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Abstract. Let G be a nonabelian group and associate a noncommuting graph

∇(G) with G as follows: The vertex set of ∇(G) is G\Z(G), where Z(G) is

the center of G, and two vertices are adjacent by an edge whenever they do

not commute. In 2006, A. Abdollahi, S. Akbari and H. R. Maimani put for-

ward a conjecture called AAM ’s Conjecture in [1] as follows: If M is a finite

nonabelian simple group and G is a group such that ∇(G) ∼= ∇(M), then

G ∼= M . Even though this conjecture is known to hold for all simple groups

with nonconnected prime graphs and the alternating group A10 (see [11]), it is

still unknown for all simple groups with connected prime graphs except A10.

In the present paper, we prove that the conjecture is also true for L4(8), the

projective special linear group of degree 4 over the finite field of order 8. The

new method used in this paper also works well in the case L4(4), L4(7), U4(7),

etc.
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1. Introduction

It is well known that the prime graph Γ(G) associated with a finite group G is

defined as follows: The vertex set of Γ(G) is π(G), the set of prime divisors of the

order of G. The primes p and q, considered as vertices of Γ(G), are adjacent by an

edge (we write p ∼ q) if and only if G contains an element of order pq. Denote by

t(G) the number of connected components of Γ(G) (see [12]).

Given a finite group G, we construct its noncommuting graph ∇(G) as follows:

The vertex set of ∇(G) is G\Z(G), where Z(G) is the center of G, and two vertices

are adjacent by an edge whenever they do not commute(see [1,8]).
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(No.20060285002) and a subproject of the NNSF of China (No.50674008)(Chongqing University,

No.104207520080834; 104207520080968).
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For a graph X, we denote the sets of vertices and edges of X by V (X) and

E(X), respectively. Two graphs X and Y are said to be isomorphic if there exists

a bijective map φ: V (X) → V (Y ) such that x and y are adjacent in X if and only

if φ(x) and φ(y) are adjacent in Y . If two graphs X and Y are isomorphic, we

denote it by X ∼= Y . It is easy to see that if X ∼= Y , then |V (X)| = |V (Y )| and

|E(X)| = |E(Y )|.
In 2006, A. Abdollahi, S. Akbari and H. R. Maimani put forward a conjecture

in [1] as follows.

AAM ’s Conjecture: If M is a finite nonabelian simple group and G is a group

such that ∇(G) ∼= ∇(M), then G ∼= M .

In [11], it has been proved that AAM ’s Conjecture is true for all finite simple

groups with nonconnected prime graphs and A10, where A10 is the alternating

group of degree 10. In the present paper, we will give another example to show

that AAM ’s Conjecture is also true for some simple groups with connected prime

graphs. In fact, we prove that if G is a finite group such that ∇(G) ∼= ∇(L4(8)),

then G ∼= L4(8), where L4(8) is the projective special linear group of degree 4 over

the finite field of order 8. The new method used in this paper also works well in

the case L4(4), L4(7), U4(7), etc.

All further unexplained notations are standard and we refer the reader to [1,8].

2. Preliminaries and Lemmas

For any group G, we denote by πe(G) the set of orders of its elements. The

set πe(G) is closed and partially ordered by the divisibility relation. Hence, it is

uniquely determined by µ(G), the subset of its elements which are maximal under

the divisibility relation.

Lemma 2.1. ([7], Lemma 1) Let L4(q) be a projective special linear simple group,

where q = 2m and m is a natural number. Then µ(L4(q)) = {(q2 + 1)(q + 1), q3 −
1, 2(q2 − 1), 4(q − 1)}. In particular, µ(L4(8)) = {32 · 5 · 13, 7 · 73, 2 · 32 · 7, 22 · 7}.

Let n be a natural number. We say that a finite group G is a Kn-group if

|π(G)| = n. Now we quote some useful results on simple Kn-groups.

Lemma 2.2. ([3], Theorem 1) Let G be a finite simple K3-group. Then G is iso-

morphic to one of the following simple groups: A5, A6, L2(7), L2(8), L2(17), L3(3),

U3(3) or U4(2).

Lemma 2.3. ([10], Theorem 2) Let G be a finite simple K4-group. Then G is

isomorphic to one of the following simple groups:
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1. A7, A8, A9, A10, M11, M12, J2, L2(16), L2(25), L2(49), L2(81), L3(4),

L3(5), L3(7), L3(8), L3(17), L4(3), S4(4), S4(5), S4(7), S4(9), S6(2), O+
8 (2),

G2(3), U3(4), U3(5), U3(7), U3(8), U3(9), U4(3), U5(2), Sz(8), Sz(32), 3D4(2),
2F4(2)′;

2. L2(r), where r is a prime satisfying the equation r2 − 1 = 2a · 3b · uc, where

a ≥ 1, b ≥ 1, c ≥ 1, and u > 3 is a prime;

3. L2(2m), where m ≥ 1 satisfies the equations 2m − 1 = u and 2m + 1 = 3tb,

where t > 3, u are primes and b ≥ 1;

4. L2(3m), where m ≥ 1 satisfies the equations 3m − 1 = 2ub and 3m + 1 = 4t,

or 3m − 1 = 2u and 3m + 1 = 4tc, where u, t are odd primes and b ≥ 1, c ≥ 1.

In the sequel we denote by π(n) the set of prime divisors of a natural number n.

Lemma 2.4. ([5], Theorem A) Let q be a prime power. Then each finite simple

K5-group is isomorphic to one of the following simple groups:

1. L2(q), where q satisfies |π(q2 − 1)| = 4;

2. L3(q), where q satisfies |π((q2 − 1)(q3 − 1))| = 4;

3. U3(q), where q satisfies |π((q2 − 1)(q3 + 1))| = 4;

4. O5(q), where q satisfies |π(q4 − 1)| = 4;

5. Sz(22m+1), where |π((22m+1 − 1)(24m+2 + 1))| = 4;

6. R(q), where q = 32m+1 satisfies |π(q2 − 1)| = 3 and |π(q2 − q + 1)| = 1;

7. A11, A12,M22, J3, HS, He, M cL,L4(4), L4(5), L4(7), L5(2), L5(3), L6(2), O7(3),

O9(2), S6(3), S8(2), U4(4), U4(5), U4(7), U4(9), U5(3), U6(2), O+
8 (3), O−

8 (2),3 D4(3),

G2(4), G2(5), G2(7), G2(8).

Lemma 2.5. ([5], Theorem B) Let q be a prime power. Then each finite simple

K6-group is isomorphic to one of the following simple groups:

1. L2(q), where q satisfies |π(q2 − 1)| = 5;

2. L3(q), where q satisfies |π((q2 − 1)(q3 − 1))| = 5;

3. L4(q), where q satisfies |π((q2 − 1)(q3 − 1)(q4 − 1))| = 5;

4. U3(q), where q satisfies |π((q2 − 1)(q3 + 1))| = 5;

5. U4(q), where q satisfies |π((q2 − 1)(q3 + 1)(q4 − 1))| = 5;

6. O5(q), where q satisfies |π(q4 − 1)| = 5;

7. G2(q), where q satisfies |π(q6 − 1)| = 5;

8. Sz(22m+1), where |π((22m+1 − 1)(24m+2 + 1))| = 5;

9. R(32m+1), where |π((32m+1 − 1)(36m+3 + 1))| = 5;

10. A13, A14, A15, A16,M23,M24, J1, Suz, Ru, Co2, Co3, F i22,HN, L5(7), L6(3),

L7(2), O7(4), O7(5), O7(7), O9(3), S6(4), S6(5), S6(7), S8(3), U5(4), U5(5), U5(9), U6(3),

U7(2), F4(2), O+
8 (4), O+

8 (5), O+
8 (7), O+

10(2), O−
8 (3), O−

10(2),3 D4(4),3 D4(5).
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Now we quote some preliminary results from elementary number theory which

will play an important role in proving Lemma 2.9.

Lemma 2.6. ([4], Theorems 2.3.3 and 4.6.3) Let a, x, m and n be natural numbers.

Then the following assertions hold.

1. If p is a prime number, then ap ≡ a(modp).

2. If g.c.d.{m,n} = d, then g.c.d.{xm − 1, xn − 1} = xd − 1. In particular, m
∣∣n

if and only if xm − 1
∣∣xn − 1.

Lemma 2.7. ([13]) If p is a prime and n ≥ 2 is a natural number, then there exists

a prime z such that z
∣∣pn − 1 and z - pm − 1 for 1 ≤ m < n unless either

1. n = 6 and p = 2, or

2. n = 2 and p = 2q − 1 is a Mersenne prime, where q is natural number.

Lemma 2.8. ([6]) Let n ≥ 2 and f be two natural numbers and q = pf , where p is

a prime number. Then

1. Out(Ln(q)) ∼= Z(n,q−1) : Zf : Z2 if n ≥ 3;

2. Out(L2(q)) ∼= Z(2,q−1) × Zf .

Lemma 2.9. Let G be a finite nonabelian simple group such that π(G) ⊆ {2, 3, 5, 7,

13, 73}. Then G is isomorphic to one of the groups listed in Table 1. In particular,

1. 3 ∈ π(G) if and only if G 6= Sz(8);

2. π(Out(G)) ⊆ {2, 3} if G 6= S6(2).

G |G| Out(G) G |G| Out(G)

A5 22 · 3 · 5 2 L2(7) 23 · 3 · 7 2

A6 23 · 32 · 5 22 U3(3) 25 · 33 · 7 2

L2(8) 23 · 32 · 7 3 L3(3) 24 · 33 · 13 2

U4(2) 26 · 34 · 5 2 A7 23 · 32 · 5 · 7 2

A8 26 · 32 · 5 · 7 2 L3(4) 26 · 32 · 5 · 7 D12

A9 26 · 34 · 5 · 7 2 L2(49) 24 · 3 · 52 · 72 22

A10 27 · 34 · 52 · 7 2 U3(5) 24 · 32 · 53 · 7 S3

U4(3) 27 · 36 · 5 · 7 D8 J2 27 · 33 · 52 · 7 2

O+
8 (2) 212 · 35 · 52 · 7 S3 S6(2) 29 · 34 · 5 · 7 1

S4(7) 28 · 32 · 52 · 74 2 L2(25) 23 · 3 · 52 · 13 22

L2(13) 22 · 3 · 5 · 13 2 U3(4) 26 · 3 · 52 · 13 4

L4(3) 27 · 36 · 5 · 13 22 S4(5) 26 · 32 · 54 · 13 2
2F4(2)′ 211 · 33 · 52 · 13 2 L2(27) 22 · 33 · 7 · 13 6

G2(3) 26 · 36 · 7 · 13 2 L2(64) 26 · 32 · 5 · 7 · 13 6

L3(9) 27 · 36 · 5 · 7 · 13 22 Sz(8) 26 · 5 · 7 · 13 3

G2(4) 212 · 33 · 52 · 7 · 13 2 S4(8) 212 · 34 · 5 · 72 · 13 6

S6(3) 29 · 39 · 5 · 7 · 13 2 O7(3) 29 · 39 · 5 · 7 · 13 2
3D4(2) 212 · 34 · 72 · 13 3 U4(5) 27 · 34 · 56 · 7 · 13 22

O+
8 (3) 212 · 312 · 52 · 7 · 13 S4 L3(8) 29 · 32 · 72 · 73 6

U3(9) 25 · 36 · 52 · 73 4 L2(36) 23 · 36 · 5 · 7 · 13 · 73 2× 6
3D4(3) 26 · 312 · 72 · 132 · 73 3 G2(9) 28 · 312 · 52 · 7 · 13 · 73 2

S4(27) 26 · 312 · 5 · 72 · 132 · 73 6 L4(8) 218 · 34 · 5 · 73 · 13 · 73 6

Table 1 Finite Nonabelian Simple Groups with π(G) ⊆ {2, 3, 5, 7, 13, 73}
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Proof. If G is a simple K3-group, then G ∼= A5, L2(7), L2(8), A6, L3(3), U3(3) or

U4(2) by Lemma 2.2.

If G is a simple K4-group, then G ∼= L2(13), A7, L2(25), L2(27), A8, A9, Sz(8),

L2(49), U3(4), U3(5), U3(9), L3(4), J2, S6(2), A10, U4(3), G2(3), S4(5), L4(3),2 F4(2)′,

L3(8), S4(7), O+
8 (2),3 D4(2) by Lemma 2.3.

If G is a simple K5-group or a simple K6-group, then π(G) ⊆ {2, 3, 5, 7, 13, 73}.
By Lemmas 2.4 and 2.5, G is isomorphic to one of the groups listed in Lemmas 2.4

and 2.5. Now we assert all candidates for G must be L2(64), L2(36), L3(9), G2(4),

G2(9), S4(8), S4(27), S6(3), O7(3), U4(5), O+
8 (3),3 D4(3) and L4(8).

Suppose G is isomorphic to L2(q), where q is a prime power satisfying |π(q2 −
1)| = 4 or 5. Let q = ps, where p is a prime number and s is a natural number.

Then |G| = |L2(q)| = q(q2−1)
(2,q−1) = ps(p2s−1)

(2,ps−1) (see [2]). Therefore p
∣∣|G|. Since π(G) ⊆

{2, 3, 5, 7, 13, 73}, it follows that p must be one of the numbers 2, 3, 5, 7, 13 or 73.

Suppose p = 2. Since {3, 5, 7, 13, 73} ⊆ π(
∏12

i=1(2
i − 1)), we assert that 2s ≤ 12.

In fact, if 2s > 12, then there exists a prime z such that z
∣∣22s− 1 and z - 2i− 1 for

1 ≤ i < 2s by Lemma 2.7. On one side, we have that z ∈ π(G) ⊆ {2, 3, 5, 7, 13, 73}
since z

∣∣22s − 1. On the other side, we have that z /∈ {2, 3, 5, 7, 13, 73} ⊇ π(G) since

z - 2i − 1 for 1 ≤ i < 2s. This is again a contradiction. Therefore 1 ≤ s ≤ 6.

If 1 ≤ s ≤ 5, then G is a simple Kn-group according to its order, where n = 3 or

4, an obvious contradiction. If s = 6, then |G| = 26(212−1)
(2,26−1) = 26 · 32 · 5 · 7 · 13, hence

a candidate L2(64) arises in this subcase.

We omit the remaining proof, which is made by a case by case analysis by a

similar argument as done above in term of the changes of the values of p and the

types of the involved groups. If necessary, one may apply Lemmas 2.4−2.8. Finally,

we find that our assertion is true as desired. ¤

In the sequel a completely reducible group will be called a CR-group. The center

of a CR-group is the direct product of the abelian factors in the decomposition.

Hence a CR-group is centerless, that is has trivial center, if and only if it is a

direct product of nonabelian simple groups. The following lemma determines the

structure of the automorphism group of a centerless CR-group.

Lemma 2.10. ([9], Theorem 3.3.20) Let R be a finite centerless CR-group and

write R = R1 × R2 × · · · × Rk where Ri is a direct product of ni isomorphic

copies of a simple group Hi, and Hi and Hj are not isomorphic if i 6= j. Then

Aut(R) ∼= Aut(R1)×Aut(R2)× · · · ×Aut(Rk) and Aut(Ri) ∼= Aut(Hi) o Sni where

in this wreath product Aut(Hi) appears in its right regula representation and the
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symmetric group Sni
in its natural permutation representation. Moreover these

isomorphisms induce isomorphisms Out(R) ∼= Out(R1)×Out(R2)× · · · ×Out(Rk)

and Out(Ri) ∼= Out(Hi) o Sni
.

At the end of this section, we quote two lemmas on noncommuting graph. Let

g be an element of a finite group G. We denote by gG the conjugacy class of G

containing g. Also, we denote by |gG| the size of the conjugacy class gG.

Lemma 2.11. ([8], Lemma 2) Let G be a finite group such that Z(G) = 1. If H is

a group such that ∇(H) ∼= ∇(G), then |Z(H)|
∣∣(|CG(gi)| − 1) and |Z(H)|

∣∣(|gG
i | − 1)

for every gi ∈ G∗, where G∗ = G \ {1} and 1 ≤ i ≤ |G∗|. In particular, if one of

the following two conditions holds:

1. g.c.d.{|CG(g1)| − 1, |CG(g2)| − 1, . . . , |CG(g|G∗|)| − 1} = 1, or

2. g.c.d.{|gG
1 | − 1, |gG

2 | − 1, . . . , |gG
|G∗|| − 1} = 1,

then |H| = |G|.

Lemma 2.12. ([11], Lemma 2.4) Let G and H be finite groups. If ∇(H) ∼= ∇(G),

then

|CH(x) \ Z(H)| = |CG(φ(x)) \ Z(G)|
for all x ∈ H \ Z(H), where φ is a graph isomorphism from ∇(H) to ∇(G).

3. A new characterization of L4(8) by its noncommuting graph

Theorem : Let L4(8) be the projective special linear group of degree 4 over the finite

field of order 8. If G is a finite group with ∇(G) ∼= ∇(L4(8)), then G ∼= L4(8).

Proof. First we suppose that M := L4(8). Now we want to prove that G ∼= M .

We divide the proof into the following seven lemmas.

Lemma 3.1. If ∇(G) ∼= ∇(M), then |G| = |M |. In particular, Z(G) = 1.

Proof. By Lemma 2.11, it is sufficient to find a pair of elements in M , say u and v,

such that g.c.d.{|CM (u)|−1, |CM (v)|−1} = 1 or g.c.d.{|uM |−1, |vM |−1} = 1. By

Lemma 2.1, it follows that µ(M) = {32 ·5 ·13, 7 ·73, 2 ·32 ·7, 22 ·7}. Therefore there

exist two elements in M , say x and y, such that o(x) = 32 · 5 · 13 and o(y) = 7 · 73

respectively. Since |M | = 218 · 34 · 5 · 73 · 13 · 73 and {2 · 5, 2 · 13, 2 · 73, 3 · 73, 5 · 7, 5 ·
73, 7 · 13, 13 · 73} ∩ πe(M) = ∅ by Lemma 2.1, it follows that |CM (x)| = 3i · 5 · 13

and |CM (y)| = 7j · 73, where 2 ≤ i ≤ 4, 1 ≤ j ≤ 3.

In the sequel, we will use the following symbols, where x and y are those elements

mentioned above.
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(1) See Table 2: Zx := |CM (x)|; Nx := |M |
Zx

= |xM |; N ′
x := Nx − 1.

(2) See Table 3: Zy := |CM (y)|; Ny := |M |
Zy

= |yM |; N ′
y := Ny − 1.

Zx N′x
32 · 5 · 13 229 · 257966867
33 · 5 · 13 31 · 635208737
34 · 5 · 13 32 · 5 · 145862747

Table 2 Possible Values of Zx and N′x

From Table 2, we have π(N ′
x) ⊆ {3, 5, 31, 229, 257966867, 635208737, 145862747}.

Zy N′y
7 · 73 67629219839

72 · 73 71 · 239 · 431 · 1321
73 · 73 7 · 83 · 269 · 8831

Table 3 Possible Values of Zy and N′y

From Table 3, we have π(N ′
y) ⊆ {7, 71, 83, 239, 269, 431, 1321, 8831, 67629219839}.

If Zx is equal to one of the values listed in Table 2, then N ′
x satisfies the condition

π(N ′
x) ∩ π(N ′

y) = ∅ for any y satisfying o(y) = 7 · 73 by Tables 2 and 3. Let

u = x and v = y, where N ′
x and N ′

y satisfy the condition mentioned above. Then

g.c.d.{|uM | − 1, |vM | − 1} = g.c.d.{N ′
x, N ′

y} = 1, which implies that |G| = |M | by

Lemma 2.11. Since |G\Z(G)| = |M \Z(M)| by the definition of the noncommuting

graph, it follows immediately that Z(G) = Z(M) = 1. ¤

Lemma 3.2. If ∇(G) ∼= ∇(M), then 5 · 73 /∈ πe(G) and 13 · 73 /∈ πe(G).

Proof. Let φ be a graph isomorphism from ∇(M) to ∇(G). If 5 · 73 ∈ πe(G), then

there exists an element, say x, such that o(x) = 5. Therefore, 5 · 73
∣∣|CG(x)|. By

Lemmas 2.12 and 3.1, 5 · 73
∣∣|CM (φ−1(x))|. If 2 ∈ π(o(φ−1(x))), then there exists a

natural number i such that x1 := (φ−1(x))i ∈ M is of order 2. Then 5·73
∣∣|CM (x1)|,

too. Let y1 ∈ CM (x1) such that o(y1) = 5. Hence o(x1y1) = 2·5. Thus 2·5 ∈ πe(M),

which is a contradiction since 2 � 5 in Γ(M). Therefore 2 /∈ π(o(φ−1(x))). By a

similar argument, we have that {3, 5, 7, 13, 73} ∩ π(o(φ−1(x))) = ∅, too. Thus

π(M) ∩ π(o(φ−1(x))) = ∅. It follows that φ−1(x) = 1, a contradiction.

By a similar argument as done above, we get that 13 · 73 /∈ πe(G). ¤

Lemma 3.3. If ∇(G) ∼= ∇(M), then G is nonsolvable.

Proof. Suppose that G is solvable. Since |G| = |M | by Lemma 3.1, it follows that

G has a Hall {5, 73}-subgroup H of order 5 · 73. Therefore H is a cyclic subgroup,

which implies that 5 · 73 ∈ πe(G). This is a contradiction by Lemma 3.2. ¤
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Lemma 3.4. Let K be the maximal normal solvable subgroup of G. Then K is a

{2, 3, 7}-subgroup.

Proof. First we assume that {5, 13, 73} ⊆ π(K). Let T be a Hall {5, 73}-subgroup

of K. It is easy to see that T is a cyclic subgroup of order 5 · 73 since |G| =

218 · 34 · 5 · 73 · 13 · 73 by Lemma 3.1. Thus 5 · 73 ∈ πe(K) ⊆ πe(G), a contradiction.

Now we suppose that {p, q, r} = {5, 13, 73}.
Next we assume that {p, q} ⊆ π(K) and r /∈ π(K). Let T be a Hall {p, q}-

subgroup of K. It is easy to see that T is a cyclic subgroup of order p · q. If

{p, q} 6= {5, 13}, then p · q ∈ πe(K) ⊆ πe(G), a contradiction. If {p, q} = {5, 13},
then K is a {2, 3, 5, 7, 13}-subgroup. Let Rp ∈ Sylp(K). By Frattini argument

G = KNG(Rp). Therefore, the normalizer NG(Rp) contains an element of order

73, say x. Obviously, < x > Rp is a subgroup of G of order 73 · p, which is abelian.

Hence 73 · p ∈ πe(G), a contradiction.

Finally, if r ∈ π(K) and {p, q} ∩ π(K) = ∅, then K is a {2, 3, 7, r}-subgroup.

Let Rr ∈ Sylr(K). By Frattini argument G = KNG(Rr). Therefore, the normal-

izer NG(Rr) contains two elements of orders p and q, say x and y, respectively.

Obviously, < x > Rr and < y > Rr are subgroups of G of orders p · r and q · r,
respectively. It is clear that both of them are abelian. Hence {p · r, q · r} ⊆ πe(G),

a contradiction. ¤

In the sequel, we will use the following notation. Given a finite group G, denote

by Soc(G) the socle of G, which is the subgroup generated by the set of all minimal

normal subgroups of G.

Lemma 3.5. Let G := G/K and S := Soc(G). Then the following assertions are

true:

(1) If r ∈ {5, 13, 73} and r /∈ π(S), then r /∈ π(Aut(S)).

(2) If S 6= M , then π(S) = {2, 3, 7}.
(3) S is isomorphic to one of the following groups: L2(7), L2(8), U3(3), L2(7) ×

L2(7), L2(7) ×L2(8), L2(7) × U3(3), L2(8) × L2(8), L2(7) × L2(7) × L2(7), L2(7) ×
L2(7)× L2(8) or M .

Proof. Since G is nonsolvable by Lemma 3.3, we have that S is a centerless CR-

group. Put S = P1×P2×· · ·×Pm, where Pi’s are nonabelian finite simple groups.

Since |G| = |M | = 218 · 34 · 5 · 73 · 13 · 73 by Lemma 3.1, it is obvious that Pi is

isomorphic to one of the groups listed in Table 1. Moreover, {5, 13, 73} ⊆ π(G) by

Lemma 3.4.

In the sequel, we assume that {p, q, r} = {5, 13, 73}.
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(1) Assume the first assertion to be false, then r
∣∣|Aut(S)|. Since Inn(S) ∼= S,

we have that r - |Inn(S)|. Because Aut(S)/Inn(S) = Out(S), it follows that

r
∣∣|Out(S)|. But Out(S) = Out(S1)×Out(S2)×· · ·×Out(Sk), where the groups Sj ’s

are direct products of some isomorphic copies of the simple groups belonging to the

set {P1, P2, . . . , Pm} such that S = P1×P2×· · ·×Pm = S1×S2×· · ·×Sk. Therefore

r
∣∣|Out(Sj)| for some j, where 1 ≤ j ≤ k. Suppose that Sj is a direct product of t

isomorphic copies of a simple group Pi, where Pi ∈ {P1, P2, . . . , Pm}. By Lemma

2.10, we obtain that |Out(Sj)| = |Out(Pi)|t · t!. Since π(Pi) ⊆ π(S) ⊆ {2, 3, 7, p, q},
we have that π(Out(Pi)) ⊆ {2, 3} or |Out(Pi)| = 1 by Lemma 2.9, which implies

that r - |Out(Pi)|. Therefore r
∣∣t!, which implies that t ≥ r ≥ 5. If Pi � Sz(8), then

3
∣∣|Pi| by Lemma 2.9, which implies that 35

∣∣|Sj |
∣∣|S|

∣∣|G|, a contradiction. If Pi
∼=

Sz(8), then 5
∣∣|Pi| by Lemma 2.9, which implies that 55

∣∣|Sj |
∣∣|S|∣∣|G|, a contradiction.

Hence r /∈ π(Aut(S)), as desired.

(2) First, we assume that {p, q} ⊆ π(S) and r /∈ π(S). It is easy to see that

r /∈ π(Aut(S)) by the first assertion. Thus r ∈ π(CG(S)) since G/CG(S) . Aut(S).

This implies that {p · r, q · r} ⊆ πe(G), a contradiction.

Next, we assume that r ∈ π(S) and {p, q} ∩ π(S) = ∅. It is easy to see that

{p, q} ∩ π(Aut(S)) = ∅ by the first assertion. Thus {p, q} ⊆ π(CG(S)) since

G/CG(S) . Aut(S). This implies that {p · r, q · r} ⊆ πe(G), a contradiction.

Finally, we assume that {p, q, r} ⊆ π(S). Since |G| = |M | = 218 ·34 ·5 ·73 ·13 ·73,

it follows that S ∼= M by Lemma 2.9. However, this contradicts our hypothesis.

(3) Recall that π(S) = {2, 3, 7} if S 6= M by the second assertion. There-

fore, using Table 1, we have that S is isomorphic to one of the following groups:

L2(7), L2(8), U3(3), L2(7)×L2(7), L2(7)×L2(8), L2(7)×U3(3), L2(8)×L2(8), L2(7)×
L2(7)× L2(7), L2(7)× L2(7)× L2(8) or M . ¤

Lemma 3.6. Let S be a group mentioned in Lemma 3.5(3). Then the following

assertions are true.

(1) |S|∣∣ |G|
|CG(S)|

∣∣|Aut(S)|.
(2) If S 6= M , then {5, 13, 73} ⊆ π(CG(S)) and CG(S) is nonsolvable.

Proof. (1) Since S ∩ CG(S) = Z(S) = 1, we have that S ∼= S/S ∩ CG(S) ∼=
CG(S)S/CG(S) ≤ G/CG(S) . Aut(S). Thus |S|∣∣ |G|

|CG(S)|
∣∣|Aut(S)|.

(2) If S ∼= L2(7) × L2(7), L2(7) × L2(8), L2(7) × U3(3), L2(8) × L2(8), L2(7) ×
L2(7) × L2(7) or L2(7) × L2(7) × L2(8), then |Aut(S)| = |Aut(L2(7))|2 · |S2| =

29 · 32 · 72, |Aut(L2(7))| · |Aut(L2(8))| = 27 · 34 · 72, |Aut(L2(7))| · |Aut(U3(3))| =

210 · 34 · 72, |Aut(L2(8))|2 · |S2| = 27 · 36 · 72, |Aut(L2(7))|3 · |S3| = 213 · 34 · 73

or |Aut(L2(7))|2 · |S2| · |Aut(L2(8))| = 212 · 35 · 73 by Lemma 2.10, where Sr is a
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symmetry group on {1, 2, . . . , r}. Thus π(Aut(S)) = {2, 3, 7} if S 6= M . It follows

that {5, 13, 73} ⊆ π(CG(S)) since G/CG(S) . Aut(S). Suppose CG(S) is solvable.

Then CG(S) has a Hall {5, 73}-subgroup T1. It is easy to see that T1 is an abelian

subgroup of order 5 · 73. Thus 5 · 73 ∈ πe(CG(S)). Hence 5 · 73 ∈ πe(G) too, a

contradiction. ¤

Let n be a natural number and p a prime. In the sequel, e(np) denotes a non-

negative integer such that pe(np)
∣∣n but pe(np)+1 - n.

Lemma 3.7. S is not isomorphic to any of the following groups: L2(7), L2(8), U3(3),

L2(7) ×L2(7), L2(7)×L2(8), L2(7)×U3(3), L2(8)×L2(8), L2(7)×L2(7)×L2(7) or

L2(7)× L2(7)× L2(8). Therefore, S ∼= M = L4(8).

Proof. Suppose S ∼= L2(7), L2(8), U3(3), L2(7) × L2(7), L2(7) × L2(8), L2(7) ×
U3(3), L2(8)×L2(8), L2(7)×L2(7)×L2(7) or L2(7)×L2(7)×L2(8). In the sequel,

we also assume that {p, q, r} = {5, 13, 73} if p, q or r appears.

Step 1. Suppose G1 := CG(S), G1 := G1/K1 and S1 := Soc(G1), where K1

is the maximal normal solvable subgroup of G1. Then the following assertions are

true.

(a) By Lemma 3.2, {5 ·73, 13 ·73}∩πe(G1) = ∅ and {5 ·73, 13 ·73}∩πe(G1) = ∅.

(b) By Lemma 3.6(2), {5, 13, 73} ⊆ π(G1) and G1 is nonsolvable. By a similar

argument in Lemma 3.4, we obtain that K1 is a {2, 3, 7}-subgroup, too.

(c) Moreover, {5, 13, 73} ⊆ π(G1) by (b) and so G1 is nonsolvable.

(d) By Lemma 3.6(1), e(|G1|2) ≤ 15, e(|G1|3) ≤ 3, e(|G1|7) ≤ 2, e(|G1|5) =

e(|G1|13) = e(|G1|73) = 1.

(e) By the choice of K1 and (c), S1 is a direct product of some finite nonabelian

simple groups listed in Table 1.

By Table 1 and (d), we have that {5, 13, 73}∩π(S1) 6= {5, 13, 73} and so S1 6= M .

Now we assert that π(S1) = {2, 3, 7}.
First we assume that {p, q} ⊆ π(S1) and r /∈ π(S1). It is easy to see r /∈

π(Aut(S1)) by a similar argument in Lemma 3.5(1). Thus r ∈ π(CG1
(S1)) since

G1/CG1
(S1) . Aut(S1). It implies that {p · r, q · r} ⊆ πe(G1), which contradicts

(a).

Next we assume that r ∈ π(S1) and {p, q} ∩ π(S1) = ∅. It is easy to see

{p, q} ∩ π(Aut(S1)) = ∅ by a similar argument in Lemma 3.5(1). Thus {p, q} ⊆
π(CG1

(S1)) since G1/CG1
(S1) . Aut(S1). It implies that {p · r, q · r} ⊆ πe(G1),

which contradicts (a).

Hence we obtain that π(S1) = {2, 3, 7}. It follows that S1
∼= L2(7), L2(8), U3(3),

L2(7) ×L2(7) or L2(7)× L2(8) by (d) and (e).
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Step 2. Suppose G2 := CG1
(S1), G2 := G2/K2 and S2 := Soc(G2), where K2

is the maximal normal solvable subgroup of G2. Then the following assertions are

true.

(f) By Lemma 3.2, {5 ·73, 13 ·73}∩πe(G2) = ∅ and {5 ·73, 13 ·73}∩πe(G2) = ∅.

(g) By a similar argument in Lemma 3.6, {5, 13, 73} ⊆ π(G2) and G2 is non-

solvable. By a similar argument in Lemma 3.4, we obtain that K2 is a {2, 3, 7}-
subgroup, too.

(h) Moreover, {5, 13, 73} ⊆ π(G2) by (g) and so G2 is nonsolvable.

(i) e(|G2|2) ≤ 12, e(|G2|3) ≤ 2, e(|G2|7) ≤ 1, e(|G2|5) = e(|G2|13) = e(|G2|73) =

1 since |S1|
∣∣ |G1|
|CG1

(S1)|
∣∣|Aut(S1)|.

(j) By the choice of K2 and (i), S2 is a direct product of some finite nonabelian

simple groups listed in Table 1.

By Table 1 and (i), we have that {5, 13, 73}∩π(S2) 6= {5, 13, 73} and so S2 6= M .

Now we assert that π(S2) = {2, 3, 7}.
First we assume that {p, q} ⊆ π(S2) and r /∈ π(S2). It is easy to see r /∈

π(Aut(S2)) by a similar argument in Lemma 3.5(1). Thus r ∈ π(CG2
(S2)) since

G2/CG2
(S2) . Aut(S2). It implies that {p · r, q · r} ⊆ πe(G2), which contradicts

(f).

Next we assume that r ∈ π(S2) and {p, q} ∩ π(S2) = ∅. It is easy to see

{p, q} ∩ π(Aut(S2)) = ∅ by a similar argument in Lemma 3.5(1). Thus {p, q} ⊆
π(CG2

(S2)) since G2/CG2
(S2) . Aut(S2). It implies that {p · r, q · r} ⊆ πe(G2),

which contradicts (f).

Hence we get that π(S2) = {2, 3, 7} by (i). It follows that S1
∼= L2(7) or L2(8)

by (i) and (j).

Step 3. Suppose G3 := CG2
(S2), G3 := G3/K3 and S3 := Soc(G3), where K3

is the maximal normal solvable subgroup of G3. Then the following assertions are

true.

(k) By Lemma 3.2, {5 ·73, 13 ·73}∩πe(G3) = ∅ and {5 ·73, 13 ·73}∩πe(G3) = ∅.

(l) By a similar argument in Lemma 3.6, {5, 13, 73} ⊆ π(G3) and G3 is non-

solvable. By a similar argument in Lemma 3.4, we obtain that K3 is a {2, 3, 7}-
subgroup, too.

(m) Moreover, {5, 13, 73} ⊆ π(G3) by (l) and so G3 is nonsolvable.

(n) e(|G3|2) ≤ 9, e(|G3|3) ≤ 1, e(|G3|7) = 0, e(|G3|5) = e(|G3|13) = e(|G3|73) =

1 since |S2|
∣∣ |G2|
|CG2

(S2)|
∣∣|Aut(S2)|.

(o) By the choice of K3 and (n), S3 is a direct product of some finite nonabelian

simple groups listed in Table 1. In particular, S3 is nonsolvable.

By Table 1 and (n), we have that {5, 13, 73}∩π(S3) 6= {5, 13, 73} and so S3 6= M .
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First we assume that {p, q} ⊆ π(S3) and r /∈ π(S3). It is easy to see r /∈
π(Aut(S3)) by a similar argument in Lemma 3.5(1). Thus r ∈ π(CG3

(S3)) since

G3/CG3
(S3) . Aut(S3). It implies that {p · r, q · r} ⊆ πe(G3), which contradicts

(k).

Next we assume that r ∈ π(S3) and {p, q} ∩ π(S3) = ∅. It is easy to see

{p, q} ∩ π(Aut(S3)) = ∅ by a similar argument in Lemma 3.5(1). Thus {p, q} ⊆
π(CG3

(S3)) since G3/CG3
(S3) . Aut(S3). It implies that {p · r, q · r} ⊆ πe(G3),

which contradicts (k).

Hence we get that π(S3) = {2, 3} by (n) and so S3 is solvable, which contradicts

(o).

By Steps 1-3, we have obtained that S ∼= M . By Lemma 3.6(1), it follows that

|G| = |G| = |M |. Hence K = 1 and G ∼= M = L4(8). ¤

By Lemmas 3.1-3.7, we complete the proof of Theorem. ¤

Remark 3.8. Although we have not found a general method to deal with all simple

groups on AAM ’s conjecture, it is evident that the method used in the present paper

also works well in the cases L4(4), L4(7), U4(7), etc.
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