphic image of a generalized cofinitely semiper-

fect module is generalized cofinitely semiperfect.

(2) Every generalized cover of generalized cofinitely semiperfect module is general-

ized cofinitely semiperfect.

Proof. (1) Follows from Theorem 4.2 and Proposition 3.2.

(2) Follows from Theorems 4.2 and 3.5. ¤

A generalized cover f : P → M is called a generalized M -projective cover in

case P is an M -projective module. We give a theorem without the proof which

characterizes a generalized M -projective cover under conditions because its proof

is similar to the proof of Theorem 4.2.

Theorem 4.5. For any module M the following statements are equivalent:

(1) Every finitely generated factor module of M has a generalized M -projective

cover.

(2) M is a gacs-module by supplements which have generalized M -projective covers.

(3) M is a gcs-module by supplements which have generalized M -projective covers.
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Proposition 4.6. Let M be an R-module.

(1) If M is a projective g-⊕-cs-module then M is a generalized cofinitely semiperfect

module.

(2) Assume that f : P → M is a generalized projective cover of M . If P is a

g-⊕-cs-module, then the following statements are equivalent.

(a) M is a generalized cofinitely semiperfect module.

(b) P is a generalized cofinitely semiperfect module.

Proof. (1) Let M/N be a finitely generated factor module of M . Then N is

cofinite. Since M is a g-⊕-cs-module, there exist submodules K and K
′
of M such

that M = N + K, N ∩K ≤ Rad(K), and M = K ⊕K
′
for some K ′ ≤ M . Clearly,

K is projective. For the inclusion homomorphism i : K → M and the canonical

epimorphism π : M → M/N , we have πi : K → M/N is an epimorphism and

Ker(πi) = N ∩K ≤ Rad(K).

(2) Clear from Theorem 4.5 and (1). ¤
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Department of Mathematics,

Faculty of Science,

Gebze Institute of Technology
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