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Abstract. Given a finite group G acting as automorphisms on a ring A, the

skew group ring A ∗ G is an important tool for studying the structure of G-

stable ideals of A. The ring A ∗ G is G-graded, i.e. G coacts on A ∗ G. The

Cohen-Montgomery duality says that the smash product A∗G#k[G]∗ of A∗G

with the dual group ring k[G]∗ is isomorphic to the full matrix ring Mn(A)

over A, where n is the order of G. In this note we show how much of the

Cohen-Montgomery duality carries over to partial group actions in the sense

of R.Exel. In particular we show that the smash product (A ∗α G)#k[G]∗ of

the partial skew group ring A∗α G and k[G]∗ is isomorphic to a direct product

of the form K×eMn(A)e where e is a certain idempotent of Mn(A) and K is

a subalgebra of (A ∗α G)#k[G]∗. Moreover A∗α G is shown to be isomorphic

to a separable subalgebra of eMn(A)e. We also look at duality for infinite

partial group actions.
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1. Introduction

Let k be a commutative unital ring and A a untial k-algebra. Given a finite

group G acting as k-linear automorphisms on A, Cohen and Montgomery showed

in [1] that the smash product A ∗ G#k[G]∗ of the skew group ring A ∗ G and the

dual group ring k[G]∗ = Hom(k[G], k) is isomorphic to the full matrix ring Mn(A)

over A, where n is the order of G.

The notion of a partial group action on a k-algebra A has been introduced by

R.Exel in the study of C∗-algebras (see [4]). One says that G acts partially on A
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by a family {αg : Dg−1 → Dg}g∈G if for all g ∈ G, Dg is an ideal of A and αg is an

isomorphism of k-algebras such that for all g, h ∈ G:

(i) De = A and αe is the identity map of A;

(ii) αg(Dg−1 ∩Dh) = Dg ∩Dgh;

(iii) αg(αh(x)) = αgh(x) for all x ∈ Dh−1 ∩D(gh)−1 .

The partial skew group ring of A and G is defined to be the projective left

A-module A ∗α G =
⊕

g∈G Dg whose multiplication will be defined in the next

section. Since A ∗α G is naturally G-graded, the question arises how much of the

Cohen-Montgomery duality carries over to partial group actions.

As in [3] we will assume that the ideals Dg are generated by central idempotents,

i.e. Dg = A1g with central idempotent 1g ∈ A for all g ∈ G. For any g ∈ G we

define the following endomorphism βg : A → A of A by

βg(a) = αg(a1g−1) ∀a ∈ A

This map gives rise to a k-linear map k[G]⊗A → A with

g ⊗ a 7→ g · a := βg(a) = αg(a1g−1)

for all g ∈ G, a ∈ A.

Lemma 1.1. With the notation above we have that

(1) βg are k-algebra endomorphisms of A for all g ∈ G, i.e.

g · (ab) = (g · a)(g · b) ∀a, b ∈ A.

(2) g · (h · a) = ((gh) · a)1g for all g, h ∈ G and a ∈ A.

(3) (g · a)b = g · (a(g−1 · b)) for all a, b ∈ A and g ∈ G.

Proof. (1) follows since the αg are algebra homomorphisms and the idempotents

1g are central, i.e. for all a, b ∈ A:

βg(ab) = αg(ab1g−1) = αg(a1g−1b1g−1) = αg(a1g−1)αg(b1g−1) = βg(a)βg(b).

(2) follows from [3, 2.1(ii)]:

αg(αh(a1h−1)1g−1) = αgh(a1h−1g−1)1g

what expressed by β yields the statement of (2).

(3) Using (1), (2) and the fact that βe = id and that the image of βg is Dg = A1g

we have that

g · (a(g−1 · b)) = (g · a)(g · (g−1 · b)) = (g · a)b1g = (g · a)b.

¤
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Obviously we also have g·1 = αg(1g−1) = 1g and g·(g−1 ·a) = ((gg−1)·a)1g = a1g

for all a ∈ A and g ∈ G using property (2). Moreover using the fact that αg is

bijective and 1g central we have for all a ∈ A and g ∈ G that g · a = 0 if and only

if a ∈ A(1− 1g).

2. Grading of the partial skew group ring

The partial skew group ring is the projective left A-module A∗α G =
⊕

g∈G Dg.

We will write an element of A ∗α G as a finite sum of elements
∑

g∈G agg where

ag ∈ Dg = A1g and g is a placeholder for the g-th component. A ∗α G becomes an

associative k-algebra by the product:

(ag)(bh) = αg(αg−1(a)b)gh

for all g, h ∈ G and a ∈ Dg and b ∈ Dh. Using our “·”-notation we see easily

(ag)(bh) = a(g · b)gh.

The algebra A ∗α G is naturally G-graded where the homogeneous elements are

those in {Dg}g∈G, i.e. DgDh ⊆ Dgh by definition of the multiplication in A ∗α G.

Thus A∗α G becomes a k[G]-comodule algebra. Note that the G-grading is strong,

in the sense that DgDh = Dgh if and only if Dg = A for all g ∈ G, i.e. the G-action

is global (since if DgDh = Dgh for all g, h ∈ G, then

A1g1g−1 = DgDg−1 = Dgg−1 = De = A,

thus 1g is an invertible central idempotent and hence equals 1, i.e. Dg = A).

Known results on graded rings can be applied to the G-grading of A ∗α G. and we

will point out some of those results now. Recall that a graded ring is called graded

semiprime, if it has no non-zero nilpotent graded ideals.

Theorem 2.1. Let G be a finite group acting partially on A.

(1) A is semiprime if and only if A ∗α G is graded semiprime.

(2) If A is |G|-torsion free, then A is semiprime if and only if A ∗α G is

semiprime.

(3) If P ( Q are prime ideals in A∗α G, then P ∩A ( Q∩A are primes in A.

(4) If P is a prime in A ∗α G, then there are k ≤ |G| primes p1, . . . , pk in A
minimal over P∩A, and moreover P∩A = p1∩· · ·∩pk. The set {p1, . . . , pk}
is uniquely determined by P .

(5) Given any prime p of A, there exists a prime P of A ∗α G so that p is

minimal over P ∩ A. There are at most m ≤ |G| such primes P1, . . . , Pm

of A ∗α G.
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Proof. (1) follows from [1, 2.9], if we show that the grading of the partial skew

group ring is non-degenerated. The grading of a G-graded ring A =
⊕

g∈G Ag is

called non-degenerated if for any g ∈ G and 0 6= ag ∈ Ag also agAg−1 6= 0 6= Ag−1ag

(see [1, Lemma 2.5]). Take any 0 6= ag = ag ∈ Ag = Dgg of the partial skew group

ring A ∗α G. Then

0 6= ae = (ag)
(
1g−1g−1

) ∈ agAg−1 and

0 6= α−1
g (a)e = 1g−1

(
g−1 · a)

e =
(
1g−1g−1

)
(ag) ∈ Ag−1ag.

Hence the G-grading of A ∗α G is non-degenerated.

(2) follows from [1, 5.5]; (3) follows from [1, 7.1]; ( 4)+(5) follow from [1, 7.3]. ¤

3. Duality for partial actions of finite groups

Assume G to be finite, then k[G]∗ becomes a Hopf algebra with projective basis

pg ∈ k[G]∗ where pg(h) = δg,h for all g, h ∈ H. The multiplication is defined as

pg ∗ ph = δg,hpg and the identity element of k[G]∗ is 1 =
∑

h∈H ph. Now A ∗α G

becomes a k[G]∗-module algebra by

ph . (ag) = δg,hag

for all g, h ∈ G and ag ∈ Dg. The multiplication of the smash product (A ∗α G) #k[G]∗

is defined as

(ag#ph)(bk#pl) =
∑

s∈G

(ag)[ps.(bk)]#ps−1h∗pl = (ag)(bk)#pk−1h∗pl = a(g·b)gk#δh,klpl.

The identity element of B = A ∗α G#k[G]∗ is
∑

h∈G 1e#ph. In the case of global

actions Cohen and Montgomery proved in [1] that A ∗ G#k[G]∗ ' Mn(A) where

n = |G| and Mn(A) denotes the ring of n × n-matrices over A. We will index the

matrices of Mn(A) by elements of G and denote by Eg,h the elementary matrix

that has the value 1 in the g-th row and the h-th column and zero elsewhere.

Proposition 3.1. Let G be a finite group of n elements, acting partially on a

k-algebra A and consider the k-algebra B = (A ∗α G)#k[G]∗. The map

Φ : B −→ Mn(A) with

∑

g,h

ag,hg#ph 7→
∑

g,h

h−1 · (g−1 · ag,h)Egh,h

is a k-algebra homomorphism.
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Proof. First note that for any g, h, k ∈ G and a ∈ Dg, b ∈ Dh we have, using

Lemma refproperties(2) in the 2nd, 4th and 6th line and Lemma 1.1(1) in the 3rd

line:

k−1 · ((gh)−1 · (a(g · b))) = k−1 · (((gh)−1 · a)((gh)−1 · (g · b)))

=
[
k−1 · ((gh)−1 · a)

] [
k−1 · (h−1 · b)]

= ((ghk)−1 · a)((hk)−1 · b)1k−1

= ((ghk)−1 · a)1(hk)−1((hk)−1 · b)1k−1

= ((hk)−1 · (g−1 · a))(k−1 · (h−1 · b))

Thus we showed:

k−1 · ((gh)−1 · (a(g · b))) = ((hk)−1 · (g−1 · a))(k−1 · (h−1 · b)) (1)

For any ag#ph, bk#pl ∈ (A ∗α G)#k[G]∗ we have, using equation (1):

Φ((ag#ph)(bk#pl)) = Φ(a(g · b)gk#δh,klpl)

= l−1 · ((gk)−1 · (a(g · b)))Egkl,lδh,kl

= ((kl)−1 · (g−1 · a))(l−1 · (k−1 · b))Egh,hEkl,lδh,kl

= (h−1 · (g−1 · a))Egh,h (l−1 · (k−1 · b))Ekl,l

= Φ(ag#ph)Φ(bk#pl)

Hence Φ is an algebra homomorphism. ¤

Note that Φ restricted to A ∗α G is injective, i.e. A ∗α G can be considered a

subalgebra of Mn(A). In general Ker(Φ) is non-trivial, unless the partial action is

a global action. Recall the partial order on the boolean algebra B(A) of central

idempotents of A: for any e, f ∈ B(A) : e ≤ f ⇔ e = ef . For our situation of a

partial group action G on A set for any g ∈ G:

Λg = {h ∈ G | 1g 6≤ 1gh}

Proposition 3.2. Ker(Φ) =
⊕

g∈G

⊕
h∈Λg

A(1− 1gh)1gg#ph.

Proof. Suppose γ =
∑

g,h ag,hg#ph ∈ Ker(Φ), then h−1 · (g−1 · ag,h) = 0 for all

g, h ∈ G. Thus (g−1 · ag,h) ∈ A(1− 1h) ∩Dg−1 = A(1− 1h)1g−1 . Hence

ag,h = g · (g−1 · ag,h) ∈ Ag · (1− 1h) = A(1g − 1g1gh),

i.e. γ ∈ ⊕
g,hA(1 − 1gh)1gg#ph =

⊕
g∈G

⊕
h∈Λg

A(1 − 1gh)1gg#ph. The other

inclusion follows because Φ ((g · (1− 1h))g#ph) = h−1 · (g−1 · (g · (1− 1h)))Egh,h =

h−1 · ((1− 1h)1g)Egh,h = 0. ¤
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Hence the kernel depends on the partial order of the central idempotent 1g. In

particular Λe = ∅ means 1 = 1g for all g ∈ G.

Note that the inclusion of A ∗α G into (A ∗α G)#k[G]∗ is given by ag 7→∑
h∈G ag#ph for all g ∈ G and a ∈ Dg. If

∑
h∈G ag#ph ∈ Ker(Φ), then a ∈

A(1 − 1gh)1g for all h ∈ G. In particular for h = e we have a ∈ A(1 − 1g)1g = 0.

Hence Φ restricted to A ∗α G is injective.

We will describe the image of Φ. By definition of Φ, the image of an arbitrary

element γ =
∑

g,h ag,hg#ph is

Φ(γ) =
∑

g,h

((gh)−1 · ag,h)1(gh)−11h−1Egh,h = (br,s1r−11s−1)r,s∈G

with br,s = r−1 · ars−1,s for all r, s ∈ G.

Proposition 3.3. The image of Φ consists of all matrices of the form
(
bg,h1g−11h−1

)
g,h∈G

for any matrix (bg,h) of elements of A. In particular Im(Φ) = eMn(A)e, where e

is the idempotent
∑

g∈G 1g−1Eg,g.

Proof. We saw already that an element of the image of Φ is of the given form.

Note that by definition of partial group action we have

Dg ∩Dgh = αg(Dg−1 ∩Dh)

for all g, h ∈ G. Hence also

Dg−1 ∩Dh−1 = αg−1(Dg ∩Dgh−1)

holds for all g, h ∈ G. Thus for all b ∈ A there exists a ∈ A such that

b1g−11h−1 = αg−1(a1gh−11g) = g−1 · (a1gh−1).

This implies that

Φ(a1g1gh−1gh−1#ph) = h−1 · ((hg−1) · (a1g1gh−1))Eg,h

= g−1 · (a1g1gh−1))1h−1Eg,h

= b1g−11h−1Eg,h

Hence given any matrix (bg,h) there are elements ag,h such that

Φ


∑

g,h

ag,h1g1gh−1gh−1#ph


 =

∑

g,h

bg,h1g−11h−1Eg,h =
(
bg,h1g−11h−1

)
g,h∈G

.

This shows that Im(Φ) consists of all matrices of the given form and hence is equal

to eMn(A)e. Note that e is the image of the identity element of B. ¤

The last Propositions yield our main result in this section
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Theorem 3.4. (A ∗α G)#k[G]∗ ' Ker(Φ)× eMn(A)e.

Proof. The kernel of Φ is an ideal and a direct summand of B = (A ∗α G)#k[G]∗.

To see this we first show that the left A-module I =
⊕

g,h∈GA1gh1gg#ph is a

two-sided ideal of B. For any xk#pl ∈ B and a1gh1gg#ph ∈ I we have

(a1gh1gg#ph)(bk#pl) = a1gh1g(g · b1k)gk#δh,klpl = a(g · b)δh,kl1gkl1gkgk#pl ∈ I.

(bk#pl)(a1gh1gg#ph) = b(k · a1gh1g)kg#δk,ghph = b(g · a)δh,kl1kgh1kgkg#ph ∈ I.

Since I ⊕ Ker(Φ) = B and both direct summands are two-sided ideals we have

B = I × Ker(Φ) (ring direct product). Moreover Φ(I) = eMn(A)e = Im(Φ). This

implies B ' Ker(Φ)× eMn(A)e. ¤

Note that Φ embedds A ∗α G into the Pierce corner eMn(A)e.

Corollary 3.5. A ∗α G is isomorphic to a separable subalgebra of eMn(A)e.

Proof. Recall that the subalgebra A ∗α G sits into B by ag 7→ ∑
h∈G ag#ph. The

right action of A ∗α G on B is given by

(xk#pl) · ag = (xk#pl)

(∑

h∈G

ag#ph

)
= (xk)(ag)#pg−1l

The left action is given by

ag · (xk#pl) =

(∑

h∈G

ag#ph

)
(xk#pl) = (ag)(xk)#pl

The element

f =
∑

g∈G

e#pg ⊗ e#pg ∈ B ⊗A∗αG B

is A ∗α G-centralising, i.e. for all ah ∈ A ∗α G we have

fah =
∑

g∈G

e#pg ⊗ ah#ph−1g =
∑

g∈G

ah#ph−1g ⊗ e#ph−1g = ahf

Since also µ(f) = e#
∑

g∈G pg = 1B we have that f is a seperability idempotent for

B over A∗α G. Hence eMn(A)e ' Φ(B) is separable over Φ(A∗α G) ' A∗α G. ¤

4. Trivial partial actions

The easiest example of partial actions arise from (central) idempotents in a k-

algebra A. Suppose that A admits a non-zero central idempotent, i.e. there exist

algebras R, S such that A = R×S as algebras. For any group G set Dg = R×0 and

αg = idDg for all g 6= e and De = A and αe = idA. Then {αg | g ∈ G} is a partial

action of G on A. The partial skew group ring turns out to be A∗α G ' R[G]×S,
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where R[G] denotes the group ring of R and G. Note that 0 × S is in the zero-

component of the G-grading on A ∗α G. If G is finite, say of order n, then a short

calculation (using Cohen-Montgomery duality, Proposition 3.2 and Theorem 3.4)

shows that B = (A ∗α G)#k[G]∗ is isomorphic to Mn(R) × Sn where Sn denotes

the direct product of n copies of S. Depending on the rings R and S, B might

or might not be Morita equivalent to A. For instance if R = S = k is a field,

then any progenerator P for A has the form kr × ks for numbers r, s ≥ 1. Thus

Endk(P ) ' Mr(k) ×Ms(k), whose center is isomorphic to k2 = A. On the other

hand B = (A ∗α G)#k[G]∗ ' Mn(k) × kn has center kn+1, i.e. B will be Morita

equivalent to A if and only if G is trivial.

On the other hand, there are algebras which satisfy (as algebras) An ' A '
Mn(A) for any n. To give an example, let R be the ring of sequences of elements

of a field k, i.e. R = kN with componentwise multiplication and addition. The

function e with e(2n) = 1 and e(2n + 1) = 0 for all n defines an idempotent of R.

The map Ψ : eR → R with Ψ(ef)(n) = f(2n) is a ring isomorphism. Analogously

we can show that (1 − e)R ' R. Hence R2 ' R. Now take A = Endk(S), where

S = R(N) denotes the countable infinite free R-module. Using again e we have that

eA ' (1− e)A ' A = (eA)× ((1− e)A) ' A×A ' · · · ' An

for any n ≥ 2. Moreover for any partition of N into n infinite disjoint subsets

Λ1, . . . , Λn, we have that

S = R(N) ' R(Λ1) ⊕ · · · ⊕R(Λn) ' Sn.

Hence A = Endk(S) ' Endk(Sn) ' Mn(A). Applying the double skew group ring

construction again we conclude that

B = (A ∗α G)#k[G]∗ ' Mn(eA)× ((1− e)A)n ' A×A ' A.

5. Infinite partial group actions

Following Quinn [6] we define Φ in case of G being infinite as a map fromA∗αG to

the ring of row and column finite matrices. Let MG(A) be the subring of Endk(A|G|)
consisting of row and column finite matrices (ag,h)g,h∈G indexed by elements of G

with entries in A, i.e. for any g ∈ G the sets {agh|h ∈ G} and {ahg|h ∈ G} are finite.

Let Eg,h be, as above, those matrices that are 1 in the (g, h)th component and zero

elsewhere. Note that Eg,hEr,s = δh,rEg,s. Then define Φ : A ∗α G → MG(A) by

ag 7→
∑

h∈G

h−1 · (g−1 · a)Egh,h
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for any ag ∈ A ∗α G. Note that the (infinite) sum on the right side makes sense in

MG(A). As above one checks that Φ is an algebra homomorphism.

Proposition 5.1. Let G be any group acting partially on A. Then A ∗α G is

isomorphic to a subalgebra of eMG(A)e where MG(A) denotes the ring of row and

column finite matrices indexed by elements of G and with entries in A. The element

e is the idempotent
∑

g∈G 1g−1Eg,g.

Proof. For all ag, bh ∈ A ∗α G we have using equation (1) in the 4th line:

Φ(ag)Φ(bh) =

(∑

k∈G

k−1 · (g−1 · a)Egk,k

) (∑

l∈G

l−1 · (h−1 · b)Ehl,l

)

=
∑

k,l∈G

(k−1 · (g−1 · a))(l−1 · (h−1 · b))Egk,kEhl,l

=
∑

l∈G

((hl)−1 · (g−1 · a))(l−1 · (h−1 · b))Eghl,l

=
∑

l∈G

l−1 · ((gh)−1 · (a(g · b)))Eghl,l

= Φ(a(g · b)gh)

= Φ((ag)(bh))

Hence Φ is an algebra homomorphism. Since

Φ(ag) = 0 ⇔ (∀h ∈ G) : h−1 · (g−1 · a) = 0 ⇒ g · (g−1 · a) = a1g = 0 ⇒ a = 0,

we have that Φ is injective. Moreover Φ(ag) ∈ eMG(A)e as above. ¤
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