NONCOMMUTING GRAPH CHARACTERIZATION OF SOME SIMPLE GROUPS WITH CONNECTED PRIME GRAPHS

Liangcai Zhang and Wujie Shi
Received: 18 September 2008; Revised:10 December 2008
Communicated by Abdullah Harmancı

Abstract

Let G be a nonabelian group and associate a noncommuting graph $\nabla(G)$ with G as follows: The vertex set of $\nabla(G)$ is $G \backslash Z(G)$, where $Z(G)$ is the center of G, and two vertices are adjacent by an edge whenever they do not commute. In 2006, A. Abdollahi, S. Akbari and H. R. Maimani put forward a conjecture called $A A M$'s Conjecture in [1] as follows: If M is a finite nonabelian simple group and G is a group such that $\nabla(G) \cong \nabla(M)$, then $G \cong M$. Even though this conjecture is known to hold for all simple groups with nonconnected prime graphs and the alternating group A_{10} (see [11]), it is still unknown for all simple groups with connected prime graphs except A_{10}. In the present paper, we prove that the conjecture is also true for $L_{4}(8)$, the projective special linear group of degree 4 over the finite field of order 8 . The new method used in this paper also works well in the case $L_{4}(4), L_{4}(7), U_{4}(7)$, etc.

Mathematics Subject Classification (2000): 20D05, 20D06, 20D60
Keywords: finite group, noncommuting graph, projective special linear simple group

1. Introduction

It is well known that the prime graph $\Gamma(G)$ associated with a finite group G is defined as follows: The vertex set of $\Gamma(G)$ is $\pi(G)$, the set of prime divisors of the order of G. The primes p and q, considered as vertices of $\Gamma(G)$, are adjacent by an edge (we write $p \sim q$) if and only if G contains an element of order $p q$. Denote by $t(G)$ the number of connected components of $\Gamma(G)$ (see [12]).

Given a finite group G, we construct its noncommuting graph $\nabla(G)$ as follows: The vertex set of $\nabla(G)$ is $G \backslash Z(G)$, where $Z(G)$ is the center of G, and two vertices are adjacent by an edge whenever they do not commute(see $[1,8]$).

[^0]For a graph X, we denote the sets of vertices and edges of X by $V(X)$ and $E(X)$, respectively. Two graphs X and Y are said to be isomorphic if there exists a bijective map $\phi: V(X) \rightarrow V(Y)$ such that x and y are adjacent in X if and only if $\phi(x)$ and $\phi(y)$ are adjacent in Y. If two graphs X and Y are isomorphic, we denote it by $X \cong Y$. It is easy to see that if $X \cong Y$, then $|V(X)|=|V(Y)|$ and $|E(X)|=|E(Y)|$.

In 2006, A. Abdollahi, S. Akbari and H. R. Maimani put forward a conjecture in [1] as follows.
$A A M$'s Conjecture: If M is a finite nonabelian simple group and G is a group such that $\nabla(G) \cong \nabla(M)$, then $G \cong M$.

In [11], it has been proved that $A A M$'s Conjecture is true for all finite simple groups with nonconnected prime graphs and A_{10}, where A_{10} is the alternating group of degree 10. In the present paper, we will give another example to show that $A A M$'s Conjecture is also true for some simple groups with connected prime graphs. In fact, we prove that if G is a finite group such that $\nabla(G) \cong \nabla\left(L_{4}(8)\right)$, then $G \cong L_{4}(8)$, where $L_{4}(8)$ is the projective special linear group of degree 4 over the finite field of order 8 . The new method used in this paper also works well in the case $L_{4}(4), L_{4}(7), U_{4}(7)$, etc.

All further unexplained notations are standard and we refer the reader to $[1,8]$.

2. Preliminaries and Lemmas

For any group G, we denote by $\pi_{e}(G)$ the set of orders of its elements. The set $\pi_{e}(G)$ is closed and partially ordered by the divisibility relation. Hence, it is uniquely determined by $\mu(G)$, the subset of its elements which are maximal under the divisibility relation.

Lemma 2.1. ([7], Lemma 1) Let $L_{4}(q)$ be a projective special linear simple group, where $q=2^{m}$ and m is a natural number. Then $\mu\left(L_{4}(q)\right)=\left\{\left(q^{2}+1\right)(q+1), q^{3}-\right.$ $\left.1,2\left(q^{2}-1\right), 4(q-1)\right\}$. In particular, $\mu\left(L_{4}(8)\right)=\left\{3^{2} \cdot 5 \cdot 13,7 \cdot 73,2 \cdot 3^{2} \cdot 7,2^{2} \cdot 7\right\}$.

Let n be a natural number. We say that a finite group G is a K_{n}-group if $|\pi(G)|=n$. Now we quote some useful results on simple K_{n}-groups.

Lemma 2.2. ([3], Theorem 1) Let G be a finite simple K_{3}-group. Then G is isomorphic to one of the following simple groups: $A_{5}, A_{6}, L_{2}(7), L_{2}(8), L_{2}(17), L_{3}(3)$, $U_{3}(3)$ or $U_{4}(2)$.

Lemma 2.3. ([10], Theorem 2) Let G be a finite simple K_{4}-group. Then G is isomorphic to one of the following simple groups:

1. $A_{7}, A_{8}, A_{9}, A_{10}, M_{11}, M_{12}, J_{2}, L_{2}(16), L_{2}(25), L_{2}(49), L_{2}(81), L_{3}(4)$, $L_{3}(5), L_{3}(7), L_{3}(8), L_{3}(17), L_{4}(3), S_{4}(4), S_{4}(5), S_{4}(7), S_{4}(9), S_{6}(2), O_{8}^{+}(2)$, $G_{2}(3), U_{3}(4), U_{3}(5), U_{3}(7), U_{3}(8), U_{3}(9), U_{4}(3), U_{5}(2), S z(8), S z(32),{ }^{3} D_{4}(2)$, ${ }^{2} F_{4}(2)$;
2. $L_{2}(r)$, where r is a prime satisfying the equation $r^{2}-1=2^{a} \cdot 3^{b} \cdot u^{c}$, where $a \geq 1, b \geq 1, c \geq 1$, and $u>3$ is a prime;
3. $L_{2}\left(2^{m}\right)$, where $m \geq 1$ satisfies the equations $2^{m}-1=u$ and $2^{m}+1=3 t^{b}$, where $t>3, u$ are primes and $b \geq 1$;
4. $L_{2}\left(3^{m}\right)$, where $m \geq 1$ satisfies the equations $3^{m}-1=2 u^{b}$ and $3^{m}+1=4 t$, or $3^{m}-1=2 u$ and $3^{m}+1=4 t^{c}$, where u, t are odd primes and $b \geq 1, c \geq 1$.

In the sequel we denote by $\pi(n)$ the set of prime divisors of a natural number n.
Lemma 2.4. ([5], Theorem A) Let q be a prime power. Then each finite simple K_{5}-group is isomorphic to one of the following simple groups:

1. $L_{2}(q)$, where q satisfies $\left|\pi\left(q^{2}-1\right)\right|=4$;
2. $L_{3}(q)$, where q satisfies $\left|\pi\left(\left(q^{2}-1\right)\left(q^{3}-1\right)\right)\right|=4$;
3. $U_{3}(q)$, where q satisfies $\left|\pi\left(\left(q^{2}-1\right)\left(q^{3}+1\right)\right)\right|=4$;
4. $O_{5}(q)$, where q satisfies $\left|\pi\left(q^{4}-1\right)\right|=4$;
5. $S z\left(2^{2 m+1}\right)$, where $\left|\pi\left(\left(2^{2 m+1}-1\right)\left(2^{4 m+2}+1\right)\right)\right|=4$;
6. $R(q)$, where $q=3^{2 m+1}$ satisfies $\left|\pi\left(q^{2}-1\right)\right|=3$ and $\left|\pi\left(q^{2}-q+1\right)\right|=1$;
7. $A_{11}, A_{12}, M_{22}, J_{3}, H S, H e, M^{c} L, L_{4}(4), L_{4}(5), L_{4}(7), L_{5}(2), L_{5}(3), L_{6}(2), O_{7}(3)$,
$O_{9}(2), S_{6}(3), S_{8}(2), U_{4}(4), U_{4}(5), U_{4}(7), U_{4}(9), U_{5}(3), U_{6}(2), O_{8}^{+}(3), O_{8}^{-}(2),{ }^{3} D_{4}(3)$,
$G_{2}(4), G_{2}(5), G_{2}(7), G_{2}(8)$.
Lemma 2.5. ([5], Theorem B) Let q be a prime power. Then each finite simple K_{6}-group is isomorphic to one of the following simple groups:
8. $L_{2}(q)$, where q satisfies $\left|\pi\left(q^{2}-1\right)\right|=5$;
9. $L_{3}(q)$, where q satisfies $\left|\pi\left(\left(q^{2}-1\right)\left(q^{3}-1\right)\right)\right|=5$;
10. $L_{4}(q)$, where q satisfies $\left|\pi\left(\left(q^{2}-1\right)\left(q^{3}-1\right)\left(q^{4}-1\right)\right)\right|=5$;
11. $U_{3}(q)$, where q satisfies $\left|\pi\left(\left(q^{2}-1\right)\left(q^{3}+1\right)\right)\right|=5$;
12. $U_{4}(q)$, where q satisfies $\left|\pi\left(\left(q^{2}-1\right)\left(q^{3}+1\right)\left(q^{4}-1\right)\right)\right|=5$;
13. $O_{5}(q)$, where q satisfies $\left|\pi\left(q^{4}-1\right)\right|=5$;
14. $G_{2}(q)$, where q satisfies $\left|\pi\left(q^{6}-1\right)\right|=5$;
15. $S z\left(2^{2 m+1}\right)$, where $\left|\pi\left(\left(2^{2 m+1}-1\right)\left(2^{4 m+2}+1\right)\right)\right|=5$;
16. $R\left(3^{2 m+1}\right)$, where $\left|\pi\left(\left(3^{2 m+1}-1\right)\left(3^{6 m+3}+1\right)\right)\right|=5$;
17. $A_{13}, A_{14}, A_{15}, A_{16}, M_{23}, M_{24}, J_{1}, S u z, R u, C o_{2}, C o_{3}, F i_{22}, H N, L_{5}(7), L_{6}(3)$,
$L_{7}(2), O_{7}(4), O_{7}(5), O_{7}(7), O_{9}(3), S_{6}(4), S_{6}(5), S_{6}(7), S_{8}(3), U_{5}(4), U_{5}(5), U_{5}(9), U_{6}(3)$,
$U_{7}(2), F_{4}(2), O_{8}^{+}(4), O_{8}^{+}(5), O_{8}^{+}(7), O_{10}^{+}(2), O_{8}^{-}(3), O_{10}^{-}(2),{ }^{3} D_{4}(4),{ }^{3} D_{4}(5)$.

Now we quote some preliminary results from elementary number theory which will play an important role in proving Lemma 2.9.

Lemma 2.6. ([4], Theorems 2.3.3 and 4.6.3) Let a, x, m and n be natural numbers. Then the following assertions hold.

1. If p is a prime number, then $a^{p} \equiv a(\bmod p)$.
2. If g.c.d. $\{m, n\}=d$, then g.c.d. $\left\{x^{m}-1, x^{n}-1\right\}=x^{d}-1$. In particular, $m \mid n$ if and only if $x^{m}-1 \mid x^{n}-1$.

Lemma 2.7. ([13]) If p is a prime and $n \geq 2$ is a natural number, then there exists a prime z such that $z \mid p^{n}-1$ and $z \nmid p^{m}-1$ for $1 \leq m<n$ unless either

1. $n=6$ and $p=2$, or
2. $n=2$ and $p=2^{q}-1$ is a Mersenne prime, where q is natural number.

Lemma 2.8. ([6]) Let $n \geq 2$ and f be two natural numbers and $q=p^{f}$, where p is a prime number. Then

1. $\operatorname{Out}\left(L_{n}(q)\right) \cong Z_{(n, q-1)}: Z_{f}: Z_{2}$ if $n \geq 3$;
2. $\operatorname{Out}\left(L_{2}(q)\right) \cong Z_{(2, q-1)} \times Z_{f}$.

Lemma 2.9. Let G be a finite nonabelian simple group such that $\pi(G) \subseteq\{2,3,5,7$, 13, 73$\}$. Then G is isomorphic to one of the groups listed in Table 1. In particular,

1. $3 \in \pi(G)$ if and only if $G \neq S z(8)$;
2. $\pi(\operatorname{Out}(G)) \subseteq\{2,3\}$ if $G \neq S_{6}(2)$.

G	$\|G\|$	Out (G)	G	$\|G\|$	Out (G)
A_{5}	$2^{2} \cdot 3 \cdot 5$	2	$L_{2}(7)$	$2^{3} \cdot 3 \cdot 7$	2
A_{6}	$2^{3} \cdot 3^{2} \cdot 5$	2^{2}	$U_{3}(3)$	$2^{5} \cdot 3^{3} \cdot 7$	2
$L_{2}(8)$	$2^{3} \cdot 3^{2} \cdot 7$	3	$L_{3}(3)$	$2^{4} \cdot 3^{3} \cdot 13$	2
$U_{4}(2)$	$2^{6} \cdot 3^{4} \cdot 5$	2	A_{7}	$2^{3} \cdot 3^{2} \cdot 5 \cdot 7$	2
A_{8}	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	2	$L_{3}(4)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	D_{12}
A_{9}	$2^{6} \cdot 3^{4} \cdot 5 \cdot 7$	2	$L_{2}(49)$	$2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}$	2^{2}
A_{10}	$2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7$	2	$U_{3}(5)$	$2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$	S_{3}
$U_{4}(3)$	$2^{7} \cdot 3^{6} \cdot 5 \cdot 7$	D_{8}	J_{2}	$2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$	2
$O_{8}^{+}(2)$	$2^{12} \cdot 3^{5} \cdot 5^{2} \cdot 7$	S_{3}	$S_{6}(2)$	$2^{9} \cdot 3^{4} \cdot 5 \cdot 7$	1
$S_{4}(7)$	$2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7^{4}$	2	$L_{2}(25)$	$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$	2^{2}
$L_{2}(13)$	$2^{2} \cdot 3 \cdot 5 \cdot 13$	2	$U_{3}(4)$	$2^{6} \cdot 3 \cdot 5^{2} \cdot 13$	4
$L_{4}(3)$	$2^{7} \cdot 3^{6} \cdot 5 \cdot 13$	2^{2}	$S_{4}(5)$	$2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 13$	2
${ }^{2} F_{4}(2)^{\prime}$	$2^{11} \cdot 3^{3} \cdot 5^{2} \cdot 13$	2	$L_{2}(27)$	$2^{2} \cdot 3^{3} \cdot 7 \cdot 13$	6
$G_{2}(3)$	$2^{6} \cdot 3^{6} \cdot 7 \cdot 13$	2	$L_{2}(64)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$	6
$L_{3}(9)$	$2^{7} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 13$	2^{2}	$S_{z(8)}$	$2^{6} \cdot 5 \cdot 7 \cdot 13$	3
$G_{2}(4)$	$2^{12} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 13$	2	$S_{4}(8)$	$2^{12} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 13$	6
$S_{6}(3)$	$2^{9} \cdot 3^{9} \cdot 5 \cdot 7 \cdot 13$	2	$O_{7}(3)$	$2^{9} \cdot 3^{9} \cdot 5 \cdot 7 \cdot 13$	2
${ }^{3} D_{4}(2)$	$2^{12} \cdot 3^{4} \cdot 7^{2} \cdot 13$	3	$U_{4}(5)$	$2^{7} \cdot 3^{4} \cdot 5^{6} \cdot 7 \cdot 13$	2^{2}
$O_{8}^{+}(3)$	$2^{12} \cdot 3^{12} \cdot 5^{2} \cdot 7 \cdot 13$	S_{4}	$L_{3}(8)$	$2^{9} \cdot 3^{2} \cdot 7^{2} \cdot 73$	6
$U_{3}(9)$	$2^{5} \cdot 3^{6} \cdot 5^{2} \cdot 73$	4	$L_{2}\left(3^{6}\right)$	$2^{3} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 13 \cdot 73$	2×6
${ }^{3} D_{4}(3)$	$2^{6} \cdot 3^{12} \cdot 7^{2} \cdot 13^{2} \cdot 73$	3	$G_{2}(9)$	$2^{8} \cdot 3^{12} \cdot 5^{2} \cdot 7 \cdot 13 \cdot 73$	2
$S_{4}(27)$	$2^{6} \cdot 3^{12} \cdot 5 \cdot 7^{2} \cdot 13^{2} \cdot 73$	6	$L_{4}(8)$	$2^{18} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 13 \cdot 73$	6

Table 1 Finite Nonabelian Simple Groups with $\pi(G) \subseteq\{2,3,5,7,13,73\}$

Proof. If G is a simple K_{3}-group, then $G \cong A_{5}, L_{2}(7), L_{2}(8), A_{6}, L_{3}(3), U_{3}(3)$ or $U_{4}(2)$ by Lemma 2.2.

If G is a simple K_{4}-group, then $G \cong L_{2}(13), A_{7}, L_{2}(25), L_{2}(27), A_{8}, A_{9}, S z(8)$, $L_{2}(49), U_{3}(4), U_{3}(5), U_{3}(9), L_{3}(4), J_{2}, S_{6}(2), A_{10}, U_{4}(3), G_{2}(3), S_{4}(5), L_{4}(3),{ }^{2} F_{4}(2)^{\prime}$, $L_{3}(8), S_{4}(7), O_{8}^{+}(2),{ }^{3} D_{4}(2)$ by Lemma 2.3.

If G is a simple K_{5}-group or a simple K_{6}-group, then $\pi(G) \subseteq\{2,3,5,7,13,73\}$. By Lemmas 2.4 and 2.5, G is isomorphic to one of the groups listed in Lemmas 2.4 and 2.5. Now we assert all candidates for G must be $L_{2}(64), L_{2}\left(3^{6}\right), L_{3}(9), G_{2}(4)$, $G_{2}(9), S_{4}(8), S_{4}(27), S_{6}(3), O_{7}(3), U_{4}(5), O_{8}^{+}(3),{ }^{3} D_{4}(3)$ and $L_{4}(8)$.

Suppose G is isomorphic to $L_{2}(q)$, where q is a prime power satisfying $\mid \pi\left(q^{2}-\right.$ $1) \mid=4$ or 5 . Let $q=p^{s}$, where p is a prime number and s is a natural number. Then $|G|=\left|L_{2}(q)\right|=\frac{q\left(q^{2}-1\right)}{(2, q-1)}=\frac{p^{s}\left(p^{2 s}-1\right)}{\left(2, p^{s}-1\right)}$ (see [2]). Therefore $p||G|$. Since $\pi(G) \subseteq$ $\{2,3,5,7,13,73\}$, it follows that p must be one of the numbers $2,3,5,7,13$ or 73 .

Suppose $p=2$. Since $\{3,5,7,13,73\} \subseteq \pi\left(\prod_{i=1}^{12}\left(2^{i}-1\right)\right)$, we assert that $2 s \leq 12$. In fact, if $2 s>12$, then there exists a prime z such that $z \mid 2^{2 s}-1$ and $z \nmid 2^{i}-1$ for $1 \leq i<2 s$ by Lemma 2.7. On one side, we have that $z \in \pi(G) \subseteq\{2,3,5,7,13,73\}$ since $z \mid 2^{2 s}-1$. On the other side, we have that $z \notin\{2,3,5,7,13,73\} \supseteq \pi(G)$ since $z \nmid 2^{i}-1$ for $1 \leq i<2 s$. This is again a contradiction. Therefore $1 \leq s \leq 6$.

If $1 \leq s \leq 5$, then G is a simple K_{n}-group according to its order, where $n=3$ or 4 , an obvious contradiction. If $s=6$, then $|G|=\frac{2^{6}\left(2^{12}-1\right)}{\left(2,2^{6}-1\right)}=2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$, hence a candidate $L_{2}(64)$ arises in this subcase.

We omit the remaining proof, which is made by a case by case analysis by a similar argument as done above in term of the changes of the values of p and the types of the involved groups. If necessary, one may apply Lemmas 2.4-2.8. Finally, we find that our assertion is true as desired.

In the sequel a completely reducible group will be called a $C R$-group. The center of a $C R$-group is the direct product of the abelian factors in the decomposition. Hence a $C R$-group is centerless, that is has trivial center, if and only if it is a direct product of nonabelian simple groups. The following lemma determines the structure of the automorphism group of a centerless $C R$-group.

Lemma 2.10. ([9], Theorem 3.3.20) Let R be a finite centerless $C R$-group and write $R=R_{1} \times R_{2} \times \cdots \times R_{k}$ where R_{i} is a direct product of n_{i} isomorphic copies of a simple group H_{i}, and H_{i} and H_{j} are not isomorphic if $i \neq j$. Then $\operatorname{Aut}(R) \cong \operatorname{Aut}\left(R_{1}\right) \times \operatorname{Aut}\left(R_{2}\right) \times \cdots \times \operatorname{Aut}\left(R_{k}\right)$ and $\operatorname{Aut}\left(R_{i}\right) \cong \operatorname{Aut}\left(H_{i}\right)$ 乙 $S_{n_{i}}$ where in this wreath product $A u t\left(H_{i}\right)$ appears in its right regula representation and the
symmetric group $S_{n_{i}}$ in its natural permutation representation. Moreover these isomorphisms induce isomorphisms $\operatorname{Out}(R) \cong \operatorname{Out}\left(R_{1}\right) \times \operatorname{Out}\left(R_{2}\right) \times \cdots \times \operatorname{Out}\left(R_{k}\right)$ and $\operatorname{Out}\left(R_{i}\right) \cong \operatorname{Out}\left(H_{i}\right)$ 乙 $S_{n_{i}}$.

At the end of this section, we quote two lemmas on noncommuting graph. Let g be an element of a finite group G. We denote by g^{G} the conjugacy class of G containing g. Also, we denote by $\left|g^{G}\right|$ the size of the conjugacy class g^{G}.

Lemma 2.11. ([8], Lemma 2) Let G be a finite group such that $Z(G)=1$. If H is a group such that $\nabla(H) \cong \nabla(G)$, then $|Z(H)| \mid\left(\left|C_{G}\left(g_{i}\right)\right|-1\right)$ and $|Z(H)| \mid\left(\left|g_{i}^{G}\right|-1\right)$ for every $g_{i} \in G^{*}$, where $G^{*}=G \backslash\{1\}$ and $1 \leq i \leq\left|G^{*}\right|$. In particular, if one of the following two conditions holds:

1. g.c.d. $\left\{\left|C_{G}\left(g_{1}\right)\right|-1,\left|C_{G}\left(g_{2}\right)\right|-1, \ldots,\left|C_{G}\left(g_{\left|G^{*}\right|}\right)\right|-1\right\}=1$, or
2. g.c.d. $\left\{\left|g_{1}^{G}\right|-1,\left|g_{2}^{G}\right|-1, \ldots,\left|g_{\left|G^{*}\right|}^{G}\right|-1\right\}=1$,
then $|H|=|G|$.
Lemma 2.12. ([11], Lemma 2.4) Let G and H be finite groups. If $\nabla(H) \cong \nabla(G)$, then

$$
\left|C_{H}(x) \backslash Z(H)\right|=\left|C_{G}(\phi(x)) \backslash Z(G)\right|
$$

for all $x \in H \backslash Z(H)$, where ϕ is a graph isomorphism from $\nabla(H)$ to $\nabla(G)$.

3. A new characterization of $L_{4}(8)$ by its noncommuting graph

Theorem : Let $L_{4}(8)$ be the projective special linear group of degree 4 over the finite field of order 8 . If G is a finite group with $\nabla(G) \cong \nabla\left(L_{4}(8)\right)$, then $G \cong L_{4}(8)$.

Proof. First we suppose that $M:=L_{4}(8)$. Now we want to prove that $G \cong M$. We divide the proof into the following seven lemmas.

Lemma 3.1. If $\nabla(G) \cong \nabla(M)$, then $|G|=|M|$. In particular, $Z(G)=1$.
Proof. By Lemma 2.11, it is sufficient to find a pair of elements in M, say u and v, such that g.c.d. $\left\{\left|C_{M}(u)\right|-1,\left|C_{M}(v)\right|-1\right\}=1$ or g.c.d. $\left\{\left|u^{M}\right|-1,\left|v^{M}\right|-1\right\}=1$. By Lemma 2.1, it follows that $\mu(M)=\left\{3^{2} \cdot 5 \cdot 13,7 \cdot 73,2 \cdot 3^{2} \cdot 7,2^{2} \cdot 7\right\}$. Therefore there exist two elements in M, say x and y, such that $o(x)=3^{2} \cdot 5 \cdot 13$ and $o(y)=7 \cdot 73$ respectively. Since $|M|=2^{18} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 13 \cdot 73$ and $\{2 \cdot 5,2 \cdot 13,2 \cdot 73,3 \cdot 73,5 \cdot 7,5$. $73,7 \cdot 13,13 \cdot 73\} \cap \pi_{e}(M)=\varnothing$ by Lemma 2.1, it follows that $\left|C_{M}(x)\right|=3^{i} \cdot 5 \cdot 13$ and $\left|C_{M}(y)\right|=7^{j} \cdot 73$, where $2 \leq i \leq 4,1 \leq j \leq 3$.

In the sequel, we will use the following symbols, where x and y are those elements mentioned above.
(1) See Table 2: $Z_{x}:=\left|C_{M}(x)\right| ; N_{x}:=\frac{|M|}{Z_{x}}=\left|x^{M}\right| ; N_{x}^{\prime}:=N_{x}-1$.
(2) See Table 3: $Z_{y}:=\left|C_{M}(y)\right| ; N_{y}:=\frac{|M|}{Z_{y}}=\left|y^{M}\right| ; N_{y}^{\prime}:=N_{y}-1$.

Z_{x}	N_{x}^{\prime}
$3^{2} \cdot 5 \cdot 13$	$229 \cdot 257966867$
$3^{3} \cdot 5 \cdot 13$	$31 \cdot 635208737$
$3^{4} \cdot 5 \cdot 13$	$3^{2} \cdot 5 \cdot 145862747$

Table 2 Possible Values of Z_{x} and N_{x}^{\prime}
From Table 2, we have $\pi\left(N_{x}^{\prime}\right) \subseteq\{3,5,31,229,257966867,635208737,145862747\}$.

Z_{y}	N_{y}^{\prime}
$7 \cdot 73$	67629219839
$7^{2} \cdot 73$	$71 \cdot 239 \cdot 431 \cdot 1321$
$7^{3} \cdot 73$	$7 \cdot 83 \cdot 269 \cdot 8831$

Table 3 Possible Values of Z_{y} and N_{y}^{\prime}
From Table 3, we have $\pi\left(N_{y}^{\prime}\right) \subseteq\{7,71,83,239,269,431,1321,8831,67629219839\}$.
If Z_{x} is equal to one of the values listed in Table 2 , then N_{x}^{\prime} satisfies the condition $\pi\left(N_{x}^{\prime}\right) \cap \pi\left(N_{y}^{\prime}\right)=\varnothing$ for any y satisfying $o(y)=7 \cdot 73$ by Tables 2 and 3 . Let $u=x$ and $v=y$, where N_{x}^{\prime} and N_{y}^{\prime} satisfy the condition mentioned above. Then g.c.d. $\left\{\left|u^{M}\right|-1,\left|v^{M}\right|-1\right\}=$ g.c.d. $\left\{N_{x}^{\prime}, N_{y}^{\prime}\right\}=1$, which implies that $|G|=|M|$ by Lemma 2.11. Since $|G \backslash Z(G)|=|M \backslash Z(M)|$ by the definition of the noncommuting graph, it follows immediately that $Z(G)=Z(M)=1$.

Lemma 3.2. If $\nabla(G) \cong \nabla(M)$, then $5 \cdot 73 \notin \pi_{e}(G)$ and $13 \cdot 73 \notin \pi_{e}(G)$.
Proof. Let ϕ be a graph isomorphism from $\nabla(M)$ to $\nabla(G)$. If $5 \cdot 73 \in \pi_{e}(G)$, then there exists an element, say x, such that $o(x)=5$. Therefore, $5 \cdot 73\left|\left|C_{G}(x)\right|\right.$. By Lemmas 2.12 and $3.1,5 \cdot 73| | C_{M}\left(\phi^{-1}(x)\right) \mid$. If $2 \in \pi\left(o\left(\phi^{-1}(x)\right)\right)$, then there exists a natural number i such that $x_{1}:=\left(\phi^{-1}(x)\right)^{i} \in M$ is of order 2 . Then $5 \cdot 73\left|\left|C_{M}\left(x_{1}\right)\right|\right.$, too. Let $y_{1} \in C_{M}\left(x_{1}\right)$ such that $o\left(y_{1}\right)=5$. Hence $o\left(x_{1} y_{1}\right)=2 \cdot 5$. Thus $2 \cdot 5 \in \pi_{e}(M)$, which is a contradiction since $2 \nsim 5$ in $\Gamma(M)$. Therefore $2 \notin \pi\left(o\left(\phi^{-1}(x)\right)\right)$. By a similar argument, we have that $\{3,5,7,13,73\} \cap \pi\left(o\left(\phi^{-1}(x)\right)\right)=\varnothing$, too. Thus $\pi(M) \cap \pi\left(o\left(\phi^{-1}(x)\right)\right)=\varnothing$. It follows that $\phi^{-1}(x)=1$, a contradiction.

By a similar argument as done above, we get that $13 \cdot 73 \notin \pi_{e}(G)$.
Lemma 3.3. If $\nabla(G) \cong \nabla(M)$, then G is nonsolvable.
Proof. Suppose that G is solvable. Since $|G|=|M|$ by Lemma 3.1, it follows that G has a Hall $\{5,73\}$-subgroup H of order $5 \cdot 73$. Therefore H is a cyclic subgroup, which implies that $5 \cdot 73 \in \pi_{e}(G)$. This is a contradiction by Lemma 3.2.

Lemma 3.4. Let K be the maximal normal solvable subgroup of G. Then K is a $\{2,3,7\}$-subgroup.

Proof. First we assume that $\{5,13,73\} \subseteq \pi(K)$. Let T be a Hall $\{5,73\}$-subgroup of K. It is easy to see that T is a cyclic subgroup of order $5 \cdot 73$ since $|G|=$ $2^{18} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 13 \cdot 73$ by Lemma 3.1. Thus $5 \cdot 73 \in \pi_{e}(K) \subseteq \pi_{e}(G)$, a contradiction.

Now we suppose that $\{p, q, r\}=\{5,13,73\}$.
Next we assume that $\{p, q\} \subseteq \pi(K)$ and $r \notin \pi(K)$. Let T be a Hall $\{p, q\}$ subgroup of K. It is easy to see that T is a cyclic subgroup of order $p \cdot q$. If $\{p, q\} \neq\{5,13\}$, then $p \cdot q \in \pi_{e}(K) \subseteq \pi_{e}(G)$, a contradiction. If $\{p, q\}=\{5,13\}$, then K is a $\{2,3,5,7,13\}$-subgroup. Let $R_{p} \in S y l_{p}(K)$. By Frattini argument $G=K N_{G}\left(R_{p}\right)$. Therefore, the normalizer $N_{G}\left(R_{p}\right)$ contains an element of order 73 , say x. Obviously, $\langle x\rangle R_{p}$ is a subgroup of G of order $73 \cdot p$, which is abelian. Hence $73 \cdot p \in \pi_{e}(G)$, a contradiction.

Finally, if $r \in \pi(K)$ and $\{p, q\} \cap \pi(K)=\varnothing$, then K is a $\{2,3,7, r\}$-subgroup. Let $R_{r} \in \operatorname{Syl}_{r}(K)$. By Frattini argument $G=K N_{G}\left(R_{r}\right)$. Therefore, the normalizer $N_{G}\left(R_{r}\right)$ contains two elements of orders p and q, say x and y, respectively. Obviously, $\left\langle x>R_{r}\right.$ and $<y>R_{r}$ are subgroups of G of orders $p \cdot r$ and $q \cdot r$, respectively. It is clear that both of them are abelian. Hence $\{p \cdot r, q \cdot r\} \subseteq \pi_{e}(G)$, a contradiction.

In the sequel, we will use the following notation. Given a finite group G, denote by $\operatorname{Soc}(G)$ the socle of G, which is the subgroup generated by the set of all minimal normal subgroups of G.

Lemma 3.5. Let $\bar{G}:=G / K$ and $S:=\operatorname{Soc}(\bar{G})$. Then the following assertions are true:
(1) If $r \in\{5,13,73\}$ and $r \notin \pi(S)$, then $r \notin \pi(\operatorname{Aut}(S))$.
(2) If $S \neq M$, then $\pi(S)=\{2,3,7\}$.
(3) S is isomorphic to one of the following groups: $L_{2}(7), L_{2}(8), U_{3}(3), L_{2}(7) \times$ $L_{2}(7), L_{2}(7) \times L_{2}(8), L_{2}(7) \times U_{3}(3), L_{2}(8) \times L_{2}(8), L_{2}(7) \times L_{2}(7) \times L_{2}(7), L_{2}(7) \times$ $L_{2}(7) \times L_{2}(8)$ or M.

Proof. Since G is nonsolvable by Lemma 3.3, we have that S is a centerless $C R$ group. Put $S=P_{1} \times P_{2} \times \cdots \times P_{m}$, where P_{i} 's are nonabelian finite simple groups. Since $|G|=|M|=2^{18} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 13 \cdot 73$ by Lemma 3.1, it is obvious that P_{i} is isomorphic to one of the groups listed in Table 1 . Moreover, $\{5,13,73\} \subseteq \pi(\bar{G})$ by Lemma 3.4.

In the sequel, we assume that $\{p, q, r\}=\{5,13,73\}$.
(1) Assume the first assertion to be false, then $r||A u t(S)|$. Since $\operatorname{Inn}(S) \cong S$, we have that $r \nmid|\operatorname{Inn}(S)|$. Because $\operatorname{Aut}(S) / \operatorname{Inn}(S)=\operatorname{Out}(S)$, it follows that $r\left||O u t(S)|\right.$. But $\operatorname{Out}(S)=O u t\left(S_{1}\right) \times O u t\left(S_{2}\right) \times \cdots \times \operatorname{Out}\left(S_{k}\right)$, where the groups S_{j} 's are direct products of some isomorphic copies of the simple groups belonging to the set $\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$ such that $S=P_{1} \times P_{2} \times \cdots \times P_{m}=S_{1} \times S_{2} \times \cdots \times S_{k}$. Therefore $r\left|\left|\operatorname{Out}\left(S_{j}\right)\right|\right.$ for some j, where $1 \leq j \leq k$. Suppose that S_{j} is a direct product of t isomorphic copies of a simple group P_{i}, where $P_{i} \in\left\{P_{1}, P_{2}, \ldots, P_{m}\right\}$. By Lemma 2.10, we obtain that $\left|O u t\left(S_{j}\right)\right|=\left|O u t\left(P_{i}\right)\right|^{t} \cdot t$. Since $\pi\left(P_{i}\right) \subseteq \pi(S) \subseteq\{2,3,7, p, q\}$, we have that $\pi\left(\operatorname{Out}\left(P_{i}\right)\right) \subseteq\{2,3\}$ or $\left|\operatorname{Out}\left(P_{i}\right)\right|=1$ by Lemma 2.9, which implies that $r \nmid\left|O u t\left(P_{i}\right)\right|$. Therefore $r \mid t!$, which implies that $t \geq r \geq 5$. If $P_{i} \nexists S z(8)$, then $3\left|\left|P_{i}\right|\right.$ by Lemma 2.9, which implies that $\left.3^{5}\right|\left|S_{j}\right|||S|||G|$, a contradiction. If $P_{i} \cong$ $S z(8)$, then $5\left|\left|P_{i}\right|\right.$ by Lemma 2.9, which implies that $\left.5^{5}\right|\left|S_{j}\right|||S|||G|$, a contradiction. Hence $r \notin \pi(\operatorname{Aut}(S))$, as desired.
(2) First, we assume that $\{p, q\} \subseteq \pi(S)$ and $r \notin \pi(S)$. It is easy to see that $r \notin \pi(\operatorname{Aut}(S))$ by the first assertion. Thus $r \in \pi\left(C_{\bar{G}}(S)\right)$ since $\bar{G} / C_{\bar{G}}(S) \lesssim A u t(S)$. This implies that $\{p \cdot r, q \cdot r\} \subseteq \pi_{e}(G)$, a contradiction.

Next, we assume that $r \in \pi(S)$ and $\{p, q\} \cap \pi(S)=\varnothing$. It is easy to see that $\{p, q\} \cap \pi(\operatorname{Aut}(S))=\varnothing$ by the first assertion. Thus $\{p, q\} \subseteq \pi\left(C_{\bar{G}}(S)\right)$ since $\bar{G} / C_{\bar{G}}(S) \lesssim A u t(S)$. This implies that $\{p \cdot r, q \cdot r\} \subseteq \pi_{e}(G)$, a contradiction.

Finally, we assume that $\{p, q, r\} \subseteq \pi(S)$. Since $|G|=|M|=2^{18} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 13 \cdot 73$, it follows that $S \cong M$ by Lemma 2.9. However, this contradicts our hypothesis.
(3) Recall that $\pi(S)=\{2,3,7\}$ if $S \neq M$ by the second assertion. Therefore, using Table 1, we have that S is isomorphic to one of the following groups: $L_{2}(7), L_{2}(8), U_{3}(3), L_{2}(7) \times L_{2}(7), L_{2}(7) \times L_{2}(8), L_{2}(7) \times U_{3}(3), L_{2}(8) \times L_{2}(8), L_{2}(7) \times$ $L_{2}(7) \times L_{2}(7), L_{2}(7) \times L_{2}(7) \times L_{2}(8)$ or M.

Lemma 3.6. Let S be a group mentioned in Lemma 3.5(3). Then the following assertions are true.
(1) $|S|\left|\frac{|\bar{G}|}{\left|C_{\bar{G}}(S)\right|}\right||A u t(S)|$.
(2) If $S \neq M$, then $\{5,13,73\} \subseteq \pi\left(C_{\bar{G}}(S)\right)$ and $C_{\bar{G}}(S)$ is nonsolvable.

Proof. (1) Since $S \cap C_{\bar{G}}(S)=Z(S)=1$, we have that $S \cong S / S \cap C_{\bar{G}}(S) \cong$ $C_{\bar{G}}(S) S / C_{\bar{G}}(S) \leq \bar{G} / C_{\bar{G}}(S) \lesssim A u t(S)$. Thus $|S|\left|\frac{|\bar{G}|}{\left|C_{\bar{G}}(S)\right|}\right||A u t(S)|$.
(2) If $S \cong L_{2}(7) \times L_{2}(7), L_{2}(7) \times L_{2}(8), L_{2}(7) \times U_{3}(3), L_{2}(8) \times L_{2}(8), L_{2}(7) \times$ $L_{2}(7) \times L_{2}(7)$ or $L_{2}(7) \times L_{2}(7) \times L_{2}(8)$, then $|A u t(S)|=\left|A u t\left(L_{2}(7)\right)\right|^{2} \cdot\left|S_{2}\right|=$ $2^{9} \cdot 3^{2} \cdot 7^{2},\left|A u t\left(L_{2}(7)\right)\right| \cdot\left|A u t\left(L_{2}(8)\right)\right|=2^{7} \cdot 3^{4} \cdot 7^{2},\left|A u t\left(L_{2}(7)\right)\right| \cdot\left|A u t\left(U_{3}(3)\right)\right|=$ $2^{10} \cdot 3^{4} \cdot 7^{2},\left|A u t\left(L_{2}(8)\right)\right|^{2} \cdot\left|S_{2}\right|=2^{7} \cdot 3^{6} \cdot 7^{2},\left|A u t\left(L_{2}(7)\right)\right|^{3} \cdot\left|S_{3}\right|=2^{13} \cdot 3^{4} \cdot 7^{3}$ or $\left|\operatorname{Aut}\left(L_{2}(7)\right)\right|^{2} \cdot\left|S_{2}\right| \cdot\left|\operatorname{Aut}\left(L_{2}(8)\right)\right|=2^{12} \cdot 3^{5} \cdot 7^{3}$ by Lemma 2.10 , where S_{r} is a
symmetry group on $\{1,2, \ldots, r\}$. Thus $\pi(\operatorname{Aut}(S))=\{2,3,7\}$ if $S \neq M$. It follows that $\{5,13,73\} \subseteq \pi\left(C_{\bar{G}}(S)\right)$ since $\bar{G} / C_{\bar{G}}(S) \lesssim A u t(S)$. Suppose $C_{\bar{G}}(S)$ is solvable. Then $C_{\bar{G}}(S)$ has a Hall $\{5,73\}$-subgroup T_{1}. It is easy to see that T_{1} is an abelian subgroup of order $5 \cdot 73$. Thus $5 \cdot 73 \in \pi_{e}\left(C_{\bar{G}}(S)\right)$. Hence $5 \cdot 73 \in \pi_{e}(G)$ too, a contradiction.

Let n be a natural number and p a prime. In the sequel, $e\left(n_{p}\right)$ denotes a nonnegative integer such that $p^{e\left(n_{p}\right)} \mid n$ but $p^{e\left(n_{p}\right)+1} \nmid n$.

Lemma 3.7. S is not isomorphic to any of the following groups: $L_{2}(7), L_{2}(8), U_{3}(3)$, $L_{2}(7) \times L_{2}(7), L_{2}(7) \times L_{2}(8), L_{2}(7) \times U_{3}(3), L_{2}(8) \times L_{2}(8), L_{2}(7) \times L_{2}(7) \times L_{2}(7)$ or $L_{2}(7) \times L_{2}(7) \times L_{2}(8)$. Therefore, $S \cong M=L_{4}(8)$.

Proof. Suppose $S \cong L_{2}(7), L_{2}(8), U_{3}(3), L_{2}(7) \times L_{2}(7), L_{2}(7) \times L_{2}(8), L_{2}(7) \times$ $U_{3}(3), L_{2}(8) \times L_{2}(8), L_{2}(7) \times L_{2}(7) \times L_{2}(7)$ or $L_{2}(7) \times L_{2}(7) \times L_{2}(8)$. In the sequel, we also assume that $\{p, q, r\}=\{5,13,73\}$ if p, q or r appears.

Step 1. Suppose $G_{1}:=C_{\bar{G}}(S), \overline{G_{1}}:=G_{1} / K_{1}$ and $S_{1}:=\operatorname{Soc}\left(\overline{G_{1}}\right)$, where K_{1} is the maximal normal solvable subgroup of G_{1}. Then the following assertions are true.
(a) By Lemma 3.2, $\{5 \cdot 73,13 \cdot 73\} \cap \pi_{e}\left(G_{1}\right)=\varnothing$ and $\{5 \cdot 73,13 \cdot 73\} \cap \pi_{e}\left(\overline{G_{1}}\right)=\varnothing$.
(b) By Lemma $3.6(2),\{5,13,73\} \subseteq \pi\left(G_{1}\right)$ and G_{1} is nonsolvable. By a similar argument in Lemma 3.4, we obtain that K_{1} is a $\{2,3,7\}$-subgroup, too.
(c) Moreover, $\{5,13,73\} \subseteq \pi\left(\overline{G_{1}}\right)$ by (b) and so $\overline{G_{1}}$ is nonsolvable.
(d) By Lemma 3.6(1), e(|G| $\left.\left.\right|_{2}\right) \leq 15, e\left(\left|G_{1}\right|_{3}\right) \leq 3, e\left(\left|G_{1}\right|_{7}\right) \leq 2, e\left(\left|G_{1}\right|_{5}\right)=$ $e\left(\left|G_{1}\right|_{13}\right)=e\left(\left|G_{1}\right|_{73}\right)=1$.
(e) By the choice of K_{1} and (c), S_{1} is a direct product of some finite nonabelian simple groups listed in Table 1.

By Table 1 and (d), we have that $\{5,13,73\} \cap \pi\left(S_{1}\right) \neq\{5,13,73\}$ and so $S_{1} \neq M$. Now we assert that $\pi\left(S_{1}\right)=\{2,3,7\}$.

First we assume that $\{p, q\} \subseteq \pi\left(S_{1}\right)$ and $r \notin \pi\left(S_{1}\right)$. It is easy to see $r \notin$ $\pi\left(\operatorname{Aut}\left(S_{1}\right)\right)$ by a similar argument in Lemma 3.5(1). Thus $r \in \pi\left(C_{\overline{G_{1}}}\left(S_{1}\right)\right)$ since $\overline{G_{1}} / C_{\overline{G_{1}}}\left(S_{1}\right) \lesssim \operatorname{Aut}\left(S_{1}\right)$. It implies that $\{p \cdot r, q \cdot r\} \subseteq \pi_{e}\left(\overline{G_{1}}\right)$, which contradicts (a).

Next we assume that $r \in \pi\left(S_{1}\right)$ and $\{p, q\} \cap \pi\left(S_{1}\right)=\varnothing$. It is easy to see $\{p, q\} \cap \pi\left(A u t\left(S_{1}\right)\right)=\varnothing$ by a similar argument in Lemma 3.5(1). Thus $\{p, q\} \subseteq$ $\pi\left(C_{\overline{G_{1}}}\left(S_{1}\right)\right)$ since $\overline{G_{1}} / C_{\overline{G_{1}}}\left(S_{1}\right) \lesssim \operatorname{Aut}\left(S_{1}\right)$. It implies that $\{p \cdot r, q \cdot r\} \subseteq \pi_{e}\left(\overline{G_{1}}\right)$, which contradicts (a).

Hence we obtain that $\pi\left(S_{1}\right)=\{2,3,7\}$. It follows that $S_{1} \cong L_{2}(7), L_{2}(8), U_{3}(3)$, $L_{2}(7) \times L_{2}(7)$ or $L_{2}(7) \times L_{2}(8)$ by (d) and (e).

Step 2. Suppose $G_{2}:=C_{\overline{G_{1}}}\left(S_{1}\right), \overline{G_{2}}:=G_{2} / K_{2}$ and $S_{2}:=\operatorname{Soc}\left(\overline{G_{2}}\right)$, where K_{2} is the maximal normal solvable subgroup of G_{2}. Then the following assertions are true.
(f) By Lemma 3.2, $\{5 \cdot 73,13 \cdot 73\} \cap \pi_{e}\left(G_{2}\right)=\varnothing$ and $\{5 \cdot 73,13 \cdot 73\} \cap \pi_{e}\left(\overline{G_{2}}\right)=\varnothing$.
(g) By a similar argument in Lemma 3.6, $\{5,13,73\} \subseteq \pi\left(G_{2}\right)$ and G_{2} is nonsolvable. By a similar argument in Lemma 3.4, we obtain that K_{2} is a $\{2,3,7\}$ subgroup, too.
(h) Moreover, $\{5,13,73\} \subseteq \pi\left(\overline{G_{2}}\right)$ by (g) and so $\overline{G_{2}}$ is nonsolvable.
(i) $e\left(\left|G_{2}\right|_{2}\right) \leq 12, e\left(\left|G_{2}\right|_{3}\right) \leq 2, e\left(\left|G_{2}\right|_{7}\right) \leq 1, e\left(\left|G_{2}\right|_{5}\right)=e\left(\left|G_{2}\right|_{13}\right)=e\left(\left|G_{2}\right|_{73}\right)=$ 1 since $\left|S_{1}\right|\left|\frac{\left|\overline{G_{1}}\right|}{\left|C_{\overline{G_{1}}}\left(S_{1}\right)\right|}\right|\left|A u t\left(S_{1}\right)\right|$.
(j) By the choice of K_{2} and (i), S_{2} is a direct product of some finite nonabelian simple groups listed in Table 1.

By Table 1 and (i), we have that $\{5,13,73\} \cap \pi\left(S_{2}\right) \neq\{5,13,73\}$ and so $S_{2} \neq M$. Now we assert that $\pi\left(S_{2}\right)=\{2,3,7\}$.

First we assume that $\{p, q\} \subseteq \pi\left(S_{2}\right)$ and $r \notin \pi\left(S_{2}\right)$. It is easy to see $r \notin$ $\pi\left(\operatorname{Aut}\left(S_{2}\right)\right)$ by a similar argument in Lemma 3.5(1). Thus $r \in \pi\left(C_{\overline{G_{2}}}\left(S_{2}\right)\right)$ since $\overline{G_{2}} / C_{\overline{G_{2}}}\left(S_{2}\right) \lesssim \operatorname{Aut}\left(S_{2}\right)$. It implies that $\{p \cdot r, q \cdot r\} \subseteq \pi_{e}\left(\overline{G_{2}}\right)$, which contradicts (f).

Next we assume that $r \in \pi\left(S_{2}\right)$ and $\{p, q\} \cap \pi\left(S_{2}\right)=\varnothing$. It is easy to see $\{p, q\} \cap \pi\left(A u t\left(S_{2}\right)\right)=\varnothing$ by a similar argument in Lemma 3.5(1). Thus $\{p, q\} \subseteq$ $\pi\left(C_{\overline{G_{2}}}\left(S_{2}\right)\right)$ since $\overline{G_{2}} / C_{\overline{G_{2}}}\left(S_{2}\right) \lesssim A u t\left(S_{2}\right)$. It implies that $\{p \cdot r, q \cdot r\} \subseteq \pi_{e}\left(\overline{G_{2}}\right)$, which contradicts (f).

Hence we get that $\pi\left(S_{2}\right)=\{2,3,7\}$ by (i). It follows that $S_{1} \cong L_{2}(7)$ or $L_{2}(8)$ by (i) and (j).

Step 3. Suppose $G_{3}:=C_{\overline{G_{2}}}\left(S_{2}\right), \overline{G_{3}}:=G_{3} / K_{3}$ and $S_{3}:=\operatorname{Soc}\left(\overline{G_{3}}\right)$, where K_{3} is the maximal normal solvable subgroup of G_{3}. Then the following assertions are true.
(k) By Lemma 3.2, $\{5 \cdot 73,13 \cdot 73\} \cap \pi_{e}\left(G_{3}\right)=\varnothing$ and $\{5 \cdot 73,13 \cdot 73\} \cap \pi_{e}\left(\overline{G_{3}}\right)=\varnothing$.
(l) By a similar argument in Lemma 3.6, $\{5,13,73\} \subseteq \pi\left(G_{3}\right)$ and G_{3} is nonsolvable. By a similar argument in Lemma 3.4, we obtain that K_{3} is a $\{2,3,7\}$ subgroup, too.
(m) Moreover, $\{5,13,73\} \subseteq \pi\left(\overline{G_{3}}\right)$ by (l) and so $\overline{G_{3}}$ is nonsolvable.
(n) $e\left(\left|G_{3}\right|_{2}\right) \leq 9, e\left(\left|G_{3}\right|_{3}\right) \leq 1, e\left(\left|G_{3}\right|_{7}\right)=0, e\left(\left|G_{3}\right|_{5}\right)=e\left(\left|G_{3}\right|_{13}\right)=e\left(\left|G_{3}\right|_{73}\right)=$ 1 since $\left|S_{2}\right|\left|\frac{\left|\overline{\bar{q}_{2}}\right|}{\left|C_{\overline{G_{2}}}\left(S_{2}\right)\right|}\right|\left|A u t\left(S_{2}\right)\right|$.
(o) By the choice of K_{3} and (n), S_{3} is a direct product of some finite nonabelian simple groups listed in Table 1. In particular, S_{3} is nonsolvable.

By Table 1 and (n), we have that $\{5,13,73\} \cap \pi\left(S_{3}\right) \neq\{5,13,73\}$ and so $S_{3} \neq M$.

First we assume that $\{p, q\} \subseteq \pi\left(S_{3}\right)$ and $r \notin \pi\left(S_{3}\right)$. It is easy to see $r \notin$ $\pi\left(A u t\left(S_{3}\right)\right)$ by a similar argument in Lemma 3.5(1). Thus $r \in \pi\left(C_{\overline{G_{3}}}\left(S_{3}\right)\right)$ since $\overline{G_{3}} / C_{\overline{G_{3}}}\left(S_{3}\right) \lesssim \operatorname{Aut}\left(S_{3}\right)$. It implies that $\{p \cdot r, q \cdot r\} \subseteq \pi_{e}\left(\overline{G_{3}}\right)$, which contradicts (k).

Next we assume that $r \in \pi\left(S_{3}\right)$ and $\{p, q\} \cap \pi\left(S_{3}\right)=\varnothing$. It is easy to see $\{p, q\} \cap \pi\left(A u t\left(S_{3}\right)\right)=\varnothing$ by a similar argument in Lemma 3.5(1). Thus $\{p, q\} \subseteq$ $\pi\left(C_{\overline{G_{3}}}\left(S_{3}\right)\right)$ since $\overline{G_{3}} / C_{\overline{G_{3}}}\left(S_{3}\right) \lesssim \operatorname{Aut}\left(S_{3}\right)$. It implies that $\{p \cdot r, q \cdot r\} \subseteq \pi_{e}\left(\overline{G_{3}}\right)$, which contradicts (k).

Hence we get that $\pi\left(S_{3}\right)=\{2,3\}$ by (n) and so S_{3} is solvable, which contradicts (o).

By Steps 1-3, we have obtained that $S \cong M$. By Lemma 3.6(1), it follows that $|\bar{G}|=|G|=|M|$. Hence $K=1$ and $G \cong M=L_{4}(8)$.

By Lemmas 3.1-3.7, we complete the proof of Theorem.
Remark 3.8. Although we have not found a general method to deal with all simple groups on AAM's conjecture, it is evident that the method used in the present paper also works well in the cases $L_{4}(4), L_{4}(7), U_{4}(7)$, etc.

Acknowledgment. The authors would like to thank the referee for the valuable suggestions and comments.

References

[1] A. Abdollahi, S. Akbari and H. R. Maimani, Noncommuting graph of a group, J. Algebra, 298(2) (2006), 468-492.
[2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press(Oxford), London / New York, (1985).
[3] M. Herzog, On finite simple groups of order divisible by three primes only, J. Algebra, 10 (1968), 383-388.
[4] L. G. Hua, A Guide to the Number Theory (in Chinese), Science Press, Beijing, China, (1979).
[5] A. Jafarzadeh and A. Iranmanesh, On simple K_{n}-groups for $n=5,6$, London Mathematical Society Lecture Note Series 340 (Groups St Andrews 2005 Volume 2), Cambridge University Press, (2007), 668-680.
[6] P. Kleidman and M. Liebeck, The subgroup structure of finite classical groups, Cambridge University Press, (1990).
[7] V. D. Mazurov and G. Y. Chen, Recognizability of finite simple groups $L_{4}\left(2^{m}\right)$ and $U_{4}\left(2^{m}\right)$ by spectrum, Algebra Logic, 47(1) (2008), 49-55.
[8] A. R. Moghaddamfar, W. J. Shi, W. Zhou and A. R. Zokayi, On the noncommuting graph associated with a finite group, Sib. Math. J., 46(2) (2005), 325-332.
[9] Derek J. S. Robinson, A Course in the Theory of Groups (2nd ed), SpringerVerlag, New York/Heidelberg/Berlin, 2003.
[10] W. J. Shi, On simple K_{4}-groups (in Chinese), Chinese Sci. Bull., 36(7) (1991), 1281-1283.
[11] L. L. Wang and W. J. Shi, A new characterization of A_{10} by its noncommuting graph, Comm. Algebra, 36(2) (2008), 523-528.
[12] J. S. Williams, Prime graph components of finite groups, J. Algebra, 69(2) (1981), 487-513.
[13] K. Zsigmondy, Zur theorie der potenzreste, Monatsh. Math. Phys., 3 (1892), 265-284.

Liangcai Zhang

College of Mathematics and Physics
Chongqing University
Shapingba, Chongqing 400044
People's Republic of China
e-mail: zlc213@163.com

Wujie Shi

School of Mathematical Sciences
Suzhou University
Suzhou, Jiangsu 215006
People's Republic of China
e-mail: wjshi@suda.edu.cn

[^0]: This work was supported by the NNSF of China (No.10871032), the SRFDP of China (No.20060285002) and a subproject of the NNSF of China (No.50674008)(Chongqing University, No.104207520080834; 104207520080968).

