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Abstract. In this paper we define the dihedral (co)homology of schemes over

a commutative ring k by sheafifying the (co)dihedral complex. We study the

Mayer-Vietoris sequence of dihedral (co)homology and introduce the relation

between the cyclic and dihedral (co)homology of schemes
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1. Introduction

We recall some basic facts of schemes from [8] and dihedral homology groups of

[3,4,6,7].

Definition 1.1. Let k be an algebraic closed field and R be a ring with unit. We

shall denote the set of all prime ideals over R by spec(R) and, for any ideal P in

R , we denote by V (P ) the set of all prime ideal in spec(R) containing P . These

sets define a topology. It’s called a Zariski topology.

Definition 1.2. A ringed space is a pair (X, θX) where X is a topological space

and θX is the structure of sheaf on X. The space (X, θX) is called locally ringed

space if the stalks θx|X are locally rings for any x ∈ X.

Definition 1.3. A locally ringed space (X, θX) is called affine space if (X, θX) =

(spec(R), θspec(R)) and a scheme if it has an open covering X = ∪i∈I such that is

an affine scheme for i ∈ I.

Definition 1.4. Given a pair (spec(R), θspec(R)) called locally ringed space. For

any scheme X, the structure sheaf θX is defined to be the ring of all regular functions

denoted by θX(U) = {f | f : U → Up∈UAp, U ∈ X}, where Ap is the local ring on

X at p.

We define an involution ∗ on the sheaf θXas an involution is an automorphism of

order two by considering the inverse regular function ∗ : θX → θX , that is satisfy:
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(∗)2 = id , f∗ = f−1,and (fg)∗ = g−1f−1. The scheme X with this property on

sheaf θX is called a scheme with an involution.

Now we review briefly the notion of dihedral modules before we consider it in

the context of schemes.

Definition 1.5. [2] The dihedral category ∆D has objects [n], n ∈ N and the

following family of morphisms:

δi
n : [n− 1] → [n], σj

n : [n + 1] → [n] (1)

τn : [n] → [n], ρn : [n] → [n] (2)

such that the following framework are hold.:

δj
n+1δ

i
n = δi

n+1δ
j−1
n , if i ≺ j (3)

σj
nσi

n+1 = σi
nσj+1

n+1, if i ≤ j (4)

σj
nδi

n+1 =





δi
n−1σ

j−1
n−2,

Id[n],

δi−1
n+1σ

j
n,

if

if

if

i ≺ j

i = j or i = j + 1

i Â j + 1

(5)

τnδi−1
n = δi−1

n τn−1 , 1 ≤ i ≤ n (6)

τnσj
n = δj−1

n τn+1 , 1 ≤ j ≤ n (7)

τn+1
n = Id[n] (8)

ρnδi
n = δi−1

n ρn−1 , 0 ≤ i ≤ n (9)

ρnσj
n = σj−1

n ρn+1 , 0 ≤ j ≤ n (10)

ρ2
n = Id[n] (11)

τnρn = ρnτ−1
n . (12)

Definition 1.6. Let ζ be an arbitrary category. A dihedral object of the category

ζ is a functor V : ∆Dop → ζ , such that V (n) = Xn, V (δi
n) = di

n, V (σj
n) =

Sj
n, V (τn) = tn and V (ρn) = rn( ∆Dop is the inverse of ∆D ). If ζ is a category of

modules, then the dihedral object is called a dihedral module.

Note that the morphisms {di
n, Sj

n, tn, rn} satisfy the relations 3-12.

Definition 1.7. Let M = {Mn} be a dihedral k−module. The dihedral homology

groups of M is given by:

HDn = Tork[∆Dop]
n (KD, M) , n ≥ 0 (13)

where KD is trivial dihedral k −module.
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2. Dihedral cohomology of schemes

In this section we define the dihedral homology of schemes and study some of

its properties.

Definition 2.1. [8] A sheaf of θX -modules is a sheaf = on X, such that for each

open set u ∈ X, the group =(u) is a θX(u)-module and for each inclusion of open

sets v ⊆ u the restriction homomorphism =(u) → =(v) is compatible with the

module structures via the ring. The set of all sheaves of θX -module defines a

category, called a category of sheaves of modules and denoted by Mod(θX).

Definition 2.2. The dihedral module of sheaves is a functor F : ∆Dop → Mod(θX)

such that

F ([n]) = θ
⊗(n+1)
X (14)

F (δi
n) = di

n : θ
⊗(n+1)
X → θ

⊗(n)
X (15)

di
n(f0 ⊗ f1 ⊗ ...⊗ fn) = (f0 ⊗ f1 ⊗ ...⊗ fifj ⊗ ...⊗ fn), 0 ≤ i ≤ 1 (16)

F (σj
n) = Sj

n : θ
⊗(n−1)
X → θ

⊗(n)
X (17)

Sj
n(f0 ⊗ f1 ⊗ ...⊗ fn) = (f0 ⊗ f1 ⊗ ...⊗ fi ⊗ id⊗ fi+1 ⊗ ...⊗ fn), 0 ≤ i ≤ 1 (18)

F (τn) = tn : θ
⊗(n)
X → θ

⊗(n)
X (19)

tn(f0 ⊗ f1 ⊗ ...⊗ fn) = (fn ⊗ f0 ⊗ ...⊗ fn−1), (20)

F (ρn) = rn : θ
⊗(n)
X → θ

⊗(n)
X (21)

tn(f0 ⊗ f1 ⊗ ...⊗ fn) = α(f−1
0 ⊗ f−1

n ⊗ ...⊗ f−1
1 ), α = ±1 (22)

with the following:

bn =
n∑

i=0

(−1)idi, b‘
n =

n−1∑

i=0

(−1)idi (23)

Tn = (−1)ntn , N = 1 + t + ... + tn−1 (24)

Rn = (−1)
n(n+1)

2 rn. (25)

We can construct the tricomplex of sheaves (αCDn(θX , δ)), α = ±1, (see [5])

where δ = δ1 + δ2 + δ3, and:

δ1 =

{
bn

−b‘
n

: θ
⊗(n)
X → θ

⊗(n−1)
X (26)

δ2 =

{
1− Tn

N
: θ
⊗(n)
X → θ

⊗(n)
X (27)
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δ3 =





1−Rn

−1−RnTn

1 + RnTn

1−Rn

: θ
⊗(n)
X → θ

⊗(n)
X (28)

Clearly (δi)2 = 0, i = 1, 2, 3.

In order to define the dihedral cohomology of schemes, we make a use of the

hyperhomology of define in [9].

Definition 2.3. The dihedral homology of scheme X over a commutative ring k is

the hyperhomology of the total complex of the tricomplex of sheaves (αCDn(θX , δ)):

αHD∗(X) = H∗(Tot(CDn(θx), X)) (29)

where

Tot(CDn(θx)) =
θn

X

Im(1−R) + Im(1− T )
, n = 0, 1, 2, ..., α = ±1. (30)

Remark 2.4. If we droped the operator ρn : [n] → [n] in Definition 1.5 we get the

cyclic category, cyclic module and for a scheme X we obtain the cyclic homology

of a scheme (see [9]).

3. The Mayer-Vietoris sequence for dihedral homology of schemes

In this part we, first establish a lemma which use to prove a theorem of Mayer-

Vietoris sequence for dihedral homology of schemes.

Lemma 3.1. [1] The following sequence is exact :

0 →α CDn(θX) J−→αCDn(θX1)⊕α CDn(θX2) I−→αCDn(θX1 ∩ θX2) → 0, α = ±1

(31)

where θX = θX1 ∩θX2 , αCDn is the dihedral complex, and J = J1−J2, I = I1 +I2,

are defined by:

I1 : X1∪X2 → X1 , I2 : X1∪X2 → X2 , J1 : X1 → X1∩X2 , J2 : X2 → X1∩X2.

(32)

Proof. Clearly, J is an epimorphism and I is a monomorphism and JoI = o. Let

(θX1 ∩ θX2)(u) ∈ CDn(θX)(u),then,

(JoI)(θX1∪X2)(u) = J(θX1(u), θX2(u)) = 0

where (θX1(u), θX2(u)) ∈ [CDn(θX1)⊕CDn(θX2)] and (θX1∩θX2)(u) ∈ αCDn(θX1∩
θX2). ¤
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Theorem 3.2. If X = X1 ∪X2 where X1 and X2 are open subsets of scheme X

and the diagram

X → X1

↑ ↑
X2 → X1 ∩X2

(33)

is commutative, then there exists the following long exact sequence:

... → αHDn(X1∪X2)
J∗→ HDn(X1)⊕HDn(X2)

I∗→ HDn(X1∩X2)
E→ HDn−1(X1∪X2) → ...

(34)

where I∗ = (I∗1 , I∗2 ), J∗ = (J∗1 , J∗2 ), E is a connecting homomorphism.

Proof. The exact sequences

0 → αCDn(θX) J→ αCDn(θX1)⊕ αCDn(θX2)
I→ αCDn(θX1 ∩ θX2) → 0, α = ±1

(35)

induce the following long exact sequence of dihedral groups:

... → αHDn(X1∪X2)
J∗→ HDn(X1)⊕HDn(X2)

I∗→ HDn(X1∩X2)
E→ HDn−1(X1∪X2) → ...

(36)

Since EoJ∗ = 0, this ends the proof. ¤

4. The relation between cyclic and dihedral homology of schemes

We extend the relation between the cyclic and dihedral homology from algebra

[5] or [7] to all schemes over ring with identity and involution. This fact can be

given by the following theorem.

Theorem 4.1. Let = be a sheaf of θX-modules, and let X be a scheme over unital

ring k with involution. Then the relation between the cyclic and dihedral cohomology

groups is given by:

... → −αHDn(X,=) i∗→ HCn(X,=)
j∗→ αHDn(X,=) → αHDn−1(X,=) → ...

(37)

where j∗ is a connecting homomorphism.

Proof. For a scheme X, let ζ(X,=) be the total complex of Connes double complex

[9]. We embed the complex ζ(X,=) in the tricomplex D(X,=) (see[4]), passing to

the total complexes associated with and, we get the following short exact sequence

0 → Totζ(X,=) → Tot αD(X,=) → Tot−αD(X,=)[−4] → 0 (38)
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This sequence induces the following long exact sequence which relates the cyclic

and dihedral cohomology groups:

... → −αHDn(X,=) i∗→ HCn(X,=)
j∗→ αHDn(X,=) → αHDn−1(X,=) → ...

(39)

when 2 is invertible in the ground ring k we get the following exact sequence

0 → −αHDn(X,=) → HCn(X,=) → αHDn(X,=) → 0. (40)

¤

5. Cohomology groups

In this part we are concerned with the dihedral cohomology groups. It’s nec-

essary to translate the definitions and results of a pervious discussion in the co-

homological framework because there is an interesting pairing between homology

and cohomology groups. It’s well known, in cyclic cohomology case, that if A is

a unital associated k − algebra and A∗ = Hom(A, k), then its cochain complex is

C∗(A) = Hom(A⊗(n+1), k). The dualizing of the Connes bicomplex CC∗(A) gives

a bicomplex of cochains CC∗∗(A) and its homology gives the cyclic cohomology

group. The dihedral cohomology group can be defined in the same manner. Achive

this, we replace the category ∆Dop by ∆D in the Definitions 1.6, 1.7 and 2.2, then

we get the dihedral cohomology group HDn(M) = Extnk[∆D](M, kD), n ≥ 0, where

KD is trivial dihedral k−module. Also the dihedral cohomology of schemes X over

a commutative ring k is the hypercohomology of the total complex of the tricomplex

of sheaves (αCDn(θX , δi)) : αHD∗(X) = H∗(Tot(CDn(θx), X)) , where

Tot(CDn(θx)) =
θn

X

Im(1−R) + Im(1− T )
, n = 0, 1, 2, ..., α = ±1. (41)

The Theorem 3.2 of the Mayer-Vietoris sequence for dihedral homology and The-

orem 4.1 of the relation between cyclic and dihedral homology of schemes can be

translated to cohomology case.

Similar arguments as those used in the proof of Theorem 3.2 give the following.

Theorem 5.1. [6] If X = X1 ∪ X2 where X1and X2 are open subsets of scheme

X and the diagram

X → X1

↑ ↑
X2 → X1 ∩X2

(42)
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is commutative, then there exist the following long exact sequence:

... → αHDn(X1∪X2)
I∗→ HDn(X1)⊕HDn(X2)

J∗→ HDn(X1∩X2)
E→ HDn+1(X1∪X2) → . . .

(43)

where I∗ = (I∗1 , I∗2 ), J∗ = (J∗1 , J∗2 ), E is a connecting homomorphism.

Similar arguments as those used in the proof of Theorem 4.1 give the following.

Theorem 5.2. Let = be a sheaf of θX-modules, and let X be a scheme over unital

ring k with involution. Then the relation between the cyclic and dihedral cohomology

groups is given by:

... → −αHDn(X,=) i∗→ HCn(X,=)
j∗→ αHDn(X,=) → αHDn+1(X,=) → ...

(44)

where j∗ is a connecting homomorphism.

Remark 5.3. When 2 is invertible in the ground ring k we get the following exact

sequence

0 → −αHDn(X,=) → HCn(X,=) → αHDn(X,=) → 0.
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