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Abstract. We give an improved categorical version of the Weak Krull-Schmidt

Theorem for serial modules proved by the second author in [10]. The main

improvement consists in the fact that it applies not only to serial modules,

but also, more generally, to arbitrary direct summands of serial modules. The

technique is based on categorical methods, essentially representing the category

add(SUsr) of direct summands of serial modules into factors of the category

add(SUsr) modulo suitable ideals, one for each uniserial module of type 1 and

two for each uniserial module of type 2. Our categorical technique can be

applied to further broader settings.

Mathematics Subject Classification (2000): 16D70, 16D90

Keywords: Uniserial modules, serial modules, direct-sum decompositions

1. Introduction

Recall that a module is uniserial if its lattice of submodules is linearly ordered

by inclusion, and is serial if it is a direct sum of uniserial submodules. In this

paper we prove that direct summands of serial modules are completely described

up to isomorphism by a family of cardinal numbers (Theorem 7.4). These cardinal

numbers are the dimensions of suitable vector spaces over division rings that are

homomorphic images of endomorphism rings of uniserial modules. The technique

we use to prove our result is based on factoring the category of all serial mod-

ules modulo suitable ideals. Our result is rather surprising, because there exist

direct summands of serial modules which are not direct sums of indecomposable

submodules [13].

Recall that serial modules decompose as a direct sum of uniserial modules in

different ways, and the uniqueness of direct sum decompositions is completely de-

scribed up to isomorphism by the Weak Krull-Schmidt Theorem proved by the

second author in [10, Theorem 2.6]. If V and U are arbitrary modules over a
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ring R, we write [V ]m = [U ]m, and say that V and U are in the same monogeny

class, if there exist a monomorpism V → U and a monomorpism U → V , and write

[V ]e = [U ]e, and say that V and U are in the same epigeny class, if there exist an

epimorphism V → U and an epimorphism U → V . According to the Weak Krull-

Schmidt Theorem, if {Ui | i ∈ I } and {Vj | j ∈ J } are two families of non-zero

uniserial modules, I ′ is the set of all indices i ∈ I with Ui quasi-small and J ′ is the

set of all j ∈ J with Vj quasi-small, then ⊕i∈IUi
∼= ⊕j∈JVj if and only if there exist

a bijection σ : I → J and a bijection τ : I ′ → J ′ such that [Ui]m = [Vσ(i)]m for every

i ∈ I and [Ui]e = [Vτ(i)]e for every i ∈ I ′. Equivalently, a serial module ⊕i∈IUi

is completely determined up to isomorphism by a family of cardinal numbers, one

for each monogeny class [U ]m of non-zero uniserial modules U (the cardinality of

the set of all indices i ∈ I with [Ui]m = [U ]m) and one for each epigeny class [U ]e
of non-zero quasi-small uniserial modules U (the cardinality of the set of all i ∈ I

with [Ui]e = [U ]e). In Theorem 7.4 we extend this Weak Krull-Schmidt Theorem

from serial modules to arbitrary direct summands of serial modules.

The technique we make use of to prove our Theorem 7.4 is essentially the fol-

lowing. For a fixed ring R, let add(SUsr) be the full subcategory of Mod-R whose

objects are all direct summands of serial modules. Recall that if UR is a non-zero

uniserial module, then EndR(U) has two important ideals — one given by non-

injective endomorphisms, and one given by non-surjective endomorphisms. If these

two ideals are comparable with respect to inclusion, EndR(U) is a local ring and

its Jacobson radical is the union of these ideals. In this case we say that U is of

type 1. If these two ideals are not comparable with respect to inclusion, then they

are the only (left, right, two-sided) maximal ideals of EndR(U) and we say that U

is of type 2 (see [2, Theorem 9.1] for details). Fix a non-zero uniserial module UR,

and fix a maximal ideal I of EndR(U). Let I be the ideal of the category add(SUsr)

consisting of all the morphisms f : X → Y such that βfα ∈ I for every α : U → X

and every β : Y → U . We call I the ideal of add(SUsr) associated to I. Under

mild hypotheses (in particular, a property (*) considered in Section 3), the factor

category add(SUsr)/I turns out to be equivalent to the category Mod-EndR(U)/I

of all right vector spaces over the division ring EndR(U)/I (Lemma 3.1). Let

FI : add(SUsr) → add(SUsr)/I ∼= Mod-EndR(U)/I denote the canonical functor.

Then the family of all cardinal numbers that describe up to isomorphism all direct

summands MR of serial modules consists essentially of all the dimensions of the

EndR(U)/I-vector spaces FI(MR), where I ranges in the set of all maximal ideals

of all the endomorphism rings EndR(U) of uniserial right R-modules. For further
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details on the categorical technique employed, which seems to be very general and

should find applications in broader settings, see Section 2.

Assume we have a countable direct sum M = ⊕i∈NUi of uniserial modules Ui. Let

M (ℵ0) be the direct sum of countably many copies of M , and V (M (ℵ0)) be the ad-

ditive monoid of isomorphism classes of direct summands A of M (ℵ0). Here the ad-

dition is induced by direct sum. The cardinal invariants i-dimUi ,m-dimUi , e-dimUi

of Corollary 7.3 are mappings V (M (ℵ0)) → N∗0, where N∗0 = N0 ∪{+∞}. Hence, by

Corollary 7.3, they induce an injective morphism of monoids V (M (ℵ0)) → (N∗0)ℵ0 .

In particular, the cardinality of V (M (ℵ0)) is ≤ 2ℵ0 , that is, there are at most 2ℵ0

direct summands of M (ℵ0) up to isomorphism.

The remaining problem in classifying direct summands of serial modules is now

understanding which sequences of cardinals may occur as cardinal invariants of

these modules, and this problem is still open.

In this paper, rings are associative rings with identity and modules are unital

right modules.

2. Factoring the category modulo an ideal of the endomorphism ring of

an object

In the following, A is always a full subcategory of Mod-R and Ob(A) is its class of

objects. An ideal I of A is a subgroup I(X, Y ) of A(X,Y ) for every pair of objects

X, Y ∈ Ob(A) such that for every morphism ϕ : Z → X, ψ : X → Y and ω : Y → W

with ψ ∈ I(X,Y ) one has that ωψϕ ∈ I(Z,W ) (an ideal is a subfunctor of the two

variable functor A(−,−), [8, p. 18]). The factor category A/I of A modulo the

ideal I has the same objects as A, and, for objects X, Y ∈ Ob(A) = Ob(A/I), the

morphisms X → Y in the factor category A/I are the cosets of A(X,Y ) modulo

I(X, Y ), that is, they are the elements of the abelian group A(X,Y )/I(X, Y ).

Let UR be a non-zero module, and fix an ideal I of EndR(U). Let I be the ideal

of A defined as follows: a morphism f : X → Y is in I if and only if βfα ∈ I for

every α : U → X and every β : Y → U . We will call I the ideal of A associated

to I. If U is an object of A, then I is the greatest among the ideals I ′ of A with

I ′(U,U) ⊆ I, and in this case, as it is easily seen, I(U,U) = I. Let F : A → A/I
denote the canonical functor.

Lemma 2.1. Suppose that U is an object of A. Let I be a proper ideal of EndR(U),

I be the ideal of A associated to I, and F : A → A/I be the canonical functor. Then

F (U) is a non-zero object of A/I. Moreover, if I is completely prime in EndR(U),

then F (U) is an indecomposable object of A/I.
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Proof. From 1U 6∈ I, it follows that F (1U ) 6= 0 inA/I. Assume I completely prime

in EndR(U). Then I is a proper ideal, so that F (U) 6= 0. If F (U) ∼= X ⊕Y in A/I
with X, Y non-zero objects, then there are non-zero orthogonal idempotent elements

in EndA/I(F (U)) ∼= EndR(U)/I. This is not possible, because I is completely

prime. ¤

Lemma 2.2. Let U be an object of A, I an ideal of EndR(U), I the ideal of

A associated to I and F : A → A/I the canonical functor. Let V be an object

of A such that F (U) ∼= F (V ) in A/I. Let K be the ideal of EndR(V ) given by

K := I(V, V ). Let K be the ideal of A associated to K. Then K = I.
Proof. Clearly, K ⊇ I.

Conversely, let f : X → Y be in K. As F (U) ∼= F (V ), there are homomorphisms

α : U → V and β : V → U such that 1U − βα ∈ I and 1V − αβ ∈ I. In order

to prove that f is in I, fix γ : U → X and δ : Y → U . We must show that

g := δfγ ∈ I. Now αgβ ∈ K and, consequently, βαgβα ∈ I. Now βαgβα − g =

βαg(βα− 1U ) + (βα− 1U )g ∈ I. Thus g ∈ I. ¤

In order to have that the canonical functor F respect infinite direct sums, we

add a rather technical condition to U and I. Recall that a family of morphisms

fλ : U → Mλ, λ ∈ Λ, is summable if for every x ∈ U there is a finite subset

Λx of Λ such that fλ(x) = 0 for every λ ∈ Λ \ Λx. Equivalently, if the position

x 7→ (fλ(x))λ∈Λ defines a mapping U → ⊕λ∈ΛMλ.

Lemma 2.3. Let U be a right R-module and let I be an ideal in EndR(U). The

following conditions are equivalent:

(a) For every family of modules Mλ, λ ∈ Λ, and homomorphisms α : U →
⊕λ∈ΛMλ and β : ⊕λ∈Λ Mλ → U with βα 6∈ I, there exists µ ∈ Λ such that

βιµπµα 6∈ I.

(b) For every summable family fλ : U → U , λ ∈ Λ, of endomorphisms of U

such that fλ ∈ I for every λ ∈ Λ, one has that
∑

λ∈Λ fλ ∈ I.

(c) For every set Λ and every homomorphism F : U → U (Λ) such that the com-

posite mapping Σ ◦ F : U → U , where Σ: U (Λ) → U is the homomorphism

(xλ)λ∈Λ 7→
∑

λ∈Λ xλ, is not in I, there exists µ ∈ Λ such that πµF 6∈ I.

Proof. The proof is elementary. For (a)⇒(b), it suffices to assume (a) true and

take as α the morphism u 7→ (fλ(u))λ∈Λ and as β the homomorphism Σ defined in

(c). For (b)⇒ (c), it suffices to assume (b) true and take as fλ’s the morphisms

πλF ’s. For (c)⇒(a), it suffices to assume (c) true and take as F the morphism

u 7→ (βιλπλα(u))λ∈Λ. ¤
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If U is a right R-module and I is an ideal of EndR(U), we say that U is I-small

if it satisfies the conditions of the previous Lemma.

Corollary 2.4. Let U be a non-zero module, let I be an ideal of EndR(U) and

let I be the ideal of A associated to I. Suppose that Mλ, λ ∈ Λ, is a family of

objects of A such that ⊕λ∈ΛMλ is an object of A. If U is I-small, then a morphism

f : ⊕λ∈Λ Mλ → N in A is in I if and only if fιµ : Mµ → N is in I for every

embedding ιµ : Mµ → ⊕λ∈ΛMλ.

Proof. Suppose that fιµ ∈ I for every µ ∈ Λ. If f 6∈ I, then there are α : U →
⊕λ∈ΛMλ and β : N → U such that βfα 6∈ I. This is not possible by Lemma

2.3(a). ¤

Notice that coproducts in a full additive subcategoryA of Mod-R can be different

in A and Mod-R. For instance, if A is the category of all non-singular injective

right R-modules, then coproducts in A are the injective envelopes of the coproducts

in Mod-R [6, Proposition 1.12]. The next statement shows that F preserves the

coproducts that are equal to the direct sum, that is, equal to the coproduct in

Mod-R.

Lemma 2.5. Suppose that Mλ, λ ∈ Λ, is a family of objects in A such that

⊕λ∈ΛMλ ∈ Ob(A). Let U be a non-zero module, I an ideal of EndR(U). Con-

sider the ideal I in A associated to I and the canonical functor F : A → A/I.
For every µ ∈ Λ, let ιµ : Mµ → ⊕λ∈ΛMλ be the embedding. Suppose that, for any

morphism f : ⊕λ∈Λ Mλ → X in the category A, the morphism f is in I if and only

if fιλ ∈ I for every λ ∈ Λ. Then F (⊕λ∈ΛMλ) with the morphisms F (ιλ), λ ∈ Λ, is

the coproduct of the family of objects F (Mλ), λ ∈ Λ, in the factor category A/I.

Proof. Let F (X) be an object of A/I and let F (fλ) : F (Mλ) → F (X), λ ∈ Λ, be

morphisms in A/I. Clearly, there exists a morphism g : ⊕λ∈Λ Mλ → X such that

fλ = gιλ for every λ ∈ Λ. Therefore F (fλ) = F (g)F (ιλ) for every λ ∈ Λ. Now let

g′ : ⊕λ∈Λ Mλ → X be a morphism such that F (g′)F (ιλ) = F (fλ) for every λ ∈ Λ.

Then F ((g − g′)ιλ) = 0 for all λ ∈ Λ. Equivalently, (g − g′)ιλ ∈ I for every λ ∈ Λ.

By our hypothesis, g − g′ ∈ I, and consequently F (g) = F (g′). ¤

Remark 2.6. The condition “f ∈ I if fιλ ∈ I for every λ ∈ Λ” is necessary in the

statement of Lemma 2.5. To see this, suppose that there exists an object X of A
and f : ⊕λ∈ΛMλ → X such that f 6∈ I but fιλ ∈ I for every λ ∈ Λ. Then F (f) and

0: F (⊕λ∈ΛMλ) → F (X) are two different morphisms, and F (f)F (ιλ) = 0 = 0F (ιλ)

for every λ ∈ Λ.
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The next Corollary follows immediately from Corollary 2.4 and Lemma 2.5.

Corollary 2.7. Let U be a non-zero module, I an ideal of EndR(U) such that U

is I-small. If Ob(A) is closed under arbitrary direct sums, and I is the ideal of A
associated to I, then the canonical functor F : A → A/I preserves coproducts.

By Lemma 2.5, we get:

Proposition 2.8. Let U be an I-small module, I the ideal of A associated to I,

and F : A → A/I the canonical functor. If Mλ, λ ∈ Λ, is a family of objects of A
such that ⊕λ∈ΛMλ ∈ Ob(A), then F (⊕λ∈ΛMλ) = 0 if F (Mλ) = 0 for every λ ∈ Λ.

We will deal with infinite direct sums and factor categories of module categories,

and it is convenient to fix the notation we will use in this setting. Let U be an

I-small module, and A a full subcategory of Mod-R. Let Aλ, λ ∈ Λ, and Bµ,

µ ∈ M, be families of objects in A such that A = ⊕λ∈ΛAλ and B = ⊕µ∈MBµ are

objects of A. Let I be the ideal of A associated to I and let F : A → A/I be the

canonical functor. Any morphism f : A → B of right R-modules can be represented

by an M × Λ matrix (fµ,λ)µ∈M,λ∈Λ, where fµ,λ = πBµfιAλ
and, for every fixed

λ ∈ Λ, the family of morphisms fµ,λ : Aλ → Bµ, µ ∈ M, is summable. Let us

prove that the morphism F (f) is uniquely determined by the morphisms F (fµ,λ) =

F (πBµ)F (f)F (ιAλ
). Suppose that f : ⊕λ∈Λ Aλ → ⊕µ∈MBµ and f ′ : ⊕λ∈Λ Aλ →

⊕µ∈MBµ are such that F (πBµ)F (f)F (ιAλ
) = F (πBµ)F (f ′)F (ιAλ

). Let us prove

that F (f) = F (f ′). By Lemma 2.5, the F (ιAλ
)’s are the coproduct morphisms,

so that it is enough to show that F (f)F (ιAλ
) = F (f ′)F (ιAλ

) for every λ ∈ Λ.

Assume that (f − f ′)ιAλ
6∈ I for some λ. That is, there are α : U → Aλ and

β : ⊕µ∈M Bµ → U such that β(f − f ′)ιAλ
α 6∈ I. As U is I-small, there exists

µ ∈ M such that βιBµπBµ(f − f ′)ιAλ
α 6∈ I. This is contrary to our assumption

that πBµ(f − f ′)ιAλ
∈ I. In the following remark, we consider when a morphism

f = (fµ,λ)µ∈M,λ∈Λ : ⊕λ∈Λ Aλ → ⊕µ∈MBµ is in the ideal I of A associated to I.

Remark 2.9. Let U be a non-zero module, I an ideal in EndR(U), and I the

ideal of A associated to I. Suppose that U is I-small and that Aλ, λ ∈ Λ, and Bµ,

µ ∈ M, are objects of A such that ⊕λ∈ΛAλ and ⊕µ∈MBµ are also objects of A.

Then f : ⊕λ∈Λ Aλ → ⊕µ∈MBµ is in I if and only if πµfιλ ∈ I for every λ ∈ Λ

and µ ∈ M . That is, the homomorphism f is in I if and only if all entries of the

corresponding matrix are in I.
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Lemma 2.10. Let U be a non-zero right R-module and let I be an ideal of EndR(U)

such that EndR(U)/I is a division ring and U is I-small. Then every summable

family of morphisms fλ, λ ∈ Λ, belonging to EndR(U) \ I is finite.

Proof. Let fi, i ∈ N, be a summable family of morphisms belonging to EndR(U)\I.

Since I is a maximal left ideal, for every i ∈ N there exists gi ∈ EndR(U) with

hi := 1U − gifi ∈ I. Consider the family h1, h2 − h1, h3 − h2, . . . , which is easily

seen to be a summable family. All the homomorphisms in this family belong to I,

but the sum of the family is 1U , so that Property (b) of Lemma 2.3 does not hold

for this family. Hence U is not I-small. ¤

Corollary 2.11. Let κ be a cardinal, U a non-zero right R-module and I an ideal of

EndR(U) with U I-small and EndR(U)/I a division ring. If U and U (κ) are objects

of the category A, then, for any homomorphism f : U → U (κ), F (πj)F (f) 6= 0 only

for finitely many j < κ.

Proof. The homomorphisms πjf, j < κ, form a summable family of EndR(U). By

Lemma 2.10 only finitely many of the πjf ’s are not elements of I. ¤

3. Property (*)

In all this section, we suppose that A is a full subcategory of Mod-R closed under

arbitrary direct sums, U is a non-zero object of A and I is an ideal of EndR(U)

such that EndR(U)/I is a division ring and U is I-small. Let I be the ideal of A
associated to I and let F : A → A/I be the canonical functor.

Consider the following property on A:

(*) Every object M of A is a direct sum of modules M = ⊕λ∈ΛMλ, where, for

every λ ∈ Λ, the module Mλ is an object of A with either F (Mλ) = 0 or

F (Mλ) ∼= F (U).

Recall that F (U) is indecomposable in A/I (Lemma 2.1). For a family Mλ,

λ ∈ Λ, of objects in A, F (⊕λ∈ΛMλ) is the coproduct in A/I of the family of

objects F (Mλ), λ ∈ Λ. Thus if F (Mλ) is either 0 or isomorphic to F (U), every

object F (M) of A/I is necessarily isomorphic to the coproduct F (U (κ)), where κ

is the cardinality of the set of all λ ∈ Λ with F (Mλ) 6= 0.

Lemma 3.1. If A satisfies Property (*), then G := HomA/I(F (U),−) is a category

equivalence of the category A/I into the category of all right vector spaces over the

division ring EndR(U)/I:

G : A/I → Mod-(EndR(U)/I).
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Proof. We know that every object of A/I is isomorphic to an object of the form

F (U (κ)) for some cardinal κ. So we can consider only objects of this form. We

must prove that the functor G is full, faithful and dense.

From Corollary 2.11, it follows that G(F (U (κ))) is a vector space whose basis is

given by the morphisms F (ιj), j < κ, where ιj : U → U (κ) denotes the embedding.

So G(F (U (κ))) ∼= G(F (U))(κ), hence G is dense.

In order to show that G is faithful, fix a morphism f : U (κ) → U (λ) with F (f) 6= 0.

Let (fj,i)j<λ,i<κ be the matrix corresponding to f . At least one of the fj,i is not

in I by Remark 2.9. Thus F (fιi) 6= 0. But F (fιi) = F (f)F (ιi) = G(F (f))(F (ιi)).

Hence G(F (f)) 6= 0.

It remains to show that G is full. Fix g : G(F (U (κ))) → G(F (U (λ))) and

consider the canonical bases F (ιi), i < κ, and F (νj), j < λ, of G(F (U (κ))) =

HomA/I(F (U), F (U (κ))) and G(F (U (λ))), respectively. So

g(F (ιi)) =
∑

j<λ

F (νj)sj,i,

where for every fixed i < κ, only finitely many sj,i’s are non-zero elements of

EndR(U)/I. Then there is a column finite matrix (tj,i)j<λ,i<κ, tj,i : U → U , such

that F (tj,i) = sj,i for every i < κ and j < λ. This matrix defines a morphism

f : U (κ) → U (λ). Now the matrix corresponding to the vector G(F (f))(F (ιi)) is the

column matrix (F (πj)F (f)F (ιi))j = (F (tj,i))j = (sj,i)j , so that G(F (f))(F (ιi)) =∑
j<λ F (νj)sj,i = g(F (ιi)). Hence G(F (f)) = g. ¤

The full subcategory of Mod-R whose objects are all R-modules that are isomor-

phic to direct summands of modules in Ob(A) will be denoted by add(A).

Proposition 3.2. If A satisfies Property (*) and K is the ideal of add(A) associated

to I, then the category add(A)/K is equivalent to the category of all right vector

spaces over the division ring EndR(U)/I.

Proof. Let F : A → A/I and F ′ : add(A) → add(A)/K be the canonical functors.

Let I : A → add(A) be the inclusion functor. The definition of factor categories

gives a full and faithful functor E : A/I → add(A)/K, and EF = F ′I. We have to

prove that E is dense, that is, if Uλ, λ ∈ Λ, are objects in A and X ⊕Y = ⊕λ∈ΛUλ

in Mod-R, then F ′(X) ∼= EF (U (κ)) in the category add(A)/K for some cardinal

κ. By Property (*) we can suppose that, for every λ ∈ Λ, either F (Uλ) = 0 or

F (Uλ) ∼= F (U).

If κ′ is the cardinality of the set of all λ ∈ Λ with F (Uλ) ∼= F (U), then

F (⊕λ∈ΛUλ) ∼= F (U (κ′)) (Proposition 2.8). Let c : F (⊕λ∈ΛUλ) → F (U (κ′)) be an
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isomorphism. Let ιX : X → ⊕λ∈ΛUλ be the embedding and πX : ⊕λ∈Λ Uλ → X

be the canonical projection. Then E(c)F ′(ιX)F ′(πX)E(c−1) is an idempotent en-

domorphism of F ′(U (κ′)) in add(A)/K, hence an idempotent endomorphism of

F (U (κ′)) in A/I. The functor G considered in the statement of Lemma 3.1 is a

category equivalence between A/I and Mod-(EndR(U)/I), so that

G(E(c)F ′(ιX)F ′(πX)E(c−1))

is an idempotent endomorphism of GF (U (κ′)). As idempotents split in the cat-

egory of vector spaces over EndR(U)/I, there exist a cardinal κ and morphisms

α : GF (U (κ)) → GF (U (κ′)) and β : GF (U (κ′)) → GF (U (κ)) with βα = 1GF (U(κ))

and αβ = G(E(c)F ′(ιX)F ′(πX)E(c−1)). Via the equivalence G, there exist mor-

phisms α′ : F (U (κ)) → F (U (κ′)) and β′ : F (U (κ′)) → F (U (κ)) with β′α′ = 1F (U(κ))

and α′β′ = E(c)F ′(ιX)F ′(πX)E(c−1). Thus

E(α′) : F ′(U (κ)) → F ′(U (κ′)) and E(β′) : F ′(U (κ′)) → F ′(U (κ))

are morphisms in add(A)/K with the property that

E(β′)E(α′) = 1F ′(U(κ)) and E(α′)E(β′) = E(c)F ′(ιX)F ′(πX)E(c−1).

Then F ′(πX)E(c−1)E(α′) and E(β′)E(c)F ′(ιX) are mutually inverse isomorphisms

between F ′(U (κ)) and F ′(X) in add(A)/K. Thus F ′(X) ∼= F ′(U (κ)) = EF (U (κ)),

as desired. ¤

Lemma 3.3. Let A satisfy Property (*) and K be the ideal of add(A) associ-

ated to I. Let L be an ideal in EndR(U) not contained in I. Let F ′ : add(A) →
add(A)/K be the canonical functor. Consider a countable family Mi, i ∈ N, of

objects in A such that, for every i ∈ N, either F ′(Mi) = 0 or F ′(Mi) ∼= F ′(U).

Assume that ⊕i∈NMi = A1 ⊕ B1 = A2 ⊕ B2. If F ′(A1) ∼= F ′(A2), then there exist

homomorphisms f, g : ⊕i∈N Mi → ⊕i∈NMi with the following properties:

(i) If i, j ∈ N and πjfιi 6= 0 or πjgιi 6= 0, then F ′(Mi) 6= 0 and F ′(Mj) 6= 0.

(ii) The homomorphisms 1A1−πA1gιA2πA2fιA1 and 1A2−πA2fιA1πA1gιA2 are

in K.

(iii) For every i, j ∈ N, both πjfιi and πigιj belong to the ideal of A generated

by L.

Proof. Let α : A1 → A2 and β : A2 → A1 be homomorphisms with

F ′(α) : F ′(A1) → F ′(A2) and F ′(β) : F ′(A2) → F ′(A1)
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mutually inverse isomorphisms. Set

α′ :=

(
α 0

0 0

)
: A1 ⊕B1 = ⊕i∈NMi → A2 ⊕B2 = ⊕i∈NMi

and

β′ :=

(
β 0

0 0

)
: A2 ⊕B2 = ⊕i∈NMi → A1 ⊕B1 = ⊕i∈NMi.

Write α′ and β′ in matrix form with respect to the decomposition ⊕i∈NMi as

α′ = (α′j,i)j,i and β′ = (β′i,j)i,j ,

where α′j,i : Mi → Mj and β′i,j : Mj → Mi for every i, j. There exist ϕ ∈ I and

ψ ∈ L such that ϕ + ψ = 1U . Thus F ′(ψ) = F ′(1U ). For every i ∈ N with

F ′(Mi) ∼= F ′(U), fix γi : Mi → U and δi : U → Mi with F ′(γi) and F ′(δi) mutually

inverse isomorphisms.

Let f := (fj,i)j,i, g := (gi,j)i,j be defined by fj,i = α′j,iδiψγi, gi,j = δiψγiβ
′
i,j

for every i, j with F ′(Mi) ∼= F ′(U) and F ′(Mj) ∼= F ′(U), and fj,i = 0, gi,j = 0 for

every i, j with F ′(Mi) = 0 or F ′(Mj) = 0. Then F ′(f) = F ′(α′) and F ′(g) = F ′(β′)

by Remark 2.9. Then (i) holds trivially by the way f and g have been defined, and

(ii) follows from the fact that F ′(α) and F ′(β) are mutually inverse isomorphisms.

Finally, (iii) follows from the fact that ψ ∈ L, so that, for every i, j ∈ N, both

πjfιi = fj,i and πigιj = gi,j belong to the ideal of A generated by L. ¤

4. Uniform modules

Recall that a module U is uniform if it is non-zero and the intersection of any

two non-zero submodules of U is non-zero.

Fix a uniform right R-module U . For any R-module A, we defined in [4] the

invariant m-dimU (A) := sup { k ∈ N0 | there exist morphisms f : Uk → A and

g : A → Uk with gf a monomorphism }. We now define the invariant m-dimU

on right R-module homomorphisms as well. If ϕ : A → B is a right R-module

homomorphism, set m-dimU (ϕ) := sup { k ∈ N0 | there exist morphisms f : Uk → A

and g : B → Uk with gϕf a monomorphism }. It is either a non-negative integer

or ∞. The following lemma collects some basic properties of m-dimU . The proof

is easy.

Lemma 4.1. Let U be a uniform module and let ϕ : A → B be a homomorphism.

Then

(i) For every α : X → A, m-dimU (ϕα) ≤ m-dimU (ϕ). If α is a split epimor-

phism, then the equality holds.
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(ii) For every α : B → X, m-dimU (αϕ) ≤ m-dimU (ϕ). If α is a split monomor-

phism, then the equality holds.

(iii) m-dimU (1X) = m-dimU (X) for every module X.

(iv) m-dimU (ϕ) = 0 if and only if gϕf is not injective for every f : U → A and

g : B → U .

(v) If ϕ has an essential kernel, then m-dimU (ϕ) = 0.

(vi) If ϕ′ : A → B and m-dimU (ϕ) = m-dimU (ϕ′) = 0, then also m-dimU (ϕ +

ϕ′) = 0.

Now let A be any additive full subcategory of Mod-R, let U be a uniform module,

and consider the ideal MU in the category A consisting of all morphisms ϕ in A
with m-dimU (ϕ) = 0. More precisely, for all objects A,B in A, defineMU (A,B) :=

{ϕ ∈ HomR(A,B) | m-dimU (ϕ) = 0 }. If IU denotes the completely prime ideal of

EndR(U) consisting of all endomorphisms of UR that are not injective, then MU

is the ideal of A associated to IU (Lemma 4.1(iv)). Hence we can apply the results

of the previous sections.

Construct the factor category A/MU . Notice that in our previous paper [5],

we had defined another ideal M′
U consisting of all morphisms ϕ in A that can be

factored through some object C of A with m-dimU (C) = 0. In this notation, we

have that M′
U (A,B) ⊆MU (A,B) for every A,B, so that there is a canonical full

functor A/M′
U → A/MU .

Throughout this section, U is a fixed uniform module and the symbol F will

always stand for the canonical functor F : A → A/MU . Observe that the ideal

MU depends on the category A, but this will cause no confusion.

Lemma 4.2. Let UR be a uniform module and let IU be the ideal of EndR(U)

consisting of all the endomorphisms that are not injective. Then UR is IU -small.

Proof. We will show that Condition (a) of Lemma 2.3 is satisfied. Let Mλ, λ ∈ Λ,

be a family of modules and α : U → ⊕λ∈ΛMλ, β : ⊕λ∈ΛMλ → U be homomorphisms

with βα 6∈ IU . That is, with βα injective. Fix a non-zero element u ∈ U . Let

Λ0 := {λ ∈ Λ | πλα(u) 6= 0}. The set Λ0 is finite. Since the restriction of βα to

uR is a monomorphism βα|uR : uR → UR, we have that 0 = ker(βα|uR) ⊇ uR ∩(⋂
λ∈Λ0

ker(βιλπλα)
)
. As UR is uniform, there is a µ ∈ Λ0 with ker(βιµπµα) = 0.

Hence βιµπµα 6∈ IU . ¤

From Lemma 2.1 applied to the ideal IU , we know that F (U) is a non-zero

indecomposable object of A/MU . The next Lemma and the following Proposition

are more precise in this sense.
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Lemma 4.3. Let U be a uniform module and let A be an object of an additive full

subcategory A of Mod-R. Then F (A) = 0 in A/MU if and only if m-dimU (A) = 0.

Proof. An object A is zero if and only if the identity 1A is the zero morphism. It

follows that F (A) = 0 in A/MU if and only if 1A ∈MU (A,A), that is, if and only

if m-dimU (A) = 0. ¤

Recall that if U, V are arbitrary modules over a ring R, we write [U ]m = [V ]m,

and say that U and V are in the same monogeny class, if there exist a monomorpism

U → V and a monomorpism V → U .

Proposition 4.4. Let A be an additive full subcategory of Mod-R and let V be a

uniform right R-module in Ob(A). Then:

(a) F (V ) is indecomposable in A/MU if [U ]m = [V ]m.

(b) F (V ) = 0 in A/MU if [U ]m 6= [V ]m.

(c) Suppose that IU is a maximal right ideal of EndR(U). If [U ]m = [V ]m, then

IV is a maximal right ideal of EndR(V ).

Proof. (a) Since [U ]m = [V ]m, F (V ) is not zero by Lemma 4.3. The endomorphism

ring of F (V ) is isomorphic to EndR(V )/IV . If F (V ) = A⊕ B with A and B non-

zero, then there are non-zero orthogonal idempotents in End(F (V )), which is not

possible as IV is completely prime.

(b) follows from Lemma 4.3.

(c) Suppose that [U ]m = [V ]m and that IU is a maximal right ideal. Fix

monomorphisms α : U → V and β : V → U . We will show that, for any monomor-

phism f : V → V , the element f + IV has a right inverse in EndR(V )/IV . Ob-

serve that βfα is a monomorphism. Therefore, by our assumption, there exists

g : U → U such that 1U−βfαg is not a monomorphism. Then also α(1U−βfαg)β =

αβ(1V − fαgβ) is not a monomorphism, so 1V − fαgβ is not a monomorphism. In

other words, αgβ + IV is a right inverse for f + IV in EndR(V )/IV . ¤

Corollary 4.5. Let A be an additive full subcategory of Mod-R and let U, V, W be

uniform right R-modules in Ob(A). Suppose that IU is a maximal right ideal of

EndR(U). If f : V → W , then F (f) is an isomorphism if and only if either [V ]m 6=
[U ]m and [W ]m 6= [U ]m, or [V ]m = [U ]m = [W ]m and f is a monomorphism.

Proof. Suppose F (f) is an isomorphism. Then either F (f) = 0 and F (V ) =

0, F (W ) = 0 (i.e., [U ]m 6= [V ]m, [U ]m 6= [W ]m), or F (f) 6= 0, in which case f has

to be a monomorphism and [V ]m = [U ]m = [W ]m.
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Conversely, if [V ]m 6= [U ]m and [W ]m 6= [U ]m, then F (V ) = 0, F (W ) = 0 and

F (f) is isomorphism. If [U ]m = [V ]m = [W ]m and f : V → W is a monomorphism,

then there exists a monomorphism g : W → V . By Proposition 4.4(c), F (g)F (f) is

an automorphism of F (V ) and F (f)F (g) is an automorphism of F (W ). Therefore

F (f) is an isomorphism. ¤

Let SUfm be the full subcategory of Mod-R whose objects are all right R-modules

that are direct sums of (possibly infinitely many) uniform submodules. (Notice that

in our previous paper [5] the symbol SUfm denoted the full subcategory of Mod-R

whose objects are all finite direct sums of uniform modules.)

Proposition 4.6. Let U be a uniform module such that IU is a maximal right

ideal. Let MU be the ideal of SUfm consisting of all homomorphisms SUfm whose

m-dimU is 0 and let M′
U be the ideal of add(SUfm) consisting of all homomor-

phisms in add(SUfm) whose m-dimU is 0. Then the categories SUfm/MU and

add(SUfm)/M′
U are both equivalent to Mod-(EndR(U)/IU ).

Proof. Both categories contain U , are closed under arbitrary direct sums, the

module U is IU -small, the ideal MU is the ideal in the category SUfm associated

to IU and the ideal M′
U is the ideal of add(SUfm) associated to IU . It remains to

check that if F : SUfm → SUfm/MU is the canonical functor, then every object

M of SUfm has a decomposition M = ⊕λ∈ΛUλ, where for every λ ∈ Λ the module

Uλ is an object of A with either F (Uλ) = 0 or F (Uλ) ∼= F (U). Every object M of

A is a direct sum of uniform modules, say M = ⊕λ∈ΛUλ. By Proposition 4.4(b),

F (Uλ) = 0 if [Uλ]m 6= [U ]m and, by Corollary 4.5, F (Uλ) ∼= F (U) if [U ]m = [Uλ]m.

Hence it is possible to apply Lemma 3.1 and Proposition 3.2. ¤

Lemma 4.7. Let U be a uniform module and assume that IU is a maximal right

ideal of EndR(U). Let k be a nonnegative integer. If f : Uk → Uk is a monomor-

phism, then F (f) : F (Uk) → F (Uk) is an isomorphism.

Proof. Let G : SUfm/MU → Mod-(EndR(U)/IU ) be the category equivalence de-

fined in Lemma 3.1. In order to prove that F (f) is an automorphism, it suf-

fices to show that GF (f) is an automorphism of GF (Uk). Since GF (Uk) is

a finite dimensional vector space, it suffices to show that GF (f) : GF (Uk) =

HomSUfm/MU
(F (U), F (Uk)) → GF (Uk) = HomSUfm/MU

(F (U), F (Uk)) is a

monomorphism. Let α : U → Uk be an R-module morphism and suppose that

F (α) is in the kernel of GF (f). That is, suppose GF (f)(F (α)) = 0, equivalently

F (fα) = 0. Then fα ∈ MU (U,Uk). If πi : Uk → U , i = 1, . . . , k, is the canonical
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projection, it follows that πifα ∈ MU (U,U), i.e., the πifα are not monomor-

phisms. As U is uniform, it follows that fα is not a monomorphism, so that α

is not a monomorphism. Hence ker α is an essential submodule of U , therefore

m-dimU (α) = 0 by Lemma 4.1(v). Thus F (α) = 0 and GF (f) is a monomor-

phism. ¤

Lemma 4.8. Let U be a uniform module and assume that IU is a maximal right

ideal of EndR(U). Let Ui, i ∈ N, be a countable family of uniform modules and

A a direct summand of ⊕i∈NUi. Then F (A) ∼= F (U (m-dimU (A))) in the category

add(SUfm)/MU .

In the statement of this Lemma, for m-dimU (A) = ∞ we mean that F (A) ∼=
F (U (ℵ0)).

Proof. We have shown that every object of add(SUfm)/MU is isomorphic to

F (U (κ)) for some cardinal κ (Proposition 4.6), so that F (A) ∼= F (U (κ)) for some κ ≤
ℵ0. Let f : U (κ) → A and g : A → U (κ) be such that 1U(κ) − gf ∈ MU . Represent

this homomorphism 1U(κ) − gf as a matrix. Then all its entries are not monomor-

phisms, therefore gf is a monomorphism. Consequently, κ ≤ m-dimU (A). Suppose

that κ < m-dimU (A), in particular, κ is finite. Then there exist f ′ : Uκ+1 → A

and g′ : A → Uκ+1 such that g′f ′ is a monomorphism. Therefore F (g′f ′) is an

isomorphism according to Lemma 4.7. But then G(F (Uκ+1)) is a direct summand

of G(F (Uκ)), which is not possible, because the first vector space has dimension

κ + 1 and the second one has dimension κ. ¤

Lemma 4.9. Let U be a uniform module such that IU is a maximal right ideal.

Consider a countable family of uniform modules Ui, i ∈ N, and assume ⊕i∈NUi =

A1 ⊕ B1 = A2 ⊕ B2. Suppose that m-dimU (A1) = m-dimU (A2). Then there are

homomorphisms f, g : ⊕i∈N Ui → ⊕i∈NUi such that

(i) For every i, j ∈ N with either πjfιi 6= 0 or πjgιi 6= 0, one has [Ui]m =

[Uj ]m = [U ]m.

(ii) m-dimU (1A1−πA1gιA2πA2fιA1) = 0 and m-dimU (1A2−πA2fιA1πA1gιA2) =

0.

If, moreover, U is a uniserial module and there exists a monomorphism U → U

that is not an epimorphism, then f and g can be chosen in such a way to satisfy

the following property (iii) also:

(iii) For every i, j ∈ N, the morphisms πjfιi and πjgιi are not epimorphisms.
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Proof. Let F : add(SUfm) → add(SUfm)/MU be the canonical functor. Then

m-dimU (A1) = m-dimU (A2) implies F (A1) ∼= F (A2) by Lemma 4.8. We have

already seen in the proof of Proposition 4.6 that Lemma 3.3 can be applied to

A = SUfm and the ideal MU of SUfm associated to IU , that is, given by the

morphisms of m-dimU zero. Then (i) and (ii) follow directly from Lemma 3.3. In

order to prove (iii), observe that if KU denotes the ideal of EndR(U) consisting of all

the endomorphisms of U that are not onto, then KU 6⊆ IU . Then, applying Lemma

3.3(iii), f and g can be chosen such that πjfιi and πjgιi are in the ideal of SUfm

generated by KU . Recall that the set of morphisms Ui → Uj in the ideal generated

by KU is A(U,Uj)KUA(Ui, U). Now U is uniserial and Uj is non-zero, so that pq

is not an epimorphism for every q ∈ KU and every homomorphism p : U → Uj . ¤

5. Couniform modules

Recall that a module U is couniform if it is non-zero and the sum of any two

proper submodules of U is a proper submodule of U .

If ϕ : A → B is a homomorphism, and U is a couniform module, define e-dimU (ϕ)

to be the supremum of the set { k ∈ N0 | there are homomorphisms f : Uk → A and

g : B → Uk with gϕf an epimorphism }. For a module M , e-dimU (M) as defined

in [4] is exactly e-dimU (1M ). The dual of Lemma 4.1 also holds:

Lemma 5.1. Let ϕ : A → B be a homomorphism and let U be a couniform module.

Then

(i) For every α : X → A, e-dimU (ϕα) ≤ e-dimU (ϕ). If α is a split epimor-

phism, then the equality holds.

(ii) For every α : B → X, e-dimU (αϕ) ≤ e-dimU (ϕ). If α is a split monomor-

phism, then the equality holds.

(iii) e-dimU (ϕ) = 0 if and only if gϕf is not an epimorphism for every f : U →
A and g : B → U .

(iv) If ϕ has a superfluous image, then e-dimU (ϕ) = 0.

(v) If ϕ′ : A → B and e-dimU (ϕ) = e-dimU (ϕ′) = 0, then also e-dimU (ϕ+ϕ′) =

0.

Let A be any additive subcategory of Mod-R, let U be a couniform module

and consider the ideal EU of the category A consisting of all morphisms ϕ with

e-dimU (ϕ) = 0. That is, for all objects A,B ∈ A define EU (A,B) := {ϕ ∈
HomR(A, B) | e-dimU (ϕ) = 0}. Construct the factor category A/EU . In our

previous paper [5] we defined another ideal E ′U consisting of all morphisms ϕ in A
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that can be factored through some object C of A with e-dimU (C) = 0. In this

notation, we have E ′U ⊆ EU , so that there is a canonical functor A/E ′U → A/EU .

Throughout this section, the symbol F always stands for the canonical functor

F : A → A/EU .

If U is a couniform module, the ring EndR(U) has a completely prime ideal

consisting of all nonepimorphisms of EndR(U). We will denote this ideal by KU . If

U is a couniform module and A is a full subcategory of Mod-R, then EU coincides

with the ideal of A associated to KU (Lemma 5.1(iii)).

Recall that an R-module NR is said to be quasi-small [1, Definition 4.1] if for

every family {Mi | i ∈ I } of R-modules such that NR is isomorphic to a direct

summand of ⊕i∈IMi, there is a finite subset F ⊆ I such that NR is isomorphic to

a direct summand of ⊕i∈F Mi. A uniserial module U is quasi-small if and only if

for every set Λ and every homomorphism F : U → U (Λ) such that the composite

mapping Σ ◦ F : U → U is the identity morphism 1U : U → U , there exists µ ∈ Λ

with πµF an epimorphism [1, Lemma 4.4].

Recall that if U, V are arbitrary modules, we write [U ]e = [V ]e, and say that U

and V are in the same epigeny class, if there exist an epimorphism U → V and an

epimorpism V → U .

Remark 5.2. In this case, it is not necessarily true that if X is a direct sum of

couniform modules having their epigeny classes different from [U ]e, then

e-dimU (X) = 0. However, this is true if U is a quasi-small uniserial module of

type 2. To see this, recall that, over a suitable ring R, there exists a uniserial

module U that is not quasi-small and a uniserial module V non-isomorphic to U

such that V (ℵ0) ∼= U ⊕ V (ℵ0) [12, Proposition 8.1]. Then necessarily [U ]m = [V ]m
[2, Theorem 9.12], so that [U ]e 6= [V ]e. Thus X = V (ℵ0) is the required example

with e-dimU (X) 6= 0. In fact, we have that V (ℵ0) ∼= Uk ⊕ V (ℵ0) for every k, so

that e-dimU (X) = ∞. The second part of this remark, that is, the part concerning

quasi-small uniserial modules of type 2, will follow from Lemma 5.3(ii). Hence we

cannot apply Proposition 2.8. The reason is that U is not KU -small in general.

Let U be a couniform module. We say that U is epi-small if U is KU -small. That

is, a couniform module U is epi-small, if for every family Mλ, λ ∈ Λ, of modules

and homomorphisms f : U → ⊕λ∈ΛMλ and g : ⊕λ∈Λ Mλ → U such that gf is an

epimorphism, there exists µ ∈ Λ with gιµπµf is an epimorphism.

For example, local modules, that is, the modules with a greatest proper submod-

ule, are epi-small couniform modules.
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Lemma 5.3. Let U be a uniserial module.

(i) If U is epi-small, then U is quasi-small.

(ii) If U is quasi-small and there exists a monomorphism U → U which is not

an epimorphism, then U is epi-small.

Proof. (i) Let U be a uniserial module that is not quasi-small. Then, by [2,

Proposition 9.30(a)], there exists a countable family An, n ≥ 1, of uniserial R-

modules such that U ⊕ (⊕n≥1An) ∼= ⊕n≥1An and [An]e 6= [U ]e for every n ≥ 1.

It follows that there exists morphisms f : U → ⊕n≥1An and g : ⊕n≥1 An → U

with gf = 1U . But all composed morphisms U → An → U are not epimorphisms

because [An]e 6= [U ]e. Hence U is not epi-small.

(ii) Let U be a uniserial module that is not epi-small and has a monomorphism

h : U → U which is not an epimorphism. Then there exists a family Mλ, λ ∈ Λ, of

modules and two homomorphisms f : U → ⊕λ∈ΛMλ and g : ⊕λ∈Λ Mλ → U with

gf an epimorphism, but gιλπλf not an epimorphism for every λ ∈ Λ. We shall

distinguish two cases.

First case: gf is a monomorphism. In this case, gf is an automorphism of U .

The existence of the family of endomorphisms (gf)−1gιλπλf : U → U , λ ∈ Λ, which

are not epimorphisms, but whose sum is 1U , shows that U is not quasi-small [1,

Lemma 4.4].

Second case: gf is not a monomorphism. Then gf + h is an automorphism of

U . The existence of the family consisting of the endomorphism (gf + h)−1h and

all the endomorphisms (gf +h)−1gιλπλf of U , λ ∈ Λ, (they are not epimorphisms,

but their sum is 1U ) shows that U is not quasi-small by [1, Lemma 4.4] again. ¤

We do not know what happens for the uniserial modules U for which every

monomorphism U → U is an epimorphism, that is, the case in which EndR(U) is

a local ring in which the maximal ideal consists of all morphisms U → U that are

not monomorphisms. Such a module U is necessarily quasi-small [2, Example 9.29],

but we do not know if it must be epi-small.

The same proofs of Lemma 4.3, Proposition 4.4 and Corollary 4.5 give:

Lemma 5.4. Let U be a couniform module and let A be an object of an additive full

subcategory A of Mod-R. Then F (A) = 0 in A/EU if and only if e-dimU (A) = 0.

Proposition 5.5. Let A be an additive full subcategory of Mod-R and let V be a

couniform right R-module in Ob(A). Then:

(a) F (V ) is indecomposable in A/EU if [V ]e = [U ]e;

(b) F (V ) = 0 in A/MU if [V ]e 6= [U ]e.
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(c) Suppose that KU is a maximal right ideal of EndR(U). If [V ]e = [U ]e, then

KV is a maximal right ideal of EndR(V ).

Corollary 5.6. Let A be an additive full subcategory of Mod-R and let U, V, W be

couniform right R-modules in Ob(A). Suppose that KU is a maximal right ideal

of EndR(U). If f : V → W , then F (f) is an isomorphism if and only if either

[V ]e 6= [U ]e and [W ]e 6= [U ]e, or [V ]e = [U ]e = [W ]e and f is an epimorphism.

Let SCfm be the full subcategory of Mod-R whose objects are all right R-modules

that are direct sums of (possibly infinitely many) couniform submodules.

Proposition 5.7. Let U be an epi-small couniform module such that KU is a

maximal right ideal. Let EU be the ideal of SCfm consisting of all homomorphisms

in SCfm whose e-dimU is 0 and let E ′U be the ideal of add(SCfm) consisting of all

homomorphisms in add(SCfm) whose e-dimU is 0. Then the categories SCfm/EU

and add(SCfm)/E ′U are both equivalent to Mod-(EndR(U)/KU ).

Proof. Both categories contain U , are closed under arbitrary direct sums and the

module U is KU -small. By Lemma 5.1(iii), EU is the ideal in the category SCfm

associated to KU and E ′U is the ideal of add(SCfm) associated to KU . It remains

to prove that if F : SCfm → SCfm/EU is the canonical functor, then any object M

of SCfm has a decomposition M = ⊕λ∈ΛUλ such that the Uλ’s are objects of A
and F (Uλ) = 0 or F (Uλ) ∼= F (U) for every λ ∈ Λ. Any object M of A is a direct

sum of couniform modules, say M = ⊕λ∈ΛUλ, where Uλ is couniform and hence

an object of SCfm for any λ ∈ Λ. By Proposition 5.5, F (Uλ) = 0 if [Uλ]e 6= [U ]e
and, by Corollary 5.6, F (Uλ) ∼= F (U) if [U ]e = [Uλ]e. Now it is possible to apply

Lemma 3.1 and Proposition 3.2. ¤

Lemma 5.8. Let U be a couniform module and assume that KU is a maximal

right ideal of EndR(U). Let k be a nonnegative integer. If f : Uk → Uk is an

epimorphism, then F (f) : F (Uk) → F (Uk) is an isomorphism in SCfm/EU .

Proof. We argue as in the proof of Lemma 4.7. Let G be the category equiv-

alence defined in Lemma 3.1 with A = SCfm and I = KU . In order to prove

that F (f) is an automorphism, it suffices to show that GF (f) is an automor-

phism of GF (Uk). Since GF (Uk) is a finite dimensional vector space, it suf-

fices to show that GF (f) : GF (Uk) = HomSCfm/EU
(F (U), F (Uk)) → GF (Uk) =

HomSCfm/EU
(F (U), F (Uk)) is a monomorphism. Let α : U → Uk be an R-module

morphism and suppose that F (α) is in the kernel of GF (f). That is, suppose

GF (f)(F (α)) = 0, i.e., F (fα) = 0. Then fα ∈ EU (U,Uk). If πi : Uk → U ,
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i = 1, . . . , k, is the canonical projection, it follows that πifα ∈ EU (U,U), i.e., the

πifα are not epimorphisms. Thus the images of the πifα’s are superfluous sub-

modules of U , so that the image of fα is a superfluous submodule of Uk. We claim

that the image of α is a superfluous submodule of Uk. To prove the claim, take a

submodule A of Uk with A+α(U) = Uk. Applying the epimorphism f , we get that

f(A) + fα(U) = Uk. Thus f(A) = Uk, from which A + ker f = Uk. Applying [2,

Proposition 2.42(d)], we know that ker f is a superfluous submodule of Uk, so that

A = Uk. This proves the claim. From Lemma 5.1, we have that e-dimU (α) = 0.

Thus F (α) = 0 and GF (f) is a monomorphism. ¤

Lemma 5.9. Let U be an epi-small couniform module and assume that KU is a

maximal right ideal of EndR(U). Let Ui, i ∈ N, be a countable family of couniform

modules. For any direct summand A of ⊕i∈NUi, we have F (A) ∼= F (U (e-dimU (A)))

in the category add(SCfm)/EU .

Again, when e-dimU (A) = ∞ we mean that F (A) ∼= F (U (ℵ0)). The proof of

Lemma 5.9 is the same as the proof of Lemma 4.8.

Lemma 5.10. Let U be an epi-small couniform module such that KU is a maximal

right ideal. Consider a countable family of couniform modules Ui, i ∈ N, and

assume ⊕i∈NUi = A1 ⊕ B1 = A2 ⊕ B2. Suppose that e-dimU (A1) = e-dimU (A2).

Then there are homomorphisms f, g : ⊕i∈N Ui → ⊕i∈NUi such that:

(i) For every i, j ∈ N with either πjfιi 6= 0 or πjgιi 6= 0, one has [Ui]e =

[Uj ]e = [U ]e.

(ii) e-dimU (1A1 − πA1gιA2πA2fιA1) = 0 and e-dimU (1A2 − πA2fιA1πA1gιA2) =

0.

If, moreover, U is a uniserial module and there exists an epimorphism U → U that

is not a monomorphism, then f and g can be chosen in such a way to satisfy the

following property (iii) also:

(iii) For every i, j ∈ N, the morphisms πjfιi and πjgιi are not monomorphisms.

The proof is the dual of the proof of Lemma 4.9.

6. Local endomorphism ring

Throughout this section, U is a module with a local endomorphism ring and

JU is the unique maximal (right) ideal of EndR(U), which consists of all noniso-

morphisms of EndR(U). Observe that U is JU -small because whenever we have

homomorphisms f : U → ⊕λ∈ΛMλ and g : ⊕λ∈Λ Mλ → U with gf an automor-

phism of U , then there exists µ ∈ Λ with gιµπµf an isomorphism. (In order to see
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this, fix any non-zero u ∈ U and consider the finite set Λ0 := {λ ∈ Λ | πλf(u) 6= 0}.
If ιΛ0 : ⊕λ∈Λ0 Mλ → ⊕λ∈ΛMλ is the embedding and πΛ0 : ⊕λ∈Λ Mλ → ⊕λ∈Λ0Mλ is

the canonical projection, then gιΛ0πΛ0f is an isomorphism, so there exists µ ∈ Λ0

with gιµπµf an isomorphism.)

We can define a dimension i-dimU as follows. For α : A → B, define i-dimU (α)

to be the supremum of { k ∈ N0 | there are f : Uk → A and g : B → Uk with gαf an

isomorphism }. Observe that, for n ∈ N, i-dimU (1A) ≥ n if and only if A contains

a direct summand isomorphic to Un. This is not true for i-dimU (1A) = ∞, that is,

it is not necessarily true that i-dimU (1A) = ∞ if and only if A contains a direct

summand isomorphic to U (ℵ0). That is, there exist modules U and A over a suitable

ring R with EndR(U) local, A with a direct summand isomorphic to Un for every

n ≥ 1, but A without direct summands isomorphic to U (ℵ0). For instance, let Vk be

a vector space of infinite dimension over a commutative field k and R = End(Vk),

so that RV is a simple left R-module. It is easy to see that for every subspace W

of Vk, SW := {ϕ ∈ R | ϕ(W ) = 0 } is a left ideal of R. If W is a vector subspace of

Vk of finite codimension n, then SW
∼= RV n as a left R-module. If Vk = W ⊕W ′,

then RR = SW ⊕SW ′ . It follows that RR has direct summands that are isomorphic

to RV n for every n ≥ 1. But RR does not have direct summands that are direct

sums of infinitely many non-zero modules, because it is finitely generated. Notice

that EndR(V ) is local.

Lemma 4.1 can be adapted to i-dim as well:

Lemma 6.1. Let ϕ : A → B be a homomorphism and let U be a module with a

local endomorphism ring. Then

(i) For every α : X → A, i-dimU (ϕα) ≤ i-dimU (ϕ). If α is a split epimorphism,

then the equality holds.

(ii) For every α : B → X, i-dimU (αϕ) ≤ i-dimU (ϕ). If α is a split monomor-

phism, then the equality holds.

(iii) If ϕ has an essential kernel or a superfuous image, then i-dimU (ϕ) = 0.

(iv) If ϕ′ : A → B and i-dimU (ϕ) = i-dimU (ϕ′) = 0, then also i-dimU (ϕ+ϕ′) =

0.

Now let A be any additive full subcategory of Mod-R, let U be a module with

local endomorphism ring, and consider the ideal IU in the category A consisting of

all morphisms ϕ in A with i-dimU (ϕ) = 0. Thus, for all objects A, B in A, one has

IU (A,B) = {ϕ ∈ HomR(A,B) | i-dimU (ϕ) = 0 }. Construct the factor category

A/IU .
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Throughout this section the symbol F always stands for the canonical functor

F : A → A/IU .

Notice that IU is the ideal of A associated to JU , the Jacobson radical of the

local ring EndR(U).

We can study the category A/IU and give in Corollary 6.5 a proof of the Krull-

Schmidt theorem similar to that given in [7].

Proposition 6.2. Let A be an additive full subcategory of Mod-R and let U, V be

right R-modules in Ob(A) with local endomorphism rings. Then F (U) is indecom-

posable, and F (V ) 6= 0 if and only if V ∼= U .

Proof. If U 6∼= V , then i-dimU (1V ) = 0, and F (V ) = 0. The endomorphism ring

of F (U) is a division ring, hence its idempotents are the trivial ones only, so that

F (U) is indecomposable as a biproduct in the additive category A/IU . ¤

The next Lemma describes the ideal IU in the case in which A is the full subcat-

egory SLer of Mod-R whose objects are modules that are direct sums of modules

with local endomorphism rings. (This is exactly the full subcategory of Mod-R

considered in the Krull-Schmidt-Azumaya Theorem.)

Lemma 6.3. Let Uλ, λ ∈ Λ, Vµ, µ ∈ M , and U be modules with local endomor-

phism rings. Then f : ⊕λ∈Λ Uλ → ⊕µ∈MVµ is in IU if and only if πµfιλ is not an

isomorphism for every λ, µ such that Uλ
∼= U ∼= Uµ.

Proof. Remark 2.9. ¤

Proposition 6.4. Let U be a module with local endomorphism ring and let JU be

the maximal right ideal of EndR(U). Let IU be the ideal of SLer consisting of all

homomorphisms in SLer whose i-dimU is 0 and let I ′U be the ideal of add(SLer) con-

sisting of all homomorphisms in add(SLer) whose i-dimU is 0. Then the categories

SLer/IU and add(SLer)/I ′U are both equivalent to Mod-(EndR(U)/JU ).

Proof. Both categories contain U , are closed under arbitrary direct sums and the

module U is JU -small. We have already noticed that the ideal IU is the ideal in

the category SLer associated to JU , and the ideal I ′U is the ideal of add(SUfm)

associated to JU . It remains to check that if F : SLer → SLer/IU is the canonical

functor, then any object M of SLer has a decomposition M = ⊕λ∈ΛUλ, such

that Uλ’s are objects of A, and F (Uλ) = 0 or F (Uλ) ∼= F (U) for every λ ∈ Λ.

Any object M of SLer is a sum of modules with local endomorphism ring. Apply

Proposition 6.2, Lemma 3.1 and Proposition 3.2. ¤
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As a corollary, we get another proof of the Krull-Schmidt-Azumaya Theorem:

Corollary 6.5. Let Ui, i ∈ I, Vj, j ∈ J be families of modules with local endomor-

phism ring. Then ⊕i∈IUi
∼= ⊕j∈JVj if and only if there exists a bijection σ : I → J

such that Ui
∼= Vσ(i) for every i ∈ I.

Proof. Suppose ⊕i∈IUi
∼= ⊕j∈JVj . Obviously, it is enough to prove that for any

module U with local endomorphism ring, if κ = |{i ∈ I | Ui
∼= U}| and κ′ = |{j ∈ J |

Vj
∼= U}|, then κ = κ′. Consider the canonical functor F : SLer → SLer/IU . Since

⊕i∈IUi
∼= ⊕i∈JVj , then F (⊕i∈IUi) ∼= F (⊕j∈JVj). Using Lemma 2.5 and Proposi-

tion 6.2, we see that F (⊕i∈IUi) is a coproduct of κ objects isomorphic to F (U) and

F (⊕j∈JVj) is the coproduct of κ′ objects isomorphic to F (U). Now apply the equiv-

alence G of Lemma 3.1 to see that GF (U)(κ) ∼= GF (U)(κ
′) in Mod-(EndR(U)/JU ).

But GF (U) is the vector space of dimension 1, so κ = κ′. ¤

Lemma 6.6. Let U be a module with a local endomorphism ring. Consider a

countable family Ui, i ∈ N, of modules with local endomorphism rings. For any

direct summand A of ⊕i∈NUi we have F (A) ∼= F (U (i-dimU (A))) in the category

add(SLer)/IU .

Again, we mean that F (A) ∼= F (U (ℵ0)) for i-dimU (A) = ∞.

Proof. This follows easily from the fact that if there are f : Uk → A and g : A → Uk

such that gf is an isomorphism, then A contains a direct summand isomorphic to

Uk. Moreover, F (A) must be a direct summand of F (U)(ℵ0). ¤

Lemma 6.7. Let U be a module with a local endomorphism ring. Consider a

countable family of modules Ui, i ∈ N, with local endomorphism rings, and assume

that ⊕i∈NUi = A1 ⊕B1 = A2 ⊕B2. Suppose that i-dimU (A1) = i-dimU (A2). Then

there are homomorphisms f, g : ⊕i∈NUi → ⊕i∈NUi with the following two properties:

(i) For every i, j ∈ N with either πjfιi 6= 0 or πjgιi 6= 0, one has Ui
∼= Uj

∼= U .

(ii) i-dimU (1A1−πA1gιA2πA2fιA1) = 0 and i-dimU (1A2−πA2fιA1πA1gιA2) = 0.

Proof. Observe that i-dimU (A1) = i-dimU (A2) implies F (A1) ∼= F (A2), where

F : add(SLer) → add(SLer)/IU (Lemma 6.6). We have already checked in the

proof of Proposition 6.4 that Lemma 3.3 can be applied to A = SLer and the ideal

I of SLer associated to JU (that is, given by the morphisms of i-dimU zero). Hence

we can conclude by Lemma 3.3. ¤

Propositions 6.9 and 6.10 will show that it is not necessary to treat i-dimU

separately when the module U with local endomorphism ring is uniserial.
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Lemma 6.8. Let U be a uniform module such that every monomorphism f : U → U

is an isomorphism. Then, for every k ≥ 0, every monomorphism ϕ : Uk → Uk is

an isomorphism.

Proof. Induction on k, the case k = 1 being trivial. Let ϕ : Uk → Uk be a

monomorphism. Let ι : U → Uk be the inclusion into the first component. Since U

is uniform and ϕι : U → Uk is injective, there exists an index i = 1, . . . , k such that

πiϕι : U → U is a monomorphism (here πi : Uk → U denotes the i-th canonical

projection). Thus πiϕι is an automorphism of U , so that Uk = ϕι(U)⊕kerπi, with

kerπi
∼= Uk−1. We have a commutative diagram with exact rows

0 → U
ι→ Uk → Uk/ι(U) → 0

ϕι ↓ ↓ ϕ ↓
0 → ϕι(U) ↪→ Uk → Uk/ϕι(U) → 0,

in which all vertical arrows are monomorphisms. Since Uk/ι(U) ∼= Uk−1 and

Uk/ϕι(U) ∼= kerπi
∼= Uk−1, the vertical arrow on the right is an isomorphism

by the inductive hypothesis. The vertical arrow on the left ϕι : U → ϕι(U) is an

isomorphism by construction, so that the vertical arrow in the middle ϕ : Uk → Uk

is an isomorphism as well, as desired. ¤

Proposition 6.9. Let U be a uniform module such that every monomorphism

f : U → U is an isomorphism. Then, for every α : A → B, we have m-dimU (α) =

i-dimU (α).

Proof. Obviously, i-dimU (α) ≤ m-dimU (α) for any α. For the opposite inequality,

suppose that there are f : Uk → A and g : B → Uk with gαf a monomorphism. By

Lemma 6.8, gαf is an isomorphism. Hence i-dimU (α) = m-dimU (α). ¤

Of course, there is a dual version also.

Proposition 6.10. Let U be a couniform module such that every epimorphism

f : U → U is an isomorphism. Then, for every α : A → B, we have e-dimU (α) =

i-dimU (α).

7. The Weak Krull-Schmidt Theorem

A right R-module NR is small if for every family {Mi | i ∈ I } of right R-modules

and every homomorphism ϕ : NR → ⊕i∈IMi, there is a finite subset F ⊆ I such

that πjϕ = 0 for every j ∈ I \ F . Here the πj : ⊕i∈I Mi → Mj are the canonical

projections. Clearly, every small module is quasi-small.
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Proposition 7.1. Let Ui, i ∈ N, be a countable family of non-zero uniserial

modules. Let M = ⊕i∈NUi, and let M = A⊕B = A′⊕B′ be two decompositions of

M with B ∼= B′. Suppose that there exist two morphisms f : A → A′ and g : A′ → A

such that:

(1) i-dimUi
(1A − gf) = i-dimUi

(1A′ − fg) = 0 for every index i ∈ N with Ui of

type 1, and

(2) m-dimUi
(1A − gf) = e-dimUi

(1A − gf) = m-dimUi
(1A′ − fg) =

m-dimUi
(1A′ − fg) = 0 for every index i ∈ N with Ui of type 2.

Then A ∼= A′.

Proof. We claim that if the hypotheses of the statement are satisfied and we

fix a submodule X of A with X a small module, then there exists a morphism

g′ : A′ → A satisfying the same hypotheses as g and with the further property that

X ⊆ ker(1A − g′f).

The proof of the claim is similar to [11, Lemma 2.1]. Let α : B → B′ and

α′ : B′ → B be mutually inverse isomorphisms. Let ϕ, ψ ∈ EndR(M) be defined by

ϕ =

(
f 0

0 α

)
: A⊕B → A′ ⊕B′, ψ =

(
g 0

0 α′

)
: A′ ⊕B′ → A⊕B.

Observe that i-dimUi(1M − ψϕ) = i-dimUi(1M − ϕψ) = 0 if Ui is of type 1, and

m-dimUi(1M − ψϕ) = e-dimUi(1M − ψϕ) = m-dimUi(1M − ϕψ) = e-dimUi(1M −
ϕψ) = 0 if Ui is of type 2. (In order to check this, observe that 1M − ψϕ =

(ιAπA + ιBπB)(1M − ψϕ)(ιAπA + ιBπB) = ιA(1A − gf)πA.) Since X is small and

ψϕ(X) is also small, there exists k ∈ N such that X + ψϕ(X) ⊆ ⊕k
j=1Uj . Now

consider ι : ⊕k
j=1 Uj → M and π : M → ⊕k

j=1Uj , the embedding and the canonical

projection. Set h := π(1M − ψϕ)ι. Then h ∈ J(EndR(⊕k
j=1Uj)), because (proof

of [3, Theorem 4.4]), for every 1 ≤ j, l ≤ k, if Uj is of type 1 and Uj
∼= Ul,

then πlhιj is not an isomorphism; if Uj is of type 2 and [Uj ]m = [Ul]m, then the

homomorphism πlhιj is not a monomorphism; and if Uj is of type 2 and [Uj ]e =

[Ul]e, then the homomorphism πlhιj is not an epimorphism. Let h′ be the inverse

of 1 − h ∈ EndR(⊕k
j=1Uj) and let τ be the automorphism of M given by τ :=(

h′ 0

0 1⊕j>kUj

)
. Put g′ := πAτιAg. Notice that, for any x ∈ X, h(x) = x−gf(x),

so (1 − h)(x) = ιAgf(x) and, consequently, x = τιAgf(x). Since x ∈ A, we get

that g′f(x) = x for every x ∈ X. Moreover, i-dimUj (1A − πAτιA) = 0 if Uj

is of type 1, and m-dimUj (1A − πAτιA) = e-dimUj (1A − πAτιA) = 0 whenever

j ∈ N and Uj is of type 2. This is because 1A − πAτιA = πA(1M − τ)ιA and
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1M −τ has all those m-dim’s, e-dim’s and i-dim’s zero. Now we can finish the proof

of the claim easily. For example, consider m-dimUi(1A − g′f) = m-dimUi(1A −
gf + (1A − πAτιA)gf). If Uj is of type 2, then m-dimUj (1A − gf) = 0 and also

m-dimUj
((1A − πAτιA)gf), therefore, by Lemma 4.1, m-dimUj

(1A − g′f) = 0. The

proof for e-dimUj (1A−g′f) = 0 and i-dimUj (1A−g′f) = 0 are similar. Finally, one

can use 1A′ − fg′ = (1A′ − fg)+ f(1A−πAτιA)g to prove the remaining equalities.

This proves the claim.

Every uniserial module is either countaby generated or small [2, Proposition 2.45].

Hence, for every i ∈ N, there exists a countable filtration Vi,1 ⊆ Vi,2 ⊆ . . . of Ui

such that Ui = ∪j∈NVi,j and Vi,j is small for every i, j ∈ N.

We now apply a standard back and forth (this is the analog of [11, Lemma 2.2]).

First of all, fix a bijection γ : N → N × N and set Xi := πA(Vγ(i)) and Yi :=

πA′(Vγ(i)). Observe that A =
∑

i∈NXi, and A′ =
∑

i∈N Yi. By induction we

construct ascending chains A1 ⊆ A2 ⊆ · · · of submodules of A, B1 ⊆ B2 ⊆ · · · of

submodules of A′ and homomorphisms f1, f2, f3, . . . : A → A′, g1, g2, g3, . . . : A′ →
A such that:

(i) Ai and Bi are small modules for every i ∈ N, and
∑

i∈NAi = A,
∑

i∈NBi =

A′;

(ii) gifi(x) = x for every x ∈ Ai;

(iii) fi+1gi(x) = x for every x ∈ Bi;

(iv) for every i ∈ N and every j ∈ N such that Uj is of type 2, we have

that m-dimUj (1A − gifi) = e-dimUj (1A − gifi) = m-dimUj (1A′ − figi) =

e-dimUj (1A′−figi) = 0 and m-dimUj (1A−gifi+1) = e-dimUj (1A−gifi+1) =

m-dimUj (1A′ − fi+1gi) = e-dimUj (1A′ − fi+1gi) = 0;

(v) for every i ∈ N and every j ∈ N such that Uj is of type 1, we have that

i-dimUj (1A − gifi) = i-dimUj (1A′ − figi) = 0 and i-dimUj (1A − gifi+1) =

i-dimUj (1A′ − fi+1gi) = 0;

(vi) for every n ∈ N, we have gn(Bn) ⊆ An+1 and fn(An) ⊆ Bn.

The induction process is as follows. Set f1 := f , g1 := g, A1 := 0 and B1 := Y1.

Suppose we have constructed f1, . . . , fn, g1, . . . , gn, A1, . . . , An and B1, . . . , Bn.

Define An+1 = gn(Bn) + Xn. Now, for every j ∈ N, m-dimUj (1A − gnfn) =

m-dimUj (1A′−fngn) = e-dimUj (1A−gnfn) = e-dimUj (1A′−fngn) = 0 when Uj is of

type 2, and i-dimUj (1A−gnfn) = i-dimUj (1A′−fngn) = 0 when Uj is of type 1. Thus

the claim guarantees the existence of a morphism fn+1 : A → A′ such that, for every

j ∈ N, m-dimUj (1A′−fn+1gn) = m-dimUj (1A−gnfn+1) = e-dimUj (1A′−fn+1gn) =

e-dimUj (1A − gnfn+1) = 0 (or i-dimUj (1A − gnfn+1) = i-dimUj (1A′ − fn+1gn) = 0)
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when Uj is of type 2 (or of type 1), and fn+1gn(x) = x for every x ∈ Bn. Set

Bn+1 := Yn+1 + fn+1(An+1). Again, by the claim, there exists gn+1 : A′ → A with

m-dimUj (1A−gn+1fn+1) = e-dimUj (1A−gn+1fn+1) = m-dimUj (1A′−fn+1gn+1) =

e-dimUj
(1A′ − fn+1gn+1) = 0 (or i-dimUj

(1A − gn+1fn+1) =

i-dimUj (1A′ − fn+1gn+1) = 0) for every j ∈ N with Uj of type 2 (or of type 1), and

gn+1fn+1(x) = x for every x ∈ An+1.

Notice that fn and fn+1 agree on An, because fn+1(x) = (fn+1gn)fn(x) = fn(x)

for every x ∈ An. Therefore we can define f : A → A′ such that f |An = fn|An for

every n ∈ N. Similarly, gn and gn+1 agree on Bn and we can define g : A′ → A with

g|Bn
= gn|Bn

. Now it is obvious, from (ii),(iii) and (vi), that f and g are mutually

inverse. ¤

Recall that if U, V are non-zero uniserial modules and [U ]m = [V ]m, then U is

of type 1 if and only if V is of type 1. Similarly, when [U ]e = [V ]e, we get that U

is of type 1 if and only if V is of type 1 (see [5, Lemma 5.2]).

Lemma 7.2. Let Ui, i ∈ N, be a countable family of non-zero quasi-small uniserial

modules. Let A1, A2 be direct summands of ⊕i∈NUi. Then A1
∼= A2 if and only if

the following conditions hold.

(i) i-dimUi(A1) = i-dimUi(A2) for every i ∈ N with Ui of type 1.

(ii) m-dimUi(A1) = m-dimUi(A2) for every i ∈ N with Ui of type 2.

(iii) e-dimUi(A1) = e-dimUi(A2) for every i ∈ N with Ui of type 2.

Proof. Assume ⊕i∈NUi = A1 ⊕ B1 = A2 ⊕ B2. Without loss of generality we can

suppose B1
∼= B2 (if X is a direct summand of ⊕i∈NUi, then X ⊕ (⊕i∈NUi)(ℵ0) ∼=

(⊕i∈NUi)(ℵ0)).

By Proposition 7.1, it is enough to find f : A1 → A2 and g : A2 → A1 such that,

for every i ∈ N,

(1) i-dimUi(1A1 − gf) = i-dimUi(1A2 − fg) = 0 if Ui is of type 1, and

(2) m-dimUi(1A1 − gf) = e-dimUi(1A1 − gf) = m-dimUi(1A2 − fg) =

e-dimUi(1A2 − fg) = 0 if Ui is of type 2.

Define three subsets of N as follows. Set Ni := { i ∈ N | Ui is of type 1 and there

is no j < i, j ∈ N, with Uj
∼= Ui }, Nm := { i ∈ N | Ui is of type 2 and there is

no j < i, j ∈ N, with [Uj ]m = [Ui]m }, and Ne := { i ∈ N | Ui is of type 2 and

there is no j < i, j ∈ N, with [Uj ]e = [Ui]e }. Notice that there are one-to-one

correspondences between Ni and the set of all isomorphism classes of the Ui’s of

type 1 and between Nm (resp. Ne) and the set of all monogeny (resp. epigeny)

classes of the Ui’s of type 2.
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Fix any n ∈ Nm. By Lemma 4.9, there are endomorphisms fn and gn in

EndR(⊕i∈NUi) with the following three properties: (i) for every i, j ∈ N with either

πjfnιi or πjgnιi non-zero, one has [Ui]m = [Uj ]m = [Un]m; (ii) m-dimUn(1A1 −
πA1gnιA2πA2fnιA1) = 0 and m-dimUn

(1A2 − πA2fnιA1πA1gnιA2) = 0; (iii) for

every i, j ∈ N, the morphisms πjfnιi and πjgnιi are not epimorphisms. Then

{ fn | n ∈ Nm } is a summable family of homomorphisms, because for every i ∈ N
and every x ∈ Ui there is a finite subset Fx of Nm with fnιi(x) = 0 for every

n ∈ Nm \ Fx. (Given i ∈ N and x ∈ Ui, let Fx be the subset of cardinality 1 of Nm

containing the unique element t of Nm with [Ut]m = [Ui]m. Then [Un]m 6= [Ui]m
for every n ∈ Nm \ Fx, so that πjfnιi = 0 for every n ∈ Nm \ Fx and every j ∈ N
by Property (i). Thus fnιi = 0 for every n ∈ Nm \ Fx.) Similarly, { gn | n ∈ Nm }
also is a summable family of homomorphisms. Notice that each fn sends a Ui to 0

if [Ui]m 6= [Un]m, and sends Ui to the direct sum of the Uj ’s with [Uj ]m = [Ui]m if

[Ui]m = [Un]m. Similarly for the gn’s.

Set αm :=
∑

n∈Nm
fn, βm :=

∑
n∈Nm

gn, so that αm, βm are endomorphisms of

⊕i∈NUi. Notice that αm and βm send, for every n ∈ Nm, the direct sum of the

Ui’s with [Ui]m = [Un]m into itself. Thus, for any k ∈ Nm, m-dimUk
(αm − fk) = 0

and m-dimUk
(βm− gk) = 0 (because αm− fk sends the direct sum of the Ui’s with

[Ui]m = [Uk]m to zero, and it is possible to apply Lemma 4.1).

Now fix any n ∈ Ne. By Lemma 5.10, we can find endomorphisms f ′n, g′n of

⊕i∈NUi with the following three properties: (i) if i, j ∈ N and either πjf
′
nιi or πjg

′
nιi

is non-zero, then [Ui]e = [Uj ]e = [Un]e; (ii) e-dimUn(1A1 − πA1g
′
nιA2πA2f

′
nιA1) = 0

and e-dimUn(1A2 − πA2f
′
nιA1πA1g

′
nιA2) = 0; (iii) for every i, j ∈ N, the morphisms

πjf
′
nιi and πjg

′
nιi are not monomorphisms. Observe that { f ′n | n ∈ Ne } and { g′n |

n ∈ Ne } are summable families of homomorphisms. Set αe :=
∑

n∈Ne
f ′n, βe :=∑

n∈Ne
g′n. For any k ∈ Ne, we have that e-dimUk

(αe − f ′k) = 0 and e-dimUk
(βe −

g′k) = 0.

Now fix n ∈ Ni. If KUn ⊆ IUn , then i-dimU = m-dimU by Proposition 6.9. We

can use Lemma 4.9 and get that there are endomorphisms f ′′n , g′′n ∈ EndR(⊕i∈NUi)

with the following two properties: (i) for every i, j ∈ N with either πjf
′′
n ιi or πjg

′′
nιi

non-zero, one has Ui
∼= Uj

∼= Un; and (ii) i-dimU (1A1 − πA1g
′′
nιA2πA2f

′′
n ιA1) = 0

and i-dimU (1A2 − πA2f
′′
n ιA1πA1g

′′
nιA2) = 0. Similarly we proceed in the case IUn ⊆

KUn . By Proposition 6.10 and Lemma 5.10, we find endomorphisms f ′′n , g′′n ∈
EndR(⊕i∈NUi) such that: (i) for every i, j ∈ N with either πjf

′′
n ιi or πjg

′′
nιi non-

zero, one has Ui
∼= Uj

∼= Un; and (ii) i-dimU (1A1 − πA1g
′′
nιA2πA2f

′′
n ιA1) = 0 and

i-dimU (1A2 − πA2f
′′
n ιA1πA1g

′′
nιA2) = 0. Again, the f ′′n ’s and the g′′n send all the
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Ui’s with Ui 6∼= Un to 0, and send the direct sum of all the Ui’s with Ui
∼= Un into

iteself. Therefore the families { f ′′n | n ∈ Ne } and { g′′n | n ∈ Ne } are summable. Set

αi :=
∑

n∈Ni
f ′′n and βi :=

∑
n∈Ni

g′′n. Also, for any k ∈ Ni, i-dimUk
(αi − f ′′k ) = 0

and i-dimUn
(βi − g′′k ) = 0.

Put f := πA2(αm + αe + αi)ιA1 and g := πA1(βm + βe + βi)ιA2 . It remains

to prove that f and g have the required properties (1) and (2) for every i ∈ N.

Clearly, it suffices to check property (1) when i is an element k ∈ Ni, to check that

m-dimUi(1A1 − gf) = m-dimUi(1A2 − fg) = 0 when i is an element k ∈ Nm, and

to check that e-dimUi
(1A1 − gf) = e-dimUi

(1A2 − fg) = 0 when i is an element

k ∈ Ne. For every non-zero uniserial module U , let MU (EU , IU ) be the ideal in

Mod-R consisting of all morphisms in Mod-R with m-dimU (e-dimU , i-dimU ) zero.

Fix an index k ∈ Ni. We have that πjfnιi ∈ IUk
for every n ∈ Nm and every

i, j ∈ N, because they are not epimorphisms. It follows that fn ∈ IUk
for every

n ∈ Nm, so that αm ∈ IUk
, that is, i-dimUk

(αm) = 0. Similarly, i-dimUk
(αe) =

i-dimUk
(βm) = i-dimUk

(βe) = 0, that is, αe, βm, βe ∈ IUk
. Therefore 1A1 − gf ∈

IUk
if and only if 1A1 − πA1βiιA2πA2αiιA1 ∈ IUk

. Now we have i-dimUk
(αi −

f ′′k ) = 0 and i-dimUk
(βi − g′′k ) = 0, that is, αi − f ′′k , βi − g′′k ∈ Ik. Therefore

1A1 − πA1βiιA2πA2αiιA1 ∈ IUk
if and only if 1A1 − πA1g

′′
k ιA2πA2f

′′
k ιA1 ∈ IUk

. This

last assertion is true, because i-dimUk
(1A1 − πA1g

′′
k ιA2πA2f

′′
k ιA1) = 0. The proof

for i-dimUk
(1A2 − fg) = 0 is similar.

Now let k ∈ Nm. For every i, j ∈ N and n ∈ Ne, the morphism πjf
′
nιi is

not a monomorphism, hence belongs to MUk
. Thus f ′n ∈ MUk

for every n ∈ Ne

(Remark 2.9), so that αe =
∑

n∈Ne
f ′n ∈MUk

, that is, m-dimUk
(αe) = 0. Similarly,

m-dimUk
(αi) = m-dimUk

(βe) = m-dimUk
(βi) = 0. Therefore 1A1 − gf ∈ MUk

if

and only if 1A1 − πA1βmιA2πA2αmιA1 ∈ MUk
. Now m-dimUk

(αm − fk) = 0 and

m-dimUk
(βm − gk) = 0, so that 1A1 − πA1βmιA2πA2αmιA1 ∈ MUk

if and only if

1A1−πA1gkιA2πA2fkιA1 ∈MUk
. The last assertion is true, because m-dimUk

(1A1−
πA1gkιA2πA2fkιA1) = 0. The proof for m-dimUk

(1A2 − fg) = 0 is similar.

Finally, let k ∈ Ne. As before, we find that e-dimUk
(αm) = e-dimUk

(αi) =

e-dimUk
(βm) = e-dimUk

(βi) = 0, hence 1A1 − gf ∈ EUk
if and only if 1A1 −

πA1βeιA2πA2αeιA1 ∈ EUk
. Now e-dimUk

(αe− f ′k) = 0 and e-dimUk
(βe− g′k) = 0, so

that 1A1 − πA1βeιA2πA2αeιA1 ∈ EUk
if and only if 1A1 − πA1g

′
kιA2πA2f

′
kιA1 ∈ EUk

.

The last statement is true because e-dimUk
(1A1 − πA1g

′
kιA2πA2f

′
kιA1) = 0. The

proof for e-dimUk
(1A2 − fg) = 0 is similar. ¤

Recall that, for every uniserial module U that is not quasi-small, there exists

a cyclic submodule V of U with [V ]m = [U ]m, and for any such submodule V , U
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turns out to be isomorphic to a direct summand of V (ℵ0) (To see this, notice that

by [1, Lemma 4.5(b)] there exists a cyclic submodule V of U with [V ]m = [U ]m.

Now apply [10, Theorem 2.6] to show that U ⊕ V (ℵ0) ∼= V (ℵ0).)

Corollary 7.3. Let Ui, i ∈ N, be a family of non-zero uniserial modules. Set

K := { i ∈ N | Ui is quasi-small }. Let A and A′ be direct summands of ⊕i∈NUi.

Then A ∼= A′ if and only if:

(i) i-dimUi
(A) = i-dimUi

(A′) for every i ∈ N with Ui of type 1,

(ii) m-dimUi
(A) = m-dimUi

(A′) for every i ∈ N with Ui of type 2,

(iii) e-dimUi
(A) = e-dimUi

(A′) for every i ∈ K.

Proof. In the direct sum ⊕i∈NUi we can substitute each summand Ui that is not

quasi-small with a countable family of cyclic pairwise isomorphic submodules of Ui

in the same monogeny class of Ui. Thus we get a countable family Vj , j ∈ N, of

uniserial modules, in which every Vj is quasi-small and ⊕i∈NUi is isomorphic to a

direct summand of ⊕j∈NVj .

Then A,A′ are direct summands of ⊕j∈NVj and, by Lemma 7.2, it is enough

to prove that i-dimVj (A) = i-dimVj (A
′) for every j ∈ N with Vj is of type 1, and

m-dimVj (A) = m-dimVj (A
′), e-dimVj (A) = e-dimVj (A

′) for every j ∈ N with Vj of

type 2. The first equalities are obvious. The equalities m-dimVj (A) = m-dimVj (A
′)

hold because m-dimV depends only on the monogeny class of V . Finally, assume

that j ∈ N is such that Vj is of type 2. If [Vj ]e = [Ui]e for some i ∈ K, we are

done by (iii). Now suppose that [Vj ]e 6= [Ui]e for any i ∈ N such that Ui is a

quasi-small module of type 2. Since any module of the same epigeny class as Vj

is quasi-small (this follows from [1, Lemma 4.5]) and of type 2 [5, Lemma 5.2], we

get that e-dimVj (⊕i∈NUi) = 0 by Remark 5.2 and Lemma 5.3. Then necessarily

e-dimVj (A) = e-dimVj (A
′) = 0, and we are done. ¤

We are ready to prove our final categorical version of the Weak Krull-Schmidt

Theorem. Let SUsr be the category of all serial right modules over a fixed ring

R. For every uniserial module U of type 1, let F : add(SUsr) → add(SUsr)/IU be

the canonical functor. We know that there is an equivalence G : add(SUsr)/IU →
Mod-(EndR(U)/IU ). For an object A ∈ add(SUsr), define I-dimU (A) as the di-

mension of GF (A) over the division ring EndR(U)/JU . Similarly, for every unis-

erial module U of type 2, define M-dimU (A) (resp., E-dimU (A)) as the dimen-

sion of GF (A), where F : add(SUsr) → add(SUsr)/MU (resp., F : add(SUsr) →
add(SUsr)/EU ) is the canonical functor and G is the categorical equivalence
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G : add(SUsr)/MU → Mod-(EndR(U)/IU ) (resp., G : add(SUsr)/EU → Mod-

(EndR(U)/KU )).

Notice the difference between the invariants m-dimU and M-dimU . The invariant

m-dimU (A) was defined in [4] for any right R-module A to consider the finite case:

it is either a non-negative integer or ∞. The invariant M-dimU (A) introduced now

is defined only for the objects of add(SUsr), it has been introduced to treat infinite

direct sums, and its value is a cardinal number. The two invariants m-dimU (A)

and M-dimU (A) coincide for the modules A that are direct summands of countable

direct sums of uniserial modules (Lemma 4.8).

Theorem 7.4. Let A and A′ be direct summands of serial right modules over a

ring R. Then A′ ∼= A if and only if

(i) I-dimU (A) = I-dimU (A′) for every uniserial right R-module U of type 1,

and

(ii) M-dimU (A) = M-dimU (A′) and E-dimU (A) = E-dimU (A′) for every quasi-

small uniserial right R-module U of type 2.

Proof. As in the proof of Corollary 7.3, let Ui, i ∈ I, be a family of non-zero quasi-

small uniserial modules such that both A and A′ are direct summands of ⊕i∈IUi.

The modules A and A′ have decompositions A = ⊕x∈XAx and A′ = ⊕y∈Y A′y,

where every Ax, x ∈ X, and every A′y, y ∈ Y , is isomorphic to a direct summand

of ⊕i∈I′Ui for some countable subset I ′ of I [2, Corollary 2.49]. Clearly, we can

suppose that all the Ax’s and all the A′y’s are non-zero.

Let U be a non-zero quasi-small uniserial module. Observe that
∑

x∈X

I-dimU (Ax) = I-dimU (A) and
∑

y∈Y

I-dimU (A′y) = I-dimU (A′),

where the sums indicate the cardinality of the disjoint union of the cardinals

I-dimU (Ax), x ∈ X (resp., I-dimU (A′y), y ∈ Y ) . Similarly
∑

x∈X M-dimU (Ax) =

M-dimU (A),
∑

y∈Y M-dimU (A′y) = M-dimU (A′),
∑

x∈X E-dimU (Ax) = E-dimU (A)

and
∑

y∈Y E-dimU (A′y) = E-dimU (A′).

Therefore we can construct the following bipartite, non-directed graphs with

multiple edges. Fix an index i ∈ I with Ui of type 1. Fix a set Ei of cardinality

|Ei| = I-dimUi(A) and two mappings p : Ei → X, q : Ei → Y with |p−1(x)| =

I-dimUi(Ax), |q−1(y)| = I-dimUi(A
′
y) for every x ∈ X, y ∈ Y . Define a graph Gi

with set of vertices the disjoint union X∪̇Y of X and Y , set of edges Ei, and any

edge e ∈ Ei connecting the vertices p(e) ∈ X and q(e) ∈ Y . Notice that the graph

Gi = (X∪̇Y,Ei) is bipartite because there are no edges between two vertices in X
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or between two vertices in Y , that for every x ∈ X there are I-dimUi
(Ax) edges

adjacent to x and that for every y ∈ Y there are I-dimUi(A
′
y) edges adjacent to y.

If i ∈ I and Ui is of type 2, define two bipartite, non-directed graphs G′i and G′′i
in a similar way. Both graphs have X∪̇Y as set of vertices. The graph G′i has a set

E′
i of edges of cardinality |E′

i| = M-dimUi(A), and any edge of G′i connects a vertex

x ∈ X and a vertex y ∈ Y . Further, for every x ∈ X there are M-dimUi(Ax) edges

of G′i adjacent to x and M-dimUi
(A′y) edges adjacent to y. Similarly, for G′′i . For

every x ∈ X there are E-dimUi(Ax) edges of G′′i adjacent to x and E-dimUi(A
′
y)

edges adjacent to y.

Let I0 ⊆ I be such that Ui is of type 1 for every i ∈ I0, and for any i ∈ I such

that Ui is of type 1 there exists exactly one j ∈ I0 such that Ui
∼= Uj . Similarly, let

I ′0 ⊆ I (resp., I ′′0 ⊆ I) be such that Ui is of type 2 for every i ∈ I ′0 (resp., i ∈ I ′′0 ),

and for any i ∈ I such that Ui is of type 2 there exists exactly one j ∈ I ′0 (resp.,

j ∈ J ′′0 ) with [Ui]m = [Uj ]m (resp., [Ui]e = [Uj ]e). Consider the collection of graphs

C = {Gi | i ∈ I0} ∪ {G′i | i ∈ I ′0} ∪ {G′′i | i ∈ I ′′0 }.
Notice that in any of these graphs every vertex has degree ≤ ℵ0, that is, at most

countably many edges adjacent to it. Also, any vertex has non-zero degree in at

most countably many of the graphs of the collection C.
Let κ be an infinite ordinal of cardinality greater than the cardinality of X. We

will now construct two families of subsets Xλ, λ ≤ κ, of X and Yλ, λ ≤ κ, of Y

with the following properties:

(i) X = ∪λ≤κXλ, Y = ∪λ≤κYλ.

(ii) If λ ≤ κ is a limit ordinal, then Xλ = ∪λ′<λXλ′ and Yλ = ∪λ′<λYλ′ .

(iii) For any λ < κ, Xλ ⊆ Xλ+1, Yλ ⊆ Yλ+1 and the sets Xλ+1\Xλ and Yλ+1\Yλ

are at most countable.

(iv) For any λ < κ, each graph of the collection C is the disjoint union of its

two full subgraphs with set of vertices Xλ∪̇Yλ and (X \ Xλ)∪̇(Y \ Yλ),

that is, there is no edge between any vertex in Xλ∪̇Yλ and any vertex in

(X \Xλ)∪̇(Y \ Yλ).

The construction of the Xλ’s and the Yλ’s is by induction on λ. For λ = 0,

define Xλ := ∅ and Yλ := ∅. If λ is a limit ordinal and Xλ′ , Yλ′ have been already

constructed for every λ′ < λ, set Xλ := ∪λ′<λXλ′ and Yλ := ∪λ′<λYλ′ (notice that

(iv) is true for λ if it is true for every λ′ < λ). Now suppose that we have defined

Xλ and Yλ and we want to define Xλ+1 and Yλ+1. If Xλ = X, then by (iv) there

is no edge between any vertex in X∪̇Yλ and any vertex in Y \Yλ. But every vertex

in Y has non-zero degree in at least one graph of C, so that Yλ = Y also. Hence,
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in this case Xλ = X, define Xλ+1 = X and Yλ+1 = Y . Otherwise, fix x ∈ X \Xλ.

Now construct by induction subsets C1 ⊆ C2 ⊆ . . . of X and D1 ⊆ D2 ⊆ . . . of Y

as follows. Set C1 := {x}, and let D1 be the set of all y ∈ Y that are connected to

x in at least one of the graphs in C. Suppose that C1, . . . , Ck and D1, . . . , Dk have

been defined. Define Ck+1 as the subset of all elements of Y that are connected to

some element of Dk in at least one of the graphs in C. Similarly, let Dk+1 be the

set of elements of X that are connected to some element of Ck+1 in at least one of

the graphs in C. Notice that Ck ⊆ Ck+1 and Dk ⊆ Dk+1. Define C := ∪k∈NCk and

D := ∪k∈NDk. Since Condition (iv) is true for λ, we have that C ⊆ X \ Xλ and

D ⊆ Y \ Yλ.

Clearly, any of the defined graphs is the disjoint union of its three full subgraphs

with set of vertices Xλ∪̇Yλ, C∪̇D and (X \ (C ∪Xλ))∪̇(Y \ (D ∪ Yλ)) respectively.

Define Xλ+1 := C ∪Xλ and Yλ+1 := D ∪ Yλ, so that (iii) and (iv) hold for λ + 1.

Since Xλ ⊂ Xλ+1 when Xλ 6= X, obviously Xκ = X, so that Yκ = Y also.

Lemma 7.2 guarantees that ⊕x∈Xλ+1\Xλ
Ax

∼= ⊕y∈Yλ+1\Yλ
A′y for every λ < κ.

Since X = ∪̇λ<κXλ+1 \Xλ and Y = ∪̇λ<κYλ+1 \ Yλ, we conclude that A ∼= A′. ¤

The following result was proved in [9]. Now it is almost obvious.

Corollary 7.5. Let Ui, i ∈ I, be uniserial modules that are not quasi-small for

every i ∈ I. Then any direct summand of ⊕i∈IUi is serial.

Proof. Suppose that A is a direct summand of X = ⊕i∈IUi. Let V be a quasi-small

uniserial module of type 2. As any non-zero factor of a uniserial module that is

not quasi-small cannot be quasi-small [1, Lemma 4.5], we have that e-dimV (X) = 0

and hence also e-dimV (A) = 0. Similarly, i-dimW (X) = 0, hence i-dimW (A) =

0, for every uniserial module W of type 1. Let I0 be a subset of I such that

for every j ∈ I there is exactly one i ∈ I0 with Ui
∼= Uj , so that {Ui | i ∈

I0 } is a set of representatives up to isomorphism of {Ui | i ∈ I0 }. Then A ∼=
⊕i∈I0U

(M-dimUi
(A))

i . ¤

Remarks 7.6. (1) Let us explain why we can consider Theorem 7.4 a generalization

of [10, Theorem 2.6]. Suppose we have a family of non-zero uniserial modules Ui,

i ∈ I, and let I ′ ⊆ I be the set of the i ∈ I for which Ui is quasi-small. Let V be

a uniserial module of type 2. Then M-dimV (⊕i∈IUi) is the cardinality of set { i ∈
I | [Ui]m = [V ]m }. If V is quasi-small, then also any uniserial module of the same

epigeny class is quasi-small [1, Lemma 4.5]. Therefore E-dimV (⊕i∈IUi) = |{i ∈ I |
[Ui]e = [V ]e}| = |{i ∈ I ′ | [Ui]e = [V ]e}|. Now suppose that V is a nonzero uniserial

module of type 1. If every monomorphism in EndR(V ) is an isomorphism, then
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[U ]m = [V ]m if and only if U ∼= V . Therefore I-dimV (⊕i∈IUi) = |{i ∈ I | [Ui]m =

[V ]m}|. If every epimorphism in EndR(V ) is an isomorphism, then [U ]e = [V ]e if

and only if U ∼= V . Therefore I-dimV (⊕i∈IUi) = |{i ∈ I | [Ui]e ∼= [V ]e}|. Having

realized this, it is easy to prove the following: Let Ui, i ∈ I, and Vj , j ∈ J , be two

families of nonzero uniserial modules. Let I ′ = {i ∈ I | Ui is quasi-small } and let

J ′ = {j ∈ J | Uj is quasi-small }. Then the following are equivalent

(i) There are bijections σ : I → J and τ : I ′ → J ′ such that [Ui]m = [Vσ(i)]m
for every i ∈ I and [Ui]e = [Vτ(i)]e for every i ∈ I ′.

(ii) I-dimU (⊕i∈IUi) = I-dimU (⊕j∈JVj) for every uniserial module U of type 1,

M-dimU (⊕i∈IUi) = M-dimU (⊕j∈JVj) for every uniserial module U of type

2, and E-dimU (⊕i∈IUi) = E-dimU (⊕j∈JVj) for every quasi-small uniserial

module U of type 2.

(2) We conclude the paper with an analysis in this setting of the example given

by Puninski in [13]. Our analysis is a continuation of [11, Section 5]. Essentially,

Puninski found a uniserial ring R such that, for any 0 6= r, s ∈ J(R), the modules

R/rR and R/sR are isomorphic. Set U := RR and let V be a uniserial module

isomorphic to R/rR for some non-zero r ∈ J(R). The module V is of type 2 and

there exists a uniserial direct summand V ′ of V (ℵ0) not isomorphic to V . So V ′ is not

quasi-small, but [V ′]m = [V ]m. Moreover, U (ℵ0)⊕V ∼= V ′⊕W . Let us calculate the

m-dim, e-dim, i-dim of W . Firstly, i-dimU (V ′) = 0, therefore i-dimU (W ) = ∞. If

U ′ is a uniserial module of type 1 not isomorphic to U , then i-dimU ′(U (ℵ0) ⊕ V ) =

0, so that also i-dimU ′(W ) = 0. Now m-dimV (U (ℵ0) ⊕ V ) = 1 = m-dimV (V ′),

therefore m-dimV (W ) = 0. If U ′ is a uniserial module of type 2 and [U ′]m 6= [V ]m,

then m-dimU ′(U (ℵ0) ⊕ V ) = 0 = m-dimU ′(W ). Finally, e-dimV (U (ℵ0) ⊕ V ) = 1

and e-dimV (V ′) = 0 implies e-dimV (W ) = 1. Also, if U ′ is a quasi-small uniserial

module of type 2 such that [U ′]e 6= [V ]e, then e-dimU ′(W ) = 0. Recall that if

X, Y, Z are uniserial modules such that [X]m = [Y ]m and [Y ]e = [Z]e, then X and

Z have the same type (type 1 or type 2) [5, Lemma 5.2]. To see that W is not serial,

assume the contrary, in which case W would contain a uniserial direct summand Y

with e-dimV (Y ) = 1, but m-dimU ′(Y ) = 0 for every uniserial module U ′ of type 2.

Now e-dimV (Y ) = 1 and V of type 2 imply that Y also is of type 2 [5, Lemma 5.2].

Thus m-dimY (Y ) = 0, which is not possible.
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