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Abstract. A ring R is called a VNL-ring if a or 1−a is regular for every a ∈ R.

We call a ring R a right n-VNL-ring if whenever a1R + a2R + · · ·+ anR = R

for some elements a1, a2, · · · , an of R, then there exists at least one element ai

(von Neumann) regular. It is proven that there exists a right 2-VNL-ring but

not right 3-VNL, which gives a negative answer to a question raised by Chen

and Tong in 2006. We prove that R is regular iff the n × n matrix ring over

R is a VNL-ring for some n ≥ 2. It is also proven that a ring R is a division

ring iff R is semilocal and the 2 × 2 upper triangular matrix ring over R is a

VNL-ring.
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1. Introduction

Throughout this paper, all rings are associative with identity. For a ring

R, let Mn(R) and Tn(R) be the rings of all n × n matrices and all n × n upper

triangular matrices over R respectively. The ring of integers modulo n is denoted

by Zn.

An element a of a ring R is said to be (von Neumann) regular if a = aba for

some b ∈ R. Moreover, if ab = ba then a is strongly regular. A ring is regular (resp.,

strongly regular) if all of its elements are regular (resp., strongly regular). Contessa

called a ring R a VNL-ring (von Neumann regular local ring) if a or 1−a is regular

for every a ∈ R [2]. Such rings are of interest since they constitute a subclass of

the PM-rings (that is, every prime ideal is contained in a unique maximal ideal).

A ring is abelian if all idempotents are contained in the center. Some properties of

commutative VNL-rings and abelian VNL-rings are studied in [3], [4] and [1].

Osba et al. [3] called a commutative ring R an SVNL-ring if whenever (S) = R

for some nonempty subset S of R, at least one of the elements in S is regular, where
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(S) is an ideal generated by S. In the last paragraph of their paper, they asked

whether there is a VNL-ring that is not an SVNL-ring. Chen and Tong introduced

noncommutative SVNL-rings. According to [1], a ring R is a right SVNL-ring if

whenever (S)r = R for some nonempty subset S of R, at least one element in S is

regular, where (S)r is a right ideal generated by S. Left SVNL-rings are defined

analogously, and a ring R is SVNL if it is a left and right SVNL-ring. Chen and

Tong proved that every abelian VNL-ring is an SVNL-ring [1, Theorem 2.8], and

raised a question whether every VNL-ring is an SVNL-ring [1, Question 3.17]. We

prove that there exists a VNL-ring which is neither left nor right 3-VNL-ring. It

answers the question of Chen and Tong in the negative. VNL-rings have not been

related to other more familiar classes of rings before. In this paper, it is proven that

R is regular iff Mn(R) is a VNL-ring for some n ≥ 2 iff Mn(R) is a VNL-ring for

every n ≥ 2. A ring R is a division ring iff R is semilocal and T2(R) is a VNL-ring.

It is also proven that the trivial extension of R is an abelian VNL-ring iff R is local.

2. VNL-rings and SVNL-rings

In this section, the properties and several extensions of VNL-rings and SVNL-

rings are investigated. VNL-rings are also related to more familiar classes of rings.

Proposition 2.1. If R is a VNL-ring, then eRe is also a VNL-ring for every

e = e2 ∈ R.

Proof. For a ∈ eRe, a or 1 − a is regular in R. If a is regular, then there exists

b ∈ R such that a = aba. So a = (ae)b(ea) = a(ebe)a. Thus, a is regular in eRe.

If 1 − a is regular, then there exists c ∈ R such that 1 − a = (1 − a)c(1 − a). So

e− a = e(1− a)e = e(1− a)c(1− a)e = (e− a)ece(e− a). Thus, e− a is regular in

eRe. Therefore, eRe is a VNL-ring. ¤

According to Proposition 2.1, one may ask whether the property “VNL” is Morita

invariant. To answer it, we need the following useful fact, the proof of which is

trivial.

Lemma 2.2. Let diag(a1, a2, · · · , an) be the n× n diagonal matrix with ai in each

entry on the main diagonal. diag(a1, a2, · · · , an) is regular in Mn(R) (resp., Tn(R))

iff a1, a2, · · · , an are all regular in R.

Theorem 2.3. For a ring R, the following are equivalent:

(1) R is a regular ring.

(2) Mn(R) is a right SVNL-ring for every n ≥ 2.
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(3) Mn(R) is a VNL-ring for every n ≥ 2.

(4) Mn(R) is a right SVNL-ring for some n ≥ 2.

(5) Mn(R) is a VNL-ring for some n ≥ 2.

Proof. It is a well-known fact that R is regular iff Mn(R) is regular. Hence “(1)⇒
(2)⇒ (4)⇒ (5)” and “(1)⇒ (3)⇒ (5)” are clear.

“(5)⇒ (1)” Let A =diag(a, 1 − a, 1, · · · , 1) ∈ Mn(R) and In be the identity

matrix. Then In − A = diag(1 − a, a, 0, · · · , 0). Because Mn(R) is a VNL-ring,

either A or In − A is regular. For any case, a is regular by Lemma 2.2. Thus R is

regular. ¤

By Theorem 2.3, if R is a VNL-ring which is not regular, then Mn(R) is not a

VNL-ring for every n ≥ 2. Therefore, the property “VNL” is not Morita invariant.

By a similar way to prove “(5)⇒ (1)” in Theorem 2.3, it also follows that if Tn(R)

is a VNL-ring for some n ≥ 2, then R is regular. But the converse is not true. For

example, T2(Z6) is not a VNL-ring since neither
(

3 1
0 3

)
nor

(
1 0
0 1

)− (
3 1
0 3

)
is regular,

though Z6 is regular.

Proposition 2.4. For any ring R and n ≥ 4, Tn(R) is not a VNL-ring.

Proof. Applying Proposition 2.1, we may assume that n = 4. Let A =
(

0 1
0 0

)
.

Then diag(A, I2 − A) and diag(I2 − A,A) are not regular. Hence Tn(R) is not a

VNL-ring for any n ≥ 4. ¤

Proposition 2.5. For a division ring D, T2(D) is an SVNL-ring.

Proof. Let R = T2(D). If R = (S)r for some nonempty subset S of R, then

there exist A1, A2, · · · , Am ∈ S such that A1R + A2R + · · · + AmR = R, where

Ai =
( ai ci

0 bi

)
. Thus there exists bk 6= 0 for some k, whence Ak is regular. Similarly,

R is a left SVNL-ring and so R is an SVNL-ring. ¤

Recall that a ring R is said to be semilocal if R/J(R) is semisimple, where J(R)

is the Jacobson radical of R. The following fact was proven in [3, Theorem 3.1] and

[1, Lemma 2.6].

Lemma 2.6. Let R =
∏

α∈Λ Rα be a ring. Then R is a VNL-ring if and only if

there exists α0 ∈ Λ such that Rα0 is a VNL-ring and for each α ∈ Λ− {α0}, Rα is

a regular ring.

Proposition 2.7. R is a division ring if and only if R is semilocal and T2(R) is a

VNL-ring.
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Proof. The fact that if T2(R) is a VNL-ring then R is regular was pointed out

in the paragraph after Theorem 2.3. Since J(R) = 0, R is semisimple. Hence,

R ∼= ∏m
i=1 Ri, where Ri

∼= Mni(Di) and Di is a division ring. Thus T2(R) ∼=∏m
i=1 T2(Ri). Suppose m ≥ 2. Because T2(R) is VNL, there exists at least one

T2(Ri) regular by Lemma 2.6. But
(

0 1
0 0

)
is not regular, a contradiction. Therefore,

we may assume R = Mn(D) for some division ring D. Suppose n ≥ 2. Then

Mn(T2(D)) ∼= T2(Mn(D)) = T2(R) is a VNL-ring. It implies that T2(D) is regular

by Theorem 2.3, but
(

0 1
0 0

)
is not regular, a contradiction. So n = 1. Therefore,

R = D is a division ring. The converse is clear by Proposition 2.5. ¤

Given a ring R, the trivial extension of R is the ring T (R,R) = {(a, b) : a, b ∈ R}
with the usual addition and the multiplication (a1, b1)(a2, b2) = (a1a2, a1b2 +b1a2).

In fact, T (R,R) is isomorphic to the subring {( a b
0 a

)
: a, b ∈ R} of T2(R).

Proposition 2.8. (1) Let R = Tn(S) for a ring S and n ≥ 2. Then T (R, R) is

not a VNL-ring.

(2) Let R1, R2 be rings and R = R1 ×R2. Then T (R, R) is not a VNL-ring.

Proof. (1) Suppose n = 2. Let T = (A, I2) ∈ T (R, R), where A =
(

1 1
0 0

)
. If T is

regular, then there exists (X, Y ) ∈ T (R, R) such that (A, I2) = (A, I2)(X,Y )(A, I2).

So AX + AY A + XA = I2. Write X =
( x1 x2

0 x3

)
and Y =

( y1 y2
0 y3

)
. Thus

(
1 1
0 0

)( x1 x2
0 x3

)
+

(
1 1
0 0

)( y1 y2
0 y3

)(
1 1
0 0

)
+

( x1 x2
0 x3

)(
1 1
0 0

)
=

(
1 0
0 1

)
,

a contradiction by comparing the (2,2) entry of matrices in two sides. It can also

be proven that (I2, 0) − T is not regular as above. Hence T (T2(S), T2(S)) is not

VNL.

Suppose n ≥ 3. Let A =
(

A1 α1
0 A2

)
, B =

(
B1 α2
0 B2

) ∈ R, where A1, B1 ∈ T2(S).

If (A,B) is regular in T (R, R), then (A1, B1) is regular in T (T2(S), T2(S)). Since

T (T2(S), T2(S)) is not VNL, neither is T (R,R).

Therefore, T (R,R) is not a VNL-ring.

(2) We denote [r1, r2] for the element of R to erase the ambiguity. Let a =

([1, 0], [1, 1]) ∈ T (R, R). It is easy to verify that a and (1, 0)− a are not regular in

T (R,R). Hence T (R, R) is not a VNL-ring. ¤

Lemma 2.9. Let R be a ring. If (a, 1) is strongly regular in T (R, R), then a is

invertible in R.

Proof. Since (a, 1) is strongly regular in T (R,R), there exists (x, y) ∈ T (R, R) such

that (a, 1) = (a, 1)(x, y)(a, 1) and (a, 1)(x, y) = (x, y)(a, 1). Thus axa = a, ax = xa

and ax + aya + xa = 1. By the first two equations, a = a2x = xa2. Thus aya =
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ay(a2x) = (aya)(ax) = (1 − ax − xa)ax = (1 − ax)ax − xa2x = −x(a2x) = −xa,

implying ax = 1 = xa. Therefore, a is invertible. ¤

Proposition 2.10. For a ring R, T (R, R) is an abelian VNL-ring if and only if R

is a local ring.

Proof. Let A = (a, 1) ∈ T (R,R). If A is regular, then A is strongly regular since

T (R,R) is an abelian ring, whence a is invertible by Lemma 2.9. If (1, 0) − A is

regular, then so is A − (1, 0). Hence A − (1, 0) is strongly regular. So 1 − a is

invertible by Lemma 2.9. Therefore, R is a local ring. The converse is clear. ¤

Remark 2.11. It is clear that if T (R, R) is a VNL-ring (resp., an SVNL-ring),

then R is a VNL-ring (resp., an SVNL-ring). But the converse is not true. By

Proposition 2.5 and Proposition 2.8, although R = T2(Z2) is an SVNL-ring, T (R, R)

is not a VNL-ring.

3. n-VNL-rings

In this section, the properties and some examples of n-VNL-rings are consid-

ered. The Example 3.4 below answers [1, Question 3.17].

Definition 3.1. A ring R is called a right n-VNL-ring if whenever a1R + a2R +

· · ·+ anR = R for some elements a1, a2, · · · , an of R, then there exists at least one

element ai regular.

Left n-VNL-rings are defined analogously, and a ring R is an n-VNL-ring if it is

a left and right n-VNL-ring. It is clear that regular rings are n-VNL-rings, and R

is an SVNL-ring iff R is an n-VNL ring for every n ≥ 1. Examples below will show

that n-VNL-rings constitute a subclass of regular rings and SVNL-rings. According

to the definition, every ring is a 1-VNL-ring. Thus it will be convenient and cause

no misunderstanding if we say that a ring is n-VNL only when n ≥ 2.

From [1, Theorem 2.8], we can infer that for an abelian ring R, R is left n-VNL

iff R is right n-VNL. But T2(D), which is not abelian, is also n-VNL by Proposition

2.5. We do not know whether every left n-VNL ring is right n-VNL.

Proposition 3.2. The following statements hold:

(1) Every right 2-VNL-ring R is a VNL-ring.

(2) For n ≥ m, every right n-VNL-ring R is a right m-VNL-ring.

Proof. (1) Let a ∈ R. Since aR + (1− a)R = R and R is a right 2-VNL-ring, a or

1− a is regular. Therefore R is a VNL-ring.

(2) It is obvious. ¤
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Corollary 3.3. For a ring R, the following are equivalent:

(1) R is a regular ring.

(2) Mn(R) is a right m-VNL-ring for every n ≥ 2.

(3) Mn(R) is a right m-VNL-ring for some n ≥ 2.

Proof. “(1)⇒ (2)⇒ (3)” is trivial, and “(3) ⇒ (1)” is clear by Proposition 3.2 and

Theorem 2.3. ¤

Example 3.4. (1) For every division ring D, T3(D) is a 2-VNL-ring.

(2) For any ring R and m,n ≥ 3, Tm(R) is neither left nor right n-VNL.

Proof. (1) Denote A =
(

A1 α
0 a

) ∈ T3(D), where A1 ∈ T2(D) and α is a 2 × 1

matrix. It is obvious that A1 is not regular in T2(D) iff A1 ∈ {
(

0 d
0 0

)
: d ∈ D}. If

a 6= 0 and A1 is regular, then there exists B1 ∈ T2(D) such that A1B1A1 = A1.

Thus, A is regular since
(

A1 α

0 a

)
=

(
A1 α

0 a

)(
B1 −B1αa−1

0 a−1

)(
A1 α

0 a

)
.

If a = 0 and A1 is invertible, then A is regular since
(

A1 α
0 0

)
=

(
A1 α
0 0

)(
A−1

1 0
0 0

)(
A1 α
0 0

)
.

Therefore, if A is not regular, then

(i) A =
(

A1 α
0 a

)
, where A1 is not regular and a 6= 0; or

(ii) A =
(

A1 α
0 0

)
, where A1 is not invertible.

Sequentially, assume that there exist non-regular matrices B = (bij), C = (ckl) ∈
T3(D) such that BT3(D) + CT3(D) = T3(D). Then there exist X = (xij), Y =

(ykl) ∈ T3(D) such that BX + CY = I3. We only need to consider three cases.

Case 1. B =




0 b12 b13

0 0 b23

0 0 b33


 and C =




0 c12 c13

0 0 c23

0 0 c33


.

Since BX +CY = I3,
(

0 b12
0 0

)( x11 x12
0 x22

)
+

(
0 c12
0 0

)( y11 y12
0 y22

)
=

(
1 0
0 1

)
. By comparing

the second row of matrices in two sides, we have (0, 0) = (0, 1), a contradiction.

Case 2. B =




0 b12 b13

0 0 b23

0 0 b33


 and C =




c11 c12 c13

0 c22 c23

0 0 0


, where

( c11 c12
0 c22

)
is

not invertible.

Since BX + CY = I3,
(

0 b12
0 0

)( x11 x12
0 x22

)
+

( c11 c12
0 c22

)( y11 y12
0 y22

)
=

(
1 0
0 1

)
. Hence

c22y22 = 1. Because
( c11 c12

0 c22

)
is not invertible, c11 = 0. It is a contradiction by

comparing the first column of matrices in two sides.
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Case 3. B =




b11 b12 b13

0 b22 b23

0 0 0


 and C =




c11 c12 c13

0 c22 c23

0 0 0


, where

(
b11 b12
0 b22

)
,

( c11 c12
0 c22

)
are not invertible.

Since BX + CY = I3, it is a contradiction by comparing the (3,3) entry of

matrices in two sides.

Therefore, T3(D) is a right 2-VNL-ring. Using the same way, we can prove that

T3(D) is a left 2-VNL-ring.

(2) If m ≥ 4, then Tm(R) is not VNL by Proposition 2.4. Thus, Tm(R) is neither

left nor right n-VNL by Proposition 3.2. Suppose m = 3. Let

B1 =




1 0 0

0 0 1

0 0 0


 , B2 =




0 0 1

0 1 0

0 0 0


 , B3 =




0 1 0

0 0 0

0 0 1


 .

Then B1, B2, B3 are non-regular matrices, but B1 + B2 + B3 is invertible in T3(R).

Hence T3(R) is neither left nor right 3-VNL. Therefore, Tm(R) is neither left nor

right n-VNL. ¤

Remark 3.5. Let D be a division ring. According to Example 3.4, T3(D) is a VNL-

ring by Proposition 3.2 (1), but T3(D) is not an SVNL-ring. It gives a negative

answer to Question 3.17 in [1].

If m ≥ 2 and m =
∏t

i=1 pki
i is a prime power decomposition of m, then Zm

is an SVNL-ring iff ki > 1 for at most one value of i [3, Proposition 2.9]. This

fact also determines when Zm is a VNL-ring by [1, Theorem 2.8]. It is completely

characterized here when Tn(Zm) is a VNL-ring.

Example 3.6. Let n ≥ 2 and m ≥ 2. Tn(Zm) is a VNL-ring iff n = 2 or 3 and m

is a prime number.

Proof. The “if” part follows by Proposition 2.5 and Example 3.4. For the “only if”

part, n = 2 or 3 by Proposition 2.4. Because Zm is a semilocal ring and T2(Zm) is

a VNL-ring by Proposition 2.1, Zm is a division ring by Proposition 2.7. Therefore,

m is a prime number. ¤
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