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1. Introduction

All rings considered below are commutative with 1 6= 0; all ring extensions,

subrings and subalgebras are unital. For us, a chain will mean a collection of certain

types of sets that are pairwise comparable with respect to inclusion. Consider a

ring extension R ⊂ T . Our interest here is in the possible cardinality of chains

of R-subalgebras of T , i.e., of rings lying between R and T . In case T is finitely

generated as an R-module, Theorem 2.1 presents a sufficient condition for there to

exist a denumerable chain of (pairwise distinct) R-subalgebras of T . In another vein,

Sections 3 and 4 culminate with a pair of theorems whose effect is to characterize

the rings R such that each chain of subrings of R is finite. We next comment on

the pedigree of these results and the organization of Sections 2–4.

The main motivation for Section 2 is the following recent result of the first-

named author [5, Theorem 2.1]: if R ⊂ T are (commutative integral) domains with

corresponding quotient fields K ⊂ L and R 6= K, then there exists a denumerable

chain of R-subalgebras of T . (As usual, ⊂ denotes proper inclusion.) The above

“denumerable” conclusion is best possible, as it was shown in [5, Remark 2.2 (a)]
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that the maximal order of any quadratic algebraic number field has only denu-

merably many subrings. A partial generalization of [5, Theorem 2.1] to rings with

nontrivial zero-divisors was given in [5, Proposition 2.3] and is addressed further

in Remark 2.3 below. After a number of reductions, the proof of [5, Theorem 2.1]

reduced to the case where T = R[α] for some element α integral over R and, thus,

to a case where T was a certain type of finitely generated R-module. In this spirit,

Theorem 2.1 shows that if R ⊆ T are rings (not necessarily domains) such that T

is a finitely generated R-module, R is not a total quotient ring and the conductor

(R : T ) := {t ∈ T | tT ⊆ R} is 0, then there exists a denumerable chain of R-

subalgebras of T . Corollary 2.2 gives a reformulation of Theorem 2.1 in which the

hypothesis of a vanishing conductor is absent. Remark 2.3 shows that Theorem

2.1 (even when buttressed by Corollary 2.2) neither implies, nor is implied by, [5,

Theorem 2.1] (even when buttressed by [5, Proposition 2.3]).

Given a ring extension R ⊆ T , one may consider the property that each chain

of R-subalgebras of T is finite. This property was considered for certain domains

(R and) T in [2] and was characterized in [11, Theorem 2.14] in case R is a domain

with quotient field T . In Sections 3 and 4, we consider this property in case R

is the prime (sub)ring of T (without requiring that these rings be domains). The

following definitions will facilitate matters.

Let A ⊆ B be a ring extension, and let R be a ring with prime subring F .

As in [1], we say that the ring extension A ⊆ B has FIP (for the “finitely many

intermediate rings property”) if there are only finitely many rings C such that

A ⊆ C ⊆ B. As in [8], we say that R has FSP (for the “finitely many subrings

property”) if F ⊆ R has FIP, i.e., if R has only finitely many (unital) subrings. By

analogy, we next introduce two additional definitions. We say that A ⊆ B has FCP

(for the “finite chains property”) if each chain of A-subalgebras of B is finite. Also,

we say that R has FCP if F ⊆ R has FCP, i.e., if each chain of (unital) subrings

of R is finite. We trust that the above definitions will not lead to any ambiguity,

as it should always be clear whether “FSP” is being considered for an extension of

rings or for an individual ring.

It is clear that if a ring extension A ⊆ B has FIP, then A ⊆ B has FCP. Conse-

quently, if a ring R has FSP, then R has FCP. The main result of Sections 3 and 4

is that the converse is true: see Theorems 4.8 and 4.9. This effectively determines

the rings that have FCP, as the rings that have FSP have been determined earlier,

by combining [8, Theorem 3.20] with [7, Theorem 3.12]. This combining of results

was necessary, as the determination of the rings having FSP was first accomplished
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in case R is a singly generated ring. The same pattern occurs in determining the

rings with FSP in Section 4, with Theorem 4.8 handling the classification for singly

generated rings and Theorem 4.9 reducing matters to the singly generated case.

Just as the earlier study of FSP was able to proceed more generally with the aid of

some FIP-theoretic results for extensions whose base rings need not be prime rings,

our work that culminates with a classification of certain rings in Theorems 4.8 and

4.9 proceeds with the help of more general studies of the ring extensions that have

FSP. For the sake of clarity, that work on ring extensions is isolated in Section 3.

2. A sufficient condition for an infinite chain of subalgebras

We begin with the following companion for [5, Theorem 2.1].

Theorem 2.1. Let R ⊆ T be a ring extension such that T is finitely generated as

an R-module. Suppose also that some nonunit of R is a non-zero-divisor of R and

that (R : T ) = 0. Then there exists a denumerable chain of R-subalgebras of T .

Proof. Let x be a nonunit of R which is a non-zero-divisor of R, and let {t1, . . . , tn}
be a finite generating set of T as an R-module. Without loss of generality, t1 = 1.

For each positive integer k, set Ek := R + xkT . Then C := {Ek} is a descending

chain of R-subalgebras of T , i.e., of subrings of T that contain R. It is enough to

prove that C does not terminate.

Suppose, on the contrary, that Ep = Ep+1 for some positive integer p. For each

integer i ≥ 2, we have xpti ∈ Ep = Ep+1, so that xpti = ai +
∑n

j=2 xp+1aijtj , for

some ai, aij ∈ R. Then t2, . . . , tn are solutions of the following linear system (S) of

n− 1 equations in the n− 1 unknowns yj :
n∑

j=2

(xpδij − xp+1aij)yj = ai, i = 2, . . . , n,

where δij denotes the Kronecker delta.

Let D be the determinant of the coefficient matrix M of the linear system (S),

and let Dj be the determinant of the matrix obtained by replacing the entries of the

(j − 1)th column of M with the corresponding entries from the right-hand sides of

the equations in the system (S). Of course, D, Dj ∈ R for all j. Now, by Cramer’s

Rule, Dtj = Dj ∈ R for each j ≥ 2. But Dt1 = D · 1 = D ∈ R as well. Thus,

DT = D
∑n

i=1 Rti ⊆ R; i.e., D ∈ (R : T ) = 0.

Let A be the (n − 1) × (n − 1) matrix obtained from the entries aij (where

i, j = 2, . . . , n). Let I denote the (n − 1) × (n − 1) identity matrix. By factoring

x from each row of M and then expanding the determinant, we see that D =
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xp(n−1) det(I − xA). As the hypotheses ensure that n > 1 and we have seen that

D = 0, the hypothesis that x is a non-zero-divisor in R implies that det(I−xA) = 0.

Note that det(I − xA) = 1 + xr for some r ∈ R, and so 1 + xr = 0. As x is a

nonunit of R, we have found the desired contradiction. ¤

Although the hypothesis in Theorem 2.1 that “some nonunit of R is a non-zero-

divisor of R” is easy to use, it may be of interest to note that this hypothesis is

equivalent to “R is not a total quotient ring”.

We next give a reformulation/generalization of Theorem 2.1.

Corollary 2.2. Let R ⊆ T be a ring extension such that T = S +(R : T ) for some

R-subalgebra S of T such that S is finitely generated as an R-module. Suppose also

that some nonunit of R/(R : T ) is a non-zero-divisor of R/(R : T ). Then there

exists a denumerable chain of R-subalgebras of T .

Proof. Consider the ring extension A := R/(R : T ) ⊆ T/(R : T ) =: B. Since

(R : T ) = (R : S), we have that B = S/(R : S) is finitely generated as an A-module.

Since (A : B) = 0, Theorem 2.1 yields a denumerable chain of A-subalgebras of B.

The assertion then follows via a standard homomorphism theorem. ¤

The hypothesis in Corollary 2.2 that “T = S+(R : T ) for some R-subalgebra S of

T such that S is finitely generated as an R-module” is easily seen to be equivalent to

“T/(R : T ) is finitely generated as an R/(R : T )-module”. In view of the pullback

description of R = T×T/(R:T ) R/(R : T ), the above argument involving “a standard

homomorphism theorem” really establishes the following result. If R ⊆ T are rings

with a common ideal I, then the maximal cardinality of a chain of R-subalgebras

of T is the same as the maximal cardinality of a chain of R/(R : T )-subalgebras

of T/(R : T ). Similar reasoning has occurred earlier (cf. [6, Proposition II.4]) and

will occur again (cf. Proposition 3.2).

Remark 2.3. (a) Although Corollary 2.2 followed easily from Theorem 2.1 by

factoring out the conductor, it should be noted that Corollary 2.2 is stronger than

Theorem 2.1. To see this, let X be an analytic indeterminate over the field Q(i)

of Gaussian numbers. Note that it follows from Corollary 2.2 that if we take

R := Z+ XQ(i)[[X]] ⊂ Z[i] + XQ(i)[[X]] =: T , then there is a denumerable chain

of R-algebras of T . Indeed, by the above comments, one need only verify that there

is a denumerable chain of rings between R/(R : T ) ∼= Z and T/(R : T ) ∼= Z[i], and

this, in turn, is a consequence of [5, Theorem 2.1]. However, this conclusion cannot

be drawn from Theorem 2.1 since (R : T ) = XQ(i)[[X]] 6= 0.
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(b) Let R := Z and take T to be the ring of algebraic integers. Then [5, Theorem

2.1] yields that there is a denumerable chain of R-algebras of T . However, this

conclusion cannot be drawn from Theorem 2.1 (or from Corollary 2.2) since T is

not a finitely generated R-module. For a non-integral example to which [5, Theorem

2.1] applies (but which, of course, cannot be inferred from Theorem 2.1 or Corollary

2.2), consider R := Z ⊂ Z[i](1−i)Z[i] =: T .

(c) It is easy to see that if R ⊂ T are domains to which Theorem 2.1 can be

applied, then [5, Theorem 2.1] also applies to R ⊂ T . However, Theorem 2.1 does

have applications which are not consequences of [5]. To fabricate an example (nec-

essarily involving nontrivial zero-divisors), we first recall the following statement

of [5, Proposition 2.3]. Let R ⊂ T be an integral ring extension such that no

non-zero-divisor of R becomes a zero-divisor of T , the corresponding total quotient

rings K ⊂ L are distinct, T ∩K = R 6= K, (R, M) is quasilocal, and M contains

a non-zero-divisor of R; then there is a denumerable chain of R-subalgebras of T .

Now, let E be any singly generated ring of characteristic 0 which is finitely gener-

ated as a module over Z, is not a domain, and satisfies (Z : E) = 0. By [7, Theorem

3.12], E does not satisfy FSP; i.e., E has infinitely many subrings. More is true,

for Theorem 2.1 implies that there is a denumerable chain of rings between Z and

E. However, this conclusion cannot be drawn from [5] (i.e., from [5, Proposition

2.3]) since the base ring Z is not quasilocal. Finally, if one seeks to illustrate the

same phenomenon for a ring extension whose base ring is not a domain, it suffices

to consider Z× Z ⊂ E × E.

(d) One upshot of (b) and (c) is that the results of this section neither imply, nor

are implied by, the results in [5]. It seems appropriate to end this section by pointing

out, as in [5, Remark 2.2 (a)], that all these results do need the hypothesis that the

base ring R is not a total quotient ring, the point being that a finite-dimensional

field extension cannot have an infinite chain of intermediate rings (fields).

3. Some properties of the ring extensions that have FCP

This section collects some results on ring extensions having FCP. Most of this

work will be applied in Section 4 in the characterization of the rings that have FCP.

We begin with some facts about subalgebras and rings of fractions.

Proposition 3.1. Let R ⊆ T be a ring extension. Then:

(a) If the ring extension R ⊆ T has FCP, then R ⊆ A has FCP and A ⊆ T has

FCP for all R-subalgebras A of T .

(b) If R ⊆ T has FCP, then RS ⊆ TS has FCP for all multiplicatively closed
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subsets S of R.

(c) If, for each maximal ideal M of R, the ring extension RM ⊆ TM := TR\M
has FCP and RM = TM canonically for all but finitely many M , then R ⊆ T

satisfies FCP.

Proof. (a) It is clear.

(b) The assertion is an easy consequence of the following fact, which was shown

in the proof of [1, Corollary 2.3(a)]. The assignment E 7→ E ∩ T gives an order-

preserving injection from the set of RS-subalgebras of TS to the set of R-subalgebras

of T .

(c) Let M range over the set of maximal ideals of R. We will use the following

facts, which were established in the proof of [7, Lemma 3.7]. Consider the canonical

ring homomorphism i : T → ∏
TM . Then i is an injection and, if D is any R-

subalgebra of T , then D = i−1(i(D)) and i(D) = i(T ) ∩∏
DM .

Let C = {Dj}j∈J be any chain of R-subalgebras of T . For each M , it follows from

(b) that the induced chain CM := {(Dj)M}j∈J of RM -subalgebras of TM is finite.

By hypothesis, there are only finitely many maximal ideals N of R such that RN 6=
TN ; denote these finitely many N by M1, . . . , Mr. Thus, if M 6∈ {M1, . . . ,Mr} and

j ∈ J , we have that RM ⊆ (Dj)M ⊆ TM = RM , so that CM is the singleton set

{RM}. For each k = 1, . . . , r, there exists a finite subchain

D(1Mk
) ⊆ · · · ⊆ D(sMk

)

of C such that CMk
= {(D(t))Mk

| t = 1Mk
, . . . , sMk

}. Therefore (as M runs though

all the maximal ideals of R), the set {∏ DM | D ∈ C} is finite and so, by the facts

recalled above from [7], the set of all possible i−1(i(T ) ∩∏
DM ) = D ∈ C is finite,

as required. ¤

In the spirit of the comments preceding Remark 2.3, we turn next to a fact about

pullbacks.

Proposition 3.2. Let R ⊆ T be a ring extension and I a common ideal of R and

T . Then R ⊆ T has FCP if and only if R/I ⊆ T/I has FCP.

Proof. Applying [6, Lemma II.3] to the pullback R = T ×T/I R/I, we have an

order-preserving and order-reflecting bijection between the set of all R-subalgebras

of T and the set of all R/I-subalgebras of T/I. The assertion now follows easily. ¤

We next collect some basic facts about algebra-finiteness and algebraicity.
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Proposition 3.3. Let R be a ring with prime ring F and let T be a ring extension

of R. Then:

(a) If R ⊆ T has FIP, then R ⊆ T has FCP.

(b) If R has FSP, then R has FCP.

(c) If R ⊆ T has FCP, then there is a finite subset {t1, . . . , tn} of T such that

T = R[t1, . . . , tn], R ⊆ R[ti] has FCP for each i = 1, . . . , n, and each ti is algebraic

over R.

(d) If R has FCP, then there is a finite subset {t1, . . . , tn} of R such that R =

F [t1, . . . , tn], F [ti] has FCP for each i = 1, . . . , n, and each ti is algebraic over F .

Proof. (a) and (b) are clear (and were already noted in the Introduction).

(c) By the proof of [1, Proposition 2.2], we see that if T were not algebra-finite

over R, then there would be a(n infinite) strictly ascending chain of R-subalgebras

of T , contrary to the hypothesis that R ⊆ T has FCP. Thus, T = R[t1, . . . , tn] for

some finite subset {t1, . . . , tn} of T . By Proposition 3.1 (a), each R ⊆ R[ti] has

FCP. Finally, each ti must be algebraic over R, for if some ti were transcendental

over R, we could build the (infinite) strictly descending chain {R[t2
k

i ]}k of subrings

of R[ti], contrary to the hypothesis that R ⊆ T has FCP.

(d) Apply (c) with (F,R) := (R, T ). ¤

We show next that the algebraicity conclusion established in Proposition 3.3 (c)

can be improved upon.

Proposition 3.4. Let R ⊆ T be a ring extension that has FCP. Then each α ∈ T

is the root of a polynomial in R[X] with a unit coefficient.

Proof. Consider the descending chain of rings

R[α] ⊇ R[α2] ⊇ . . . ⊇ R[α2k

] ⊇ R[α2k+1
] ⊇ . . . .

Since R ⊆ T has FCP, R[α2n

] = R[α2n+1
] for some positive integer n. In particular,

α2n ∈ R[α2n+1
], from which the assertion is evident. ¤

Proposition 3.5. Let R be a finite ring and let T be a ring extension of R. Then

R ⊆ T has FCP if and only if T is a finite ring.

Proof. The “if” assertion is clear. Conversely, suppose that R ⊆ T has FCP. We

will show that T is finite by adapting the proof of [1, Proposition 3.4 (c)]. Since

R has Krull dimension 0, combining Proposition 3.4 with [1, Proposition 3.4 (a)]

shows that T is integral over R. In conjunction with the algebra-finiteness that

was established in Proposition 3.3 (c), this implies that T is finitely generated as

an R-module. Since R is finite, T must also be finite, as desired. ¤
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We close the section with a technical result that is of some interest.

Proposition 3.6. Let R be a residually finite ring, and let R ⊆ T be a ring

extension which is not integral. Suppose also that T = R[t] for some element t and

that at = 0 for some nonzero element a ∈ R. Then the ring extension R ⊆ R[t]

does not have FCP.

Proof. We modify the proof of [7, Proposition 3.1]. Note that a is an element of

the conductor I := (R : T ), and so I 6= {0}. Moreover, a is a nonunit of R and,

indeed, I 6= R since T 6= R by the non-integrality assumption. By the “residually

finite” hypothesis, R/I is a finite ring; it is nonzero since I 6= R. Moreover, we have

T/I = (R/I)[ t ], where t := t + I ∈ T/I. Since t is not integral over R, it follows

easily that t is not integral over R/I. Thus, T/I cannot be finitely generated as

an (R/I)-module. In particular, T/I is not a finite ring. Thus, by Proposition 3.5,

the ring extension R/I ⊆ T/I does not have FCP. Therefore, by Proposition 3.2,

neither does R ⊆ T . ¤

4. Characterization of the rings that have FCP

Let R be a ring with prime ring F . With an eye toward eventually using Propo-

sition 3.3 (d) as part of a characterization of the rings that have FCP, we begin

by characterizing the singly generated rings of the form F [t] which have FCP. To

that end, we will adapt the approach that was used in [7] to study the singly gen-

erated rings which have FSP. The case of positive characteristic will be dispatched

in Proposition 4.1. As usual, if n is a positive integer, we will write Zn instead of

Z/nZ; and we will let char(A) denote the characteristic of a ring A.

Proposition 4.1. Let R be a ring R of positive characteristic. Then R has FCP

if and only if R is a finite ring.

Proof. The “if” assertion is trivial. Conversely, suppose that R has FCP. We will

show that R is finite. Without loss of generality, R 6= 0. Let n := char(R). Then

the prime ring of R is F ∼= Zn, which is finite. As R has FCP, the ring extension

F ⊆ R has FCP, and so it follows from Proposition 3.5 that R is finite. ¤

We turn next to the case of characteristic 0, beginning with the case of domains.

As usual, by an overring of a domain D, we mean any D-subalgebra of the quotient

field of D.

Proposition 4.2. Let R be a domain of characteristic 0. Then R has FCP if and

only if R ∼= Za for some positive integer a.
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Proof. If R ∼= Za, then R has FSP by [6, Proposition V.3], and so the assertion

follows from Proposition 3.3 (b). Conversely, assume that R has FCP. Pick a

(necessarily finite) maximal chain Z = R0 ⊂ R1 ⊂ · · · ⊂ Rm = R of subrings of R.

Each Ri, being a subring of R, must be a domain; and, by the maximality of the

above chain, Ri ⊂ Ri+1 is a minimal ring extension, for i = 0, . . . , m − 1. Using

the properties of minimal ring extensions for domains given in [12, Proposition 3.9]

(cf. also [9, Theorem 2.7] and [13, page 1738]), we see that each Ri+1 is isomorphic

to an overring of Ri. Thus, R is isomorphic to an overring of Z. Hence, by [6,

Lemma V.2], R ∼= ZS , where S is some saturated multiplicatively closed set which

is generated by a uniquely determined subset S′ of the set P of (positive) prime

numbers. But the order-preserving bijection between the set of subsets of P and

the set of overrings of Z [6, Lemma V.2] shows that S′ is finite (for, otherwise,

one could build an infinite strictly ascending chain of subrings of R, contrary to

the assumption that R has FCP). Hence, by the proof of [6, Lemma V.3], R ∼= Za

where a is the product of the elements of S′. ¤

We turn next to the case of non-domains. This breaks naturally into three

subcases.

Proposition 4.3. Let R be a ring extension of Z which is module-finite over Z but

is not a domain. Then R has FCP if and only if (Z : R) 6= 0.

Proof. By [6, Theorem V.4], (Z : R) 6= 0 if and only if R has FSP. In view of

Proposition 3.3 (b), it remains only to show that if R has FCP, then (Z : R) 6= 0. As

some (in fact, every nonzero) nonunit of Z is a non-zero-divisor of Z, the assertion

follows from Theorem 2.1. (An alternate proof of this assertion can be found

by suitably modifying the last four paragraphs of the FIP-theoretic proof of [6,

Proposition V.4].) ¤

Proposition 4.4. Let t be an element of some ring extension of Z such that t is

algebraic over Z but not integral over Z. Suppose also that Z[t] is not a domain.

If the algebraicity polynomial of least degree for t over Z has degree at least 2, then

Z ⊆ Z[t] does not have FCP.

Proof. We will mimic the proof of [6, Corollary V.5]. Consider R := Z[t] and

I := (Z : R). Assume first that I 6= 0. Then Z/I is a finite ring and R/I = (Z/I)[t̄],

where t̄ := t + I ∈ T/I. Moreover, t̄ is not integral over Z/I since t is not integral

over Z. Thus R/I is not a finite ring, and so Proposition 4.1 shows that Z/I ⊆ R/I

does not have FCP. Therefore, by Proposition 3.2, Z ⊆ R does not have FCP.
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In the remaining case, where I = 0, we can again modify the proof from [6,

Corollary V.5], by replacing [6, Theorem V.4] with Proposition 4.3 and [6, Propo-

sition V.3] with Proposition 4.2. In this way, we find a nonzero integer b such that

the ring extension Z ⊆ Z[bt] does not have FCP. Thus, by Proposition 3.1 (a), R

does not have FCP, to complete the proof. ¤

The last subcase for non-domains concerns a ring extension Z ⊂ Z[t] such that t

is algebraic but not integral over Z, with at = b, for some nonzero integers a, b and

such that Z[t] is not a domain. For Propositions 4.5–4.7, we impose the following

riding hypotheses and notation introduced in [7] (just prior to [7, Lemma 3.2]):

Z ⊆ R := Z[t] is a non-integral ring extension; the element t satisfies at = b, where

a ≥ 2 is minimal; b ≥ 1; the greatest common divisor of a and b is d := (a, b);

α := a
d ; β := b

d ; and ϕ : Z[X] → R is the ring homomorphism sending X to t.

Proposition 4.5. If d := (a, b) = 1, then R := Z[t] has FCP and R is a domain.

Proof. By [7, Theorem 3.4], R has FSP and R is a domain. The “FCP” conclusion

follows from Proposition 3.3 (b). ¤

Proposition 4.6. If d := (a, b) > 1 and αt is not integral over Z, then R := Z[t]

does not have FCP.

Proof. By Proposition 3.1 (a), it is enough to show that the ring S := Z[αt] does

not have FCP. Consider the conductor I := (Z : S). By the proof of [7, Proposition

3.5], we get that d ∈ I, and so Z/I is a finite nonzero ring. Moreover, S/I cannot

be finitely generated as a (Z/I)-module, and so S/I is not a finite ring. Hence, by

Proposition 4.1, S/I does not have FCP; i.e., the ring extension Z/I ⊆ S/I does

not have FCP. Therefore, by Proposition 3.2, Z ⊆ S does not have FCP; i.e., S

does not have FCP. ¤

We can now provide the last key step.

Proposition 4.7. In addition to the riding hypotheses and notation, assume also

that αt is integral over Z. Then R := Z[t] has FCP if and only if there does not

exist a prime number p such that ker(ϕ) ⊆ pZ[X].

Proof. Assume first that there does not exist a prime number p such that ker(ϕ) ⊆
pZ[X]. By [7, Theorem 3.8], R has FSP. Thus, R has FCP by Proposition 3.3 (b).

Conversely, assume that R has FCP. Observe that {Z[t2
n

] | n = 1, 2, . . . } is a

descending chain of subrings of R. As R has FCP, this chain must terminate. Thus,

there exist positive integers k < m such that Z[t2
k

] = Z[t2
m

]. As t2
k ∈ Z[t2

m

], we
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can write t2
k

=
∑n

i=0 di(t2
m

)i, where each di ∈ Z (and n is a non-negative integer).

Hence

0 = d0 − t2
k

+ d1t
2m

+ d2t
2·2m

+ · · ·+ dntn·2
m

,

and so h := d0−X2k

+d1X
2m

+d2X
2·2m

+ · · ·+dnXn·2m ∈ ker(ϕ). Since h visibly

has a unit coefficient, there can be no prime number p such that ker(ϕ) ⊆ pZ[X]. ¤

We proceed to give our two main results. Taken together, they serve to char-

acterize the rings that have FCP. We begin with the characterization for singly

generated rings. Recall that we define a ring to be singly generated if it is a (nec-

essarily commutative unital) ring generated by some set of the form {0, 1, s}.

Theorem 4.8. Let R be a singly generated ring. Then the following conditions are

equivalent:

(1) R has FCP.

(2) R has FSP.

(3) One of the following four conditions holds:

(a) R is a finite ring;

(b) R ∼= Za for some positive integer a;

(c) R is a module-finite ring extension of Z which is not a domain and the

conductor (Z : R) is nonzero;

(d) R = Z[t] ⊃ Z is not integral over Z, R is not a domain, there exist

integers a, b ≥ 2 such that at = b, and the greatest common divisor d := (a, b)

of the minimal such a and the corresponding b satisfies the following conditions:

d > 1, a
(a,b) t is integral over Z, and there does not exist a prime number p such

that ker(ϕ) ⊆ pZ[X], where ϕ is the ring homomorphism Z[X] → R sending X to

t.

Proof. The equivalence (2)⇔ (3) is a restatement of [7, Theorem 3.12]; and Propo-

sition 3.3 (b) gives (2) ⇒ (1). It remains only to prove that (1) ⇒ (3).

Assume that R has FCP. If char(R)> 0, then Proposition 4.1 gives (3)(a). If

R is a domain of characteristic 0, then Proposition 4.2 gives (3)(b). If R is not a

domain, is of characteristic 0 and is integral over Z, then R is a module-finite ring

extension of Z (since R is integral over Z and singly generated), and so Proposition

4.3 gives (3)(c). The last case arises when R is not a domain, is of characteristic

0 and is not integral over Z. By hypothesis, R = Z[t] for some element t, and by

Proposition 3.4, t must be algebraic over Z. Then Propositions 4.4, 4.5, 4.6 and 4.7

combine to give (3)(d). ¤
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We can now reduce matters to the singly generated case (which was handled in

Theorem 4.8) and, in particular, show that the FCP and FSP properties of rings

are equivalent.

Theorem 4.9. Let R be a ring with prime ring F . Then the following conditions

are equivalent:

(1) R has FCP;

(2) R has FSP;

(3) R is a finite-type F -algebra and whenever {t1, . . . , tn} is a finite set such that

R = F [t1, . . . , tn], then F [ti] has FSP for each i;

(4) R is a finite-type F -algebra and whenever {t1, . . . , tn} is a finite set such that

R = F [t1, . . . , tn], then F [ti] has FCP for each i;

(5) Either (a) R is a finite-type ring extension of Z and whenever {t1, . . . , tn} is

a finite set such that R = Z[t1, . . . , tn], then Z[ti] has FCP for each i or (b) R is

finite.

(6) Either (λ) R is a ring extension of Z such that there exists a finite set

{t1, . . . , tn} for which R = Z[t1, . . . , tn] and Z[ti] has FCP for each i or (µ) R is

finite.

Proof. (1) ⇒ (4) Rework the proof of Proposition 3.3 (d).

(4) ⇔ (3) Apply Theorem 4.8.

(3) ⇔ (2) This equivalence is part of [8, Theorem 3.20].

(2) ⇒ (1) Apply Proposition 3.3 (b).

Since we have seen that (1) ⇔ (2), the equivalence of (5) and (6) with the other

conditions now follows from the corresponding equivalences that were established

for the FSP property in [8, Theorem 3.20]. ¤

In closing, we answer a question that may arise because of the phrase “maximal

cardinality” that appears in the title of this work. If a ring R is such that each chain

of subrings of R is finite, must there be a finite upper bound on the cardinality of

all such chains? The answer is in the affirmative, for that is precisely the content of

the implication (1) ⇒ (2) in Theorem 4.9. One such upper bound is the cardinality

of the set of subrings of R. This is the least upper bound in case the subrings of R

are linearly ordered by inclusion, a situation which has been studied in [3], [4], [10].
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