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Abstract. One defines an equivalence relation on a commutative ring R by

declaring elements r1, r2 ∈ R to be equivalent if and only if annR(r1) =

annR(r2). If [r]R denotes the equivalence class of an element r ∈ R, then

it is known that |[r]R| = |[r/1]T (R)|, where T (R) denotes the total quotient

ring of R. In this paper, we investigate the extent to which a similar equality

will hold when T (R) is replaced by Q(R), the complete ring of quotients of

R. The results are applied to compare the zero-divisor graph of a reduced

commutative ring to that of its complete ring of quotients.
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1. Introduction

Let R be a commutative ring. One easily checks that an equivalence relation

on R is given by declaring elements r1, r2 ∈ R to be equivalent if and only if

annR(r1) = annR(r2). The cardinalities of such equivalence (annihilator) classes

were considered in [13], where the authors were interested in ring-theoretic prop-

erties shared by von Neumann regular rings with identical zero-divisor structures.

In [3], the authors show that every ring has the same zero-divisor structure as its

total quotient ring. The proof of this result demonstrates that the cardinality of

the annihilator class of an element does not change when the element is regarded

as a member of its total quotient ring. We examine the degree to which this result

can be generalized to a particular extension of a reduced total quotient ring.

Throughout, R will always be a commutative ring with 1 6= 0. Let Z(R) denote

the set of zero-divisors of R and T (R) = RR\Z(R) its total quotient ring. A ring

R will be called reduced if nil(R) = (0). A commutative ring R with 1 6= 0 is

von Neumann regular if for each x ∈ R, there is a y ∈ R such that x = x2y or,

equivalently, R is reduced with Krull dimension zero [9, Theorem 3.1].
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A subset D ⊆ R is dense in R if annR(D) = (0). Let D1 and D2 be dense

ideals of R and let ϕi ∈ HomR(Di, R) (i = 1, 2). Note that ϕ1 +ϕ2 is an R-module

homomorphism on the dense ideal D1 ∩D2, and ϕ1 ◦ϕ2 is an R-module homomor-

phism on the dense ideal ϕ−1
2 (D1) = {r ∈ R | ϕ2(r) ∈ D1}. Then Q(R) = F/∼ is

a commutative ring, where F = {ϕ ∈ HomR(D, R) | D ⊆ R is a dense ideal} and

∼ is the equivalence relation defined by ϕ1 ∼ ϕ2 if and only if there exists a dense

ideal D ⊆ R such that ϕ1(d) = ϕ2(d) for all d ∈ D [12, Proposition 2.3.1]. In [12],

J. Lambek calls Q(R) the complete ring of quotients of R.

Let ϕ ∈ Q(R) denote the equivalence class containing ϕ. For all a/b ∈ T (R), the

ideal bR of R is dense and ϕa/b ∈ HomR(bR,R), where ϕa/b(br) = ar. One checks

that the mapping a/b 7→ ϕa/b is a ring monomorphism, and that ϕ0 and ϕ1 are

the additive and multiplicative identities of Q(R), respectively. In particular, the

mapping R → Q(R) defined by r 7→ ϕr is an embedding. However, these mappings

need not be onto (see [12]). If the mapping R → Q(R) is onto (i.e., r 7→ ϕr

is an isomorphism), then R is called rationally complete. Note that Q(R) is von

Neumann regular if and only if R is reduced [12, Proposition 2.4.1]. Thus every

reduced rationally complete ring is von Neumann regular.

A ring extension R ⊆ S is called a ring of quotients of R if f−1R = {r ∈ R | fr ∈
R} is dense in S for all f ∈ S. In particular, T (R) is a ring of quotients of R. If S is

a ring of quotients of R, then there exists an extension of the mapping R → Q(R)

which embeds S into Q(R) [12, Proposition 2.3.6]. Therefore, every ring of quotients

of R can be regarded as a subring of Q(R). It follows that a dense set in R is dense

in every ring of quotients of R. Also, R has a unique maximal (with respect to

inclusion) ring of quotients, which is isomorphic to Q(R) [12, Proposition 2.3.6].

In recognition of this observation, we shall abuse notation and denote the maximal

ring of quotients of R by Q(R). It is not hard to check that Q(R) = Q(T (R)) for

any ring R. In fact, if R ⊆ S ⊆ Q, then Q is a ring of quotients of R if and only if Q

is a ring of quotients of S and S is a ring of quotients of R (e.g., see the comments

prior to Lemma 1.5 in [8]).

Let B(R) = {e ∈ R | e2 = e}, the set of idempotents of R. Then the relation

“≤” defined by a ≤ b if and only if ab = a partially orders B(R), and makes B(R)

a Boolean algebra with inf as multiplication in R, the largest element as 1, the

smallest element as 0, and complementation defined by a′ = 1−a. One checks that

a ∨ b = (a′ ∧ b′)′ = a + b − ab, where “+” is addition in R. A set E ⊆ B(R) is

called a set of orthogonal idempotents if e1e2 = 0 for all distinct e1, e2 ∈ E. For a

reference on the Boolean algebra of idempotents, see [12].
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A Boolean algebra B is complete if inf E exists for every subset E ⊆ B. If B is a

complete Boolean algebra, then supE = inf{b | b ∈ B and b ≥ e for all e ∈ E}. It

is well known that every Boolean algebra B is a subalgebra of a complete Boolean

algebra D(B), where the infimum of a set in B (when it exists) is the same as its

infimum in D(B). Here, D(B) is the “so called” Dedekind-MacNeille completion

of B [12, c.f. Section 2.4]. Note that D(B(R)) = B(Q(R)) for every von Neumann

regular ring R [8, Theorem 11.9]. In particular, B(Q(R)) is complete. Moreover,

B(R) = B(Q(R)) whenever B(R) is complete.

In this paper, we continue the investigations of [3] and [11]. We will denote the

annihilator class of an element r in R by [r]R, i.e., [r]R = {s ∈ R | annR(s) =

annR(r)}. As in [4], we define the zero-divisor graph of R, Γ(R), to be the (undi-

rected) graph with vertices V (Γ(R)) = Z(R) \ {0}, such that distinct v1, v2 ∈
V (Γ(R)) are adjacent if and only if v1v2 = 0. It is shown in [3, Theorem 2.2] that

Γ(R) ∼= Γ(T (R)) for any commutative ring R; the equality |[r]R| = |[r]T (R)| for

all r ∈ R follows directly from the proof of this theorem (where we have identi-

fied R with its canonical image in T (R)). Both of these results fail when T (R) is

replaced by Q(R) (e.g., Examples 2.10 and 2.11). In Section 2, we give necessary

and sufficient conditions for the equality |[r]R| = |[r]Q(R)| to hold, where R is a

von Neumann regular ring such that B(R) is complete and 2 6∈ Z(R) (see Theorem

2.15). If either B(R) is not complete or 2 ∈ Z(R), then the equality may or may

not hold (see Examples 2.11, 2.17, and Corollary 2.16). This result is applied in

Section 3 to give sufficient conditions for Γ(R) ∼= Γ(Q(R)) to hold when R is a

reduced ring. In particular, we provide a characterization of zero-divisor graphs

which satisfy Γ(R) ∼= Γ(Q(R)), where R is a reduced ring such that |Z(R)| < ℵω

and 2 6∈ Z(R) (see Theorem 3.3).

2. The Cardinality of [e]Q(R)

The investigation in this section involves a set-theoretic treatment of elements

in a ring. The main theorems are numbered 2.4, 2.8, 2.15, and 2.16. The results

numbered 2.1 through 2.8 develop useful relations within Q(R), and ultimately

provide an interpretation of elements in Q(R) as subsets of a set. The results

numbered 2.9 through 2.17 provide answers regarding the cardinalities of [e]R and

[e]Q(R).

Throughout this section, R will always be a von Neumann regular ring unless

stated otherwise. If r ∈ R, say r = r2s, then er = rs is the unique idempotent that
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satisfies [r]R = [er]R (c.f. the discussion prior to Theorem 4.1 in [3], or Remark 2.4

of [11]). Moreover, r = uer for some unit u of R [9, Corollary 3.3].

The following proposition shows that a nonzero element of a ring of quotients of

R will map some idempotent of R into R nontrivially. Recall that f−1R is dense

in S whenever f is a nonzero element of a ring of quotients S of R. In particular,

there is an r ∈ R such that fr ∈ R \ {0}.

Proposition 2.1. Let R be a von Neumann regular ring. If R ⊆ S is a ring of

quotients of R, then for all 0 6= f ∈ S there exists an e ∈ B(R) such that e ≤ ef

and 0 6= fe ∈ R.

Proof. Let 0 6= f ∈ S. Choose r ∈ R such that 0 6= fr ∈ R. There is a unit u of

R such that r = uer, and hence fer = u−1fr ∈ R \ {0}. Let e = efer (note that it

makes sense to talk about ef since S ⊆ Q(R) and Q(R) is von Neumann regular).

Let s ∈ Q(R) and t ∈ R be elements such that f = f2s and r = r2t. Then

e = efer = (fs)(rt) = (fr)(st) = efr ∈ R.

Moreover, e ≤ ef and fe = fer ∈ R \ {0}. ¤

For any set A ⊆ R, let EA = {er ∈ B(R) | r ∈ A}. If e ∈ B(R), then consider the

set Re(R) = {∅ 6= A ⊆ R | er1er2 = 0 for all distinct r1, r2 ∈ A, and supEA = e}.
Note that Re(R) 6= ∅ since {e} ∈ Re(R). Also, if sup EA = e and 0 6= e′ ∈ B(R)

with e′ ≤ e, then there exists an e′′ ∈ EA such that e′e′′ 6= 0. Otherwise, e′′ ≤ 1−e′

for all e′′ ∈ EA, and thus e = sup EA ≤ 1 − e′. But this implies that e′e = 0, a

contradiction. This fact is generalized in (1) of the following proposition.

Proposition 2.2. Suppose that E ⊆ B(R) is a set of orthogonal idempotents in a

von Neumann regular ring R.

(1) Let e′ ∈ B(R). Then e′ supE = 0 if and only if E ∪ {e′} is a set of

orthogonal idempotents. In particular, r supE = 0 if and only if re′ = 0

for all e′ ∈ E (r ∈ R).

(2) Suppose that E is finite; say E = {e1, ..., en}. Then supE =
∑n

j=1 ej.

(3) Let e′ ∈ B(R). If f ∈ Q(R) such that e′ ≤ ef , then fe′ ∈ [e′]Q(R).

(4) Let e′, e ∈ B(R) such that e′ ≤ e and 2e′ ∈ [e′]R. Then e′ + e ∈ [e]R.

Proof. Note that sup E ∈ B(Q(R)).

(1) If e′e′′ 6= 0 for some e′′ ∈ E, then e′e′′ ≤ e′′ ≤ sup E implies that e′e′′ supE =

e′e′′ 6= 0; in particular, e′ supE 6= 0. Conversely, suppose that e′ sup E 6= 0. Since

e′ supE ≤ supE, the above comments show there exists an e′′ ∈ E such that
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(e′ sup E)e′′ 6= 0; in particular, e′e′′ 6= 0. Thus E ∪ {e′} is not a set of orthogonal

idempotents.

The “in particular” statement holds since [r]R = [er]R for all r ∈ R.

(2) It is easy to check that e =
∑n

j=1 ej ∈ B(R). Also, eje = ej for all j ∈
{1, ..., n}. Hence sup E ≤ e. But ej ≤ sup E for all j ∈ {1, ..., n}, and thus

e supE = e; that is, e ≤ sup E. Therefore, e = sup E.

(3) Clearly annQ(R)(e′) ⊆ annQ(R)(fe′). Let a ∈ annQ(R)(fe′). Then ae′ ∈
annQ(R)(f) = annQ(R)(ef ). Thus 0 = ae′ef = ae′; that is, a ∈ annQ(R)(e′). Hence

annQ(R)(e′) = annQ(R)(fe′), i.e., fe′ ∈ [e′]Q(R).

(4) If r ∈ annR(e), then re = 0 and re′ = ree′ = 0. Hence r ∈ annR(e′ + e), and

therefore annR(e) ⊆ annR(e′+e). To show the reverse inclusion, let r ∈ annR(e′+e).

Note that 0 = re′(e′ + e) = r(2e′). Then 2e′ ∈ [e′]R implies that re′ = 0, and

therefore re = re′ + re = r(e′ + e) = 0. Hence annR(e′ + e) ⊆ annR(e). ¤

In order to investigate cardinality, we shall translate the elements of an equiva-

lence class [e]Q(R) into sets of elements of Re(R). Such a correspondence is given

in Theorem 2.4, and is motivated by the following example.

Example 2.3. Let F be an infinite field and J an infinite indexing set. Let Fj = F

for all j ∈ J . Define R = {(rj) ∈
∏

j∈J Fj | {rj}j∈J ⊆ {s1, ..., sn} for some

{s1, ..., sn} ⊆ F , for some n ∈ N} (c.f. [11, Example 3.5]). Note that R is von

Neumann regular. Let D be the dense ideal of R generated by the minimal nonzero

idempotents of R (that is, the elements with a 1 in precisely one coordinate and 0

elsewhere). Then D is contained in f−1R for all f ∈ ∏
j∈J Fj. Thus

∏
j∈J Fj is a

ring of quotients of R. Moreover,
∏

j∈J Fj is rationally complete [12, Proposition

2.3.8]. Therefore, Q(R) =
∏

j∈J Fj.

Consider R from Example 2.3. Suppose that F = Q, J = N, and let e be the

multiplicative identity of R (the largest element of B(R)). Note that there is a

correspondence between Re(R) and [e]Q(R), which is defined by taking the “sum”

of the elements of a set in Re(R). For example, the set

{(1, 0, 0, ...), (0, 2, 0, ...), (0, 0, 3, ...), ...} ∈ Re(R)

corresponds to the element (1, 2, 3, ...) ∈ Q(R). This correspondence is generalized

in the following theorem.

Theorem 2.4. Let R be a von Neumann regular ring and suppose that e ∈ B(R).

The mapping σe : Re(R) → [e]Q(R) defined by

σe(A) = f if and only if f ∈ [e]Q(R) with fer = r for all r ∈ A
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is a well-defined function. Moreover, σe(A) ∈ R if and only if σe(A) = σe(A′) for

some A′ ∈ Re(R) with |A′| < ∞.

Proof. Fix e ∈ B(R). To show that σe is well-defined, we first show that every

element of Re(R) corresponds to some element in [e]Q(R). Let A ∈ Re(R). Note

that D = (1−e,EA) is a dense ideal of R: Any element r ∈ R\{0} that annihilates

1−e satisfies re = r 6= 0, and therefore does not annihilate all of EA by Proposition

2.2 (1). Define ϕ ∈ HomR(D, R) by

ϕ
(
t(1− e) +

∑

er∈EA

trer

)
=

∑

er∈EA

trr.

(Indeed, ϕ is well-defined since multiplication by the appropriate idempotent will

show that equal elements of D have equal “like terms,” and clearly trer = t′rer

implies that trr = t′rr.) Then ϕ(1− e) = 0 and ϕ(er) = r for all r ∈ A. Therefore,

there exists an element f ∈ Q(R) such that f(1− e) = 0 and fer = r for all r ∈ A.

It follows that ef ≤ e (in B(Q(R))). To prove the reverse inequality, let r ∈ A.

Then

r = fer = effer = efr.

Thus r(1 − ef ) = 0, which implies that er ≤ ef . Hence e = sup EA ≤ ef , and

therefore e = ef . This shows that f ∈ [e]Q(R), and therefore σe(A) = f . It remains

to show that σe is single-valued. Suppose that A maps to both f and g. Then

(f − g) annihilates D. But D is dense in Q(R), and thus f − g = 0, i.e., f = g.

Therefore, σe is well-defined.

To see that the “moreover” statement is true, suppose that σe(A) ∈ R. Then

σe(A) = σe(A′), where A′ = {σe(A)}. Conversely, suppose that A′ ∈ Re(R) with

|A′| < ∞; say A′ = {r1, ..., rn}. Then

σe(A′) = σe(A′)e = σe(A′)(
n∑

j=1

erj ) =
n∑

j=1

(σe(A′)erj ) =
n∑

j=1

rj ∈ R,

where the second equality follows from Proposition 2.2 (2) (c.f. the last paragraph

prior to the statement of this theorem). ¤

By the last part of the previous proof, we have

Corollary 2.5. Let R be a von Neumann regular ring. If A ∈ Re(R) is a finite

set, then σe(A) =
∑

r∈A r ∈ [e]R.

Let e ∈ B(R) and define the set

Ee(R) = {EA | A ∈ Re(R)}.
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We shall write f ≺ E whenever E ∈ Ee(R) and σe(A) = f for some A ∈ Re(R)

with EA = E. By Proposition 2.2 (3), this is equivalent to declaring f ≺ E if and

only if E is a set of orthogonal idempotents such that sup E = ef = e and fe′ ∈ R

for all e′ ∈ E (indeed, let A = {fe′}e′∈E , c.f. the second paragraph in the proof

of Theorem 2.8). In particular, if r ∈ [e]R, then r ≺ E for all E ∈ Ee(R), i.e.,

{r ∈ [e]R | r ≺ E} = [e]R for all E ∈ Ee(R).

Corollary 2.6. Let R be a von Neumann regular ring and suppose that e ∈ B(R).

If E ∈ Ee(R), then

|{A ∈ Re(R) | EA = E}| = |{f ∈ [e]Q(R) | f ≺ E}|.

Proof. The mapping {A ∈ Re(R) | EA = E} → {f ∈ [e]Q(R) | f ≺ E} defined by

A 7→ σe(A) is a well-defined surjection by Theorem 2.4 and the definition of ≺. It

is injective since if A1, A2 ∈ {A ∈ Re(R) | EA = E} with σe(A1) = σe(A2), then

A1 = {σe(A1)e′}e′∈E = {σe(A2)e′}e′∈E = A2.

Therefore,

|{A ∈ Re(R) | EA = E}| = |{f ∈ [e]Q(R) | f ≺ E}|.
¤

Suppose that R is a reduced ring. Then the mapping annQ(R)(J) 7→ annR(J∩R)

(J ⊆ Q(R)) is a well-defined bijection of Ann(Q(R)) onto Ann(R), where Ann(R) =

{annR(J) | J ⊆ R} [12, Proposition 2.4.3]; in particular, [r]R ⊆ [r]Q(R) for all

r ∈ R. Alternatively, suppose that R is a von Neumann regular ring. Then [e]R =

{r ∈ [e]R | r ≺ E} for all E ∈ Ee(R). Since σe(Re(R)) ⊆ [e]Q(R), we have

Proposition 2.7. Let R be a von Neumann regular ring and suppose that e ∈ B(R).

Then [e]R ⊆ {f ∈ [e]Q(R) | f ≺ E} for all E ∈ Ee(R). In particular, [e]R ⊆ [e]Q(R).

Of course, the “in particular” statement of the above proposition can be justified

by the simpler argument that r = ue for some unit u of R (and hence of Q(R)), for

all r ∈ [e]R. However, we will apply the first part of the proposition in the proof of

Lemma 2.12.

Note that Theorem 2.4 implies that some of the elements of [e]Q(R) correspond

to elements of Re(R). The next theorem shows that every element in [e]Q(R) is of

this type.

Theorem 2.8. Let R be a von Neumann regular ring. Suppose that e ∈ B(R).

Then σe is surjective. In particular, |[e]Q(R)| ≤ |Re(R)|.
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Proof. Fix e ∈ B(R). The result is trivial for the case e = 0. Suppose that e 6= 0.

To show that σe is onto, choose any f ∈ [e]Q(R). Let C = {∅ 6= E ⊆ B(R) | e′e′′ = 0

for all distinct e′, e′′ ∈ E, e′ ≤ e for all e′ ∈ E, and fe′ ∈ R for all e′ ∈ E}. Note that

C 6= ∅ since {0} ∈ C. Let C be partially ordered by inclusion; then an application

of Zorn’s lemma shows that C has a maximal element, call it E. We will show

that sup E = e. If not, then consider 0 6= e′ = e − supE ∈ B(Q(R)). Note that

fe′ ∈ [e′]Q(R) by Proposition 2.2 (3). Hence Proposition 2.1 implies that there

exists an e′′ ∈ B(R) such that e′′ ≤ e′ and fe′′ = fe′e′′ ∈ R \ {0}. Also, e′ ≤ e

implies e′′ ≤ e, and thus

e′′ sup E = e′′(e− e′) = e′′ − e′′ = 0.

But then E ∪ {e′′} ∈ C by Proposition 2.2 (1), contradicting the maximality of E.

Therefore, sup E = e.

Let A = {fe′ | e′ ∈ E}. Then Proposition 2.2 (3) implies EA = E, and thus

A ∈ Re(R). Also, efe′ = e′ implies that fefe′ = fe′ for all fe′ ∈ A. Hence

σe(A) = f .

The “in particular” statement is clear. ¤

We now turn our attention to the cardinality of [e]R. The previous theorem

allows one to derive information about the cardinality of [e]Q(R) from the setRe(R).

We will be able to relate the cardinalities of [e]Q(R) and [e]R if we can find a way

to use the set Re(R) to reveal information about |[e]R|. The next three lemmas

accomplish this by considering elements of the subset Ee(R) of Re(R).

Lemma 2.9. Let R be a von Neumann regular ring. Suppose that E ⊆ B(R) \ {0}
is a set of orthogonal idempotents with supE = e. Moreover, assume that B(R) is

complete and 2e′ ∈ [e′]R for all e′ ∈ E. Then |[e]R| ≥ 2|E|.

Proof. Define the mapping ρ : P(E) → [e]R by

ρ(E′) = sup E′ + e,

where P(E) is the “power set” of E. Let E′ ⊆ E. It is clear that annR(sup E′) ⊆
annR(2 sup E′). Conversely, let r ∈ annR(2 supE′). Then 2r ∈ annR(supE′), and

hence 2re′ = 0 for all e′ ∈ E′ by Proposition 2.2 (1). Thus r ∈ annR(2e′) = annR(e′)

for all e′ ∈ E′, and therefore Proposition 2.2 (1) implies that r ∈ annR(sup E′).

This shows that annR(sup E′) = annR(2 sup E′), i.e., 2 supE′ ∈ [supE′]R. Hence

ρ is well-defined by Proposition 2.2 (4). To show that ρ is injective, suppose that

E1, E2 ⊆ E with E1 6= E2; say 0 6= e′ ∈ E1 \ E2. Then

e′ sup E1 = e′ 6= 0 = e′ sup E2,
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where the last equality holds by Proposition 2.2 (1). It follows that sup E1 6= sup E2.

Thus E1 6= E2 implies that ρ(E1) 6= ρ(E2). Therefore, ρ is injective, and hence

|[e]R| ≥ |P(E)| = 2|E|.

¤

For the remainder of this section, it will be necessary to recall some facts from

set theory. In what follows, we will assume the generalized continuum hypothesis.

Given any cardinal m, let cf(m) denote the cofinality of m. Note that cf(m) ≤ m,

and cf(m) is infinite whenever m is infinite (e.g., see [15, Theorem 21.10]). An

infinite cardinal m is called regular if m = cf(m). If m is not regular, then it is

called singular. Note that every successor cardinal is regular. Recall that mm′ is

defined to be the cardinal number |AB |, where A and B are sets of cardinality m

and m′, respectively, and AB is the set of all functions from B into A. If ℵα and

ℵβ are infinite cardinals, then

ℵℵβ
α =

{ ℵα, ℵβ < cf(ℵα)

ℵα+1, cf(ℵα) ≤ ℵβ ≤ ℵα

ℵβ+1, ℵα < ℵβ

[15, Theorem 23.9]. Also, mℵβ = ℵβ+1 for every 2 ≤ m < ∞ [15, Theorem

22.13]. The notation
∑

i∈I mi is used to express the cardinality of the disjoint

union
∐

i∈I Ai, where |Ai| = mi for each i ∈ I. If I is an infinite indexing set with

mi infinite for some i ∈ I, then
∑

i∈I mi = |I| supi∈I mi. A detailed exposition of

cardinal numbers can be found in chapter four of [15].

It is our goal to find conditions that ensure the equality |[e]Q(R)| = |[e]R|. We

will see that it suffices to impose restrictions on the elements of the set Ee(R). The

next two examples motivate such restrictions.

Example 2.10. Let F be a field such that |F | = ℵω and set J = N. Suppose that

R is the ring in Example 2.3. Choose an infinite subset I of N, and let e be the

idempotent with 1 in all coordinates i ∈ I and 0 elsewhere. Then

|[e]R| = ℵω < ℵω+1 = ℵℵ0
ω = |[e]Q(R)|,

where the second equality holds since cf(ℵω) = ℵ0 [15, Theorem 22.11].

Example 2.11. Let K = Z2(X), and define the ring R =
∏
N Z2 +

⊕
NK. As

in the Example 2.3, we have Q(R) =
∏
NK. Choose an infinite subset I of N,

and let e be the idempotent with 1 in all coordinates i ∈ I and 0 elsewhere. Then

|[e]R| = ℵ0 < ℵ1 = |[e]Q(R)|.
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In Example 2.10, we found an element e ∈ B(R) with an infinite set E ∈ Ee(R)

such that cf(|[e′]R|) ≤ |E| < |[e′]R| for some e′ ∈ E (namely, E was the set of

minimal nonzero idempotents less than e, and e′ could have been any element of

E). In Example 2.11, we found an element e ∈ B(R) with a set E ∈ Ee(R) such

that 2e′ 6∈ [e′]R for some e′ ∈ E (as before, E was the set of minimal nonzero

idempotents less than e, and e′ could have been any element of E). As a result,

Lemma 2.9 fails for the element e. When R is a von Neumann regular ring such that

B(R) is complete, the desired equality will necessarily be obtained in the absence

of such scenarios.

We shall say that an element E ∈ Ee(R) is regular if the relation |E| < sup{|[e′]R| |
e′ ∈ E} implies that either sup{|[e′]R| | e′ ∈ E} is finite or |E| < cf(sup{|[e′]R| | e′ ∈
E}). As a special case, E ∈ Ee(R) is regular if |E| < sup{|[e′]R| | e′ ∈ E} implies

that sup{|[e′]R| | e′ ∈ E} is either finite or a regular cardinal. Clearly E is regular

if it is finite.

Lemma 2.12. Let R be a von Neumann regular ring, e ∈ B(R), and E ∈ Ee(R).

Assume that B(R) is complete and 2e′ ∈ [e′]R for all e′ ∈ E. If E ∈ Ee(R) is

regular, then |[e]R| = |{f ∈ [e]Q(R) | f ≺ E}|.

Proof. If E is finite, then {f ∈ [e]Q(R) | f ≺ E} ⊆ [e]R by Theorem 2.4. The

reverse inclusion holds by Proposition 2.7, and hence the result follows. Suppose

that E is infinite; say |E| = ℵα for some ordinal α. Let sup{|[e′]R| | e′ ∈ E}| = m.

Define

F : {A ∈ Re(R) | EA = E} → ( ∪ {[e′]R | e′ ∈ E})E

by the rule

F (A)(e) = r if and only if e ∈ E with e = er for some r ∈ A.

Note that if r1, r2 ∈ A with r1 6= r2, then er1er2 = 0. In particular, r1 6= r2 implies

that er1 6= er2 , and therefore F is well-defined by definition. Also, F is injective

since if F (A1) = F (A2), then r = F (A1)(er) ∈ A1 for all r ∈ A2, and similarly we

have A1 ⊆ A2 so that A1 = A2. Hence

|{A ∈ Re(R) | EA = E}| ≤ |( ∪ {[e′]R | e′ ∈ E})E | = (ℵαm)ℵα ,

where the equality holds since the union is disjoint. Therefore,

|{f ∈ [e]Q(R) | f ≺ E}| ≤ (ℵαm)ℵα =
{ m, m > ℵα

ℵα+1, m ≤ ℵα

,

where the inequality follows by Corollary 2.6, and the equality follows since E is

regular.
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Let e′ ∈ E and r ∈ [e′]R. Then er = e′ and e− e′ ∈ B(R). Using Proposition 2.2

(2), it is easy to check that {r, e− e′} ∈ Re(R), and thus Corollary 2.5 implies that

r+(e−e′) ∈ [e]R. This shows that the mapping [e′]R → [e]R given by r 7→ r+(e−e′)

is well-defined. Clearly it is also injective. Hence |[e′]R| ≤ |[e]R| for all e′ ∈ E, and

therefore m ≤ |[e]R|. Also, |E \ {0}| = ℵα, and thus

|[e]R| ≥ 2ℵα = ℵα+1

by Lemma 2.9. Therefore, we have |[e]R| = |{f ∈ [e]Q(R) | f ≺ E}| since Proposi-

tion 2.7 implies that the reverse inequality always holds. ¤

Remark 2.13. Although the following arguments generalize to arbitrary Boolean

algebras, we shall assume that B is the Boolean algebra of idempotents of a commu-

tative ring. Suppose that B is complete, and let b ∈ B. Then B|b = {e ∈ B | e ≤ b}
is a complete Boolean algebra, where the partial order on B|b is inherited from B.

Let s(b) denote the least cardinal such that there is no set E ⊆ B|b of orthogonal

idempotents with |E| = s(b). Suppose that B is infinite. In [1, Corollary 2.7], it is

shown that there exists a finite set of orthogonal idempotents {b1, ..., bn} ⊆ B with

sup{b1, ..., bn} = 1, such that |B|bi | =
∑

m<s(bi)
|B|bi |m for each i = 1, ..., n. (In

[1], this result is stated in the context of compact extremely disconnected topological

spaces.) We will show that this implies |Ee(R)| ≤ |B(R)|e| whenever e is an element

of a complete Boolean algebra B(R) such that |B(R)|e| is infinite.

Suppose that B is complete and infinite. Let E = {E ⊆ B | e1e2 = 0 for all

distinct e1, e2 ∈ E and supE = 1}. It suffices to show that |E| ≤ |B|. Note that

the number of subsets of cardinality less than n of a set J is at most
∑

m<n |J |m.

Using [1, Corollary 2.7], choose a set of orthogonal elements {b1, ..., bn} ⊆ B such

that sup{b1, ..., bn} = 1, and

|B|bi | =
∑

m<mi

|B|bi |m

for each i ∈ {1, ..., n}, where mi is the least cardinal such that there is no set

E ⊆ B|bi of orthogonal elements with |E| = mi. By the choice of mi together

with the fourth sentence of this paragraph, we have |Ebi | ≤
∑

m<mi
|B|bi |m = |B|bi |,

where Ebi = {E ⊆ B|bi | e1e2 = 0 for all distinct e1, e2 ∈ E, and sup E = bi}. Let

mj = max1≤i≤n{mi}. Note that mj is infinite (and hence so is B|bj ) since B is

infinite (this is an application of König’s Lemma, e.g., see [10, Exercise 25.12]).

Let E∗ = {E ∈ E | e ≤ bi for some i ∈ {1, ..., n} for all e ∈ E}. Noting that

{b1, ..., bn} ⊆ B is a set of orthogonal idempotents such that sup{b1, ..., bn} = 1,

we see that E ∈ E∗ if and only if E = ∪n
i=1Ei for some Ei ∈ Ebi (namely, Ei =
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B|bi
∩ E). Then |E∗| ≤ Πn

i=1|Ebi
| ≤ max1≤i≤n(|B|bi

|), where the second inequality

follows since |Ebi | ≤ |B|bi | for each i ∈ {1, ..., n}.
The mapping ψ : E → E∗ given by E 7→ {bbi | b ∈ E and i ∈ {1, ..., n}} is

well-defined. Let E∗ ∈ E∗; say E∗ = ∪n
i=1Ei, (Ei ∈ Ebi

). Note that every element

belonging to a member of ψ−1({E∗}) is a sum (that is, supremum), b = bb1 + · · ·+
bbn, with bbi ∈ Ei ∪ {0} for each i ∈ 1, ..., n. Then an element b ∈ B belongs to a

member of ψ−1({E∗}) if and only if b = e1 + · · ·+ en for some ei ∈ Ei ∪ {0}. This

shows that the mapping

(E1 ∪ {0})× · · · × (En ∪ {0}) → ∪{E | E ∈ ψ−1({E∗})}

given by the rule (e1, ..., en) 7→ ∑n
i=1 ei is a well-defined surjection. Since the

elements of E∗ are orthogonal, this mapping is also injective. Hence,

| ∪ {E | E ∈ ψ−1({E∗})}| = Πn
i=1|Ei ∪ {0}| < mj ≤ |B|bj |,

where the last inequality holds since a complete Boolean algebra is always strictly

larger than any of its sets of orthogonal elements. (Indeed, if E ⊆ B is a set of

nonzero orthogonal elements, then the mapping E′ 7→ supE′ defines an injection

from the power set of E into B. In particular, |E| < |B| for any set E ⊆ B of

orthogonal elements.) Also, if E′ ∈ ψ−1({E∗}), then

|E′| ≤ | ∪ {E | E ∈ ψ−1({E∗})}| < mj .

Since | ∪ {E | E ∈ ψ−1({E∗})}| < |B|bj |, it follows that the number of subsets

of cardinality less than mj of ∪{E | E ∈ ψ−1({E∗})} is at most
∑

m<mj
|B|bj |m.

But it has been shown that every member of ψ−1({E∗}) has cardinality strictly less

than mj, and thus

|ψ−1({E∗})| ≤
∑

m<mj

|B|bj |m = |B|bj |.

Therefore,

|E| = | ∪E∗∈E∗ ψ−1({E∗})|
=

∑

E∗∈E∗
|ψ−1({E∗})|

= |E∗| sup{|ψ−1({E∗})| | E∗ ∈ E∗}
≤ (

max
1≤i≤n

(|B|bi |)
)|B|bj |

= max
1≤i≤n

(|B|bi |)

≤ |B|.
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If 2e′ ∈ [e′]R for all e′ ≤ e, then Proposition 2.2 (4) implies that the mapping

B(R)|e → [e]R given by e′ 7→ e′ + e is well-defined. It is clearly injective, and thus

the following lemma holds by the above remark.

Lemma 2.14. Let R be a von Neumann regular ring. Suppose that B(R) is com-

plete and choose e ∈ B(R). Assume that 2e′ ∈ [e′]R for all e′ ≤ e. If |B(R)|e| is

infinite, then |Ee(R)| ≤ |[e]R|.

Note that Lemma 2.14 can fail if B(R)|e is finite. For example, let R =
∏5

i=1 Z3

and let e = (1, 1, 1, 1, 1). Then Ee(R) = 52 (the fifth Bell number), but |[e]R| = 32.

Given any element e of the complete Boolean algebra B(R), we will say that a

cardinal m is achieved by regular elements of Ee(R) if there exists a set of regular

elements {Ei}i∈I ⊆ Ee(R) with | ∪i∈I {f ∈ [e]Q(R) | f ≺ Ei}| = m. Let R be the

ring in Example 2.10. Note that the regular elements of Ee(R) are precisely the

finite elements. Letting {Ei}i∈I denote the family of all regular elements of Ee(R),

we have ∪i∈I{f ∈ [e]Q(R) | f ≺ Ei} = [e]R, and hence |[e]Q(R)| is not achieved by

regular elements.

We now state and prove the main theorem of this section.

Theorem 2.15. Suppose that R is a von Neumann regular ring such that B(R) is

complete. Let e ∈ B(R) be an element such that 2e′ ∈ [e′]R for all e′ ≤ e. Then

|[e]Q(R)| = |[e]R| if and only if |[e]Q(R)| is achieved by regular elements of Ee(R).

Proof. The necessity is clear since |[e]Q(R)| = |[e]R| implies that |[e]Q(R)| is achieved

by the regular element E = {e} (indeed, [e]R ⊆ [e]Q(R) and r ≺ {e} for all r ∈ [e]R).

To prove the converse, note that if |E| < ∞ for all E ∈ Ee(R), then [e]Q(R) = [e]R
by Theorems 2.4 and 2.8. In particular, |[e]Q(R)| = |[e]R|.

Suppose that Ee(R) contains an infinite element. Then |[e]R| is infinite by Lemma

2.9. Suppose that I is an indexing set such that {Ei}i∈I ⊆ Ee(R) is a family of

regular elements with | ∪i∈I {f ∈ [e]Q(R) | f ≺ Ei}| = |[e]Q(R)|. Then

|[e]Q(R)| = | ∪i∈I {f ∈ [e]Q(R) | f ≺ Ei}|
≤ |I| sup

i∈I
|{f ∈ [e]Q(R) | f ≺ Ei}|

= |I||[e]R|
≤ |Ee(R)||[e]R|
= |[e]R|,
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where the second equality follows by Lemma 2.12 and the last equality follows by

Lemma 2.14. Thus |[e]Q(R)| = |[e]R| since Proposition 2.7 implies that the reverse

inequality is always true. ¤

It is known that Q(
∏

i∈I Ri) =
∏

i∈I Q(Ri) for any family of rings {Ri}i∈I [12,

Proposition 2.3.8]. It is easy to see that |[(ei)]Q
i∈I Ri

| = ∏
i∈I |[ei]Ri

| for any such

product. Therefore, if |[ei]Ri
| = |[ei]Q(Ri)| for all i ∈ I, then |[(ei)]Q

i∈I Ri
| =

|[(ei)]Q(
Q

i∈I Ri)|.
Note that a ring may have |[e]R| = |[e]Q(R)| without satisfying the condition

“2e′ ∈ [e]R for all e′ ≤ e.” For example, the equality is automatic whenever R =

Q(R). The following application of the previous theorem shows that a ring R 6=
Q(R) can have an idempotent e such that 2e 6∈ [e]R, and yet |[e]R| = |[e]Q(R)|.
Moreover, this equality can hold even if B(R) is not complete.

Recall that a ring R is Boolean if x = x2 for all x ∈ R, i.e., R = B(R) (as

sets). In particular, a Boolean ring is von Neumann regular, and has characteristic

2. Moreover, a ring R is Boolean if and only if Q(R) is Boolean [12, Lemma 2.4.4].

Corollary 2.16. Suppose that I is an indexing set, {Fi}i∈I is a family of rationally

complete rings, A is a von Neumann regular ring with B(A) complete, |A| < ℵω,

2 6∈ Z(A), and B is a Boolean ring. Let S be a nonempty subset of {A,B,
∏

i∈I Fi}.
If R ∼= ∏

S∈S S, then |[e]R| = |[e]Q(R)| for all e ∈ B(R).

Proof. We might as well assume that R =
∏

S∈S S. By the above comments,

it suffices to show that the result is true when S is a singleton set. Clearly it

is true when S = {∏i∈I Fi} since
∏

i∈I Fi =
∏

i∈I Q(Fi) = Q
(∏

i∈I Fi

)
. To see

that it holds for S = {B}, recall that each equivalence class of a von Neumann

regular ring is represented by a unique idempotent. Thus, since Q(B) is Boolean,

|[e]B | = 1 = |[e]Q(B)| for all e ∈ B.

It remains to show that the result holds for S = {A}. Since ℵω is the smallest

singular cardinal, every element of Ee(A) is regular. In particular, Theorem 2.8

implies that |[e]Q(A)| is achieved by regular elements of Ee(A) for all e ∈ A. Finally,

2 is a unit of A since it is not a zero-divisor, and thus 2e ∈ [e]A for all e ∈ B(A).

Therefore, |[e]A| = |[e]Q(A)| for all e ∈ B(A) by Theorem 2.15. ¤

It is easy to illustrate the convenience of the previous corollary. For example,

let F = Q and J = N in Example 2.3. Then R is a von Neumann regular ring,

B(R) is complete, |R| = ℵ1 < ℵω, and 2 6∈ Z(R) (here, 2 is the element of R with

the integer 2 in all coordinates). Therefore, |[e]R| = |[e]Q(R)| for all e ∈ B(R) by



THE CARDINALITY OF AN ANNIHILATOR CLASS 77

Corollary 2.16. Note that we were able to draw this conclusion without knowing

anything about Q(R).

Several of the previous results were proved under the assumption that “B(R)

is complete.” We conclude this section with an example showing that this “com-

pleteness” statement must be included in all of those results. However, we only

emphasize the necessity for Theorem 2.15.

Example 2.17. Let Fn = Q for all n ∈ N. Define R ⊆ ∏
n∈N Fn to be the ring

such that (rn) ∈ R if and only if there exists N ∈ N such that rn = rN for all

n ≥ N . As in Example 2.3, one shows that Q(R) =
∏

n∈N Fn. For any n ∈ N,

let e(n) be the element of B(R) with 1 in the coordinate n and 0 elsewhere. Let

N ∈ N and define E = {e(n) ∈ B(R) | n ≥ N}. Then the idempotent e = sup E is

clearly an element of B(R) (e is the element with 1 in all coordinates n ≥ N and 0

elsewhere). Note that B(R) is not complete since the set {e(2n + 1)}∞n=N ⊆ B(R)

has no supremum in B(R). It is easy to see that E ∈ Ee(R) is regular and |[e]Q(R)|
is achieved by E. However,

|[e]R| = ℵ0 < ℵ1 = |[e]Q(R)|.

3. Zero-Divisor Graphs

The idea of a zero-divisor graph was introduced by I. Beck in [6]. While he

was mainly interested in colorings, we shall investigate the interplay between ring-

theoretic properties and graph-theoretic properties. This approach begun in a paper

by D.F. Anderson and P.S. Livingston [4], and has since continued to evolve (e.g.,

[2], [3], [5], [7], [11], [13], [14], and [16]).

Let Γ be a graph and let v ∈ V (Γ). As in [3], a vertex w ∈ V (Γ) is called

a complement of v if v is adjacent to w, and the edge v − w is not an edge of

any triangle in Γ. In ring-theoretic terms, this is the same as saying that w is a

complement of v in Γ(R) if and only if 0 6= v, w ∈ R are distinct, vw = 0, and

ann(v) ∩ ann(w) ⊆ {0, v, w}. As in [3], we will say that Γ is complemented if every

vertex has a complement, and is uniquely complemented if it is complemented and

any two complements of a vertex are adjacent to the same vertices. Note that Γ(R)

is uniquely complemented if and only if either R is nonreduced and Γ(R) is a star

graph (i.e., a graph with at least two vertices such that there exists a vertex which

is adjacent to every other vertex, and these are the only adjacency relations), or R

is reduced and T (R) is von Neumann regular [3, Theorems 3.5 and 3.9]. Moreover,

[3, Theorem 3.5] shows that a reduced ring is uniquely complemented if and only

if it is complemented.
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Suppose that R is a von Neumann regular ring. Let x ∈ R. Then there is a unit

u ∈ R such that xu = ex, the unique idempotent satisfying [x]R = [ex]R. Hence

1 − ex is a complement of x since (1 − ex)x = 0, and tx = 0 = t(1 − ex) implies

t = tex = t(xu) = (tx)u = 0. By [3, Theorem 3.5], Γ(R) is uniquely complemented.

Thus ann(x′) = ann(1− ex) for every complement x′ of x.

In this section, we explore some consequences of the results given in Section 2.

Theorem 3.2 gives sufficient conditions to conclude that a reduced ring R satisfies

Γ(R) ∼= Γ(Q(R)). In Theorem 3.3, we explain precisely when Γ(R) ∼= Γ(Q(R)) for

“small” reduced rings with 2 6∈ Z(R). Finally, Theorem 3.4 shows that a Boolean

ring R satisfies Γ(R) ∼= Γ(Q(R)) if and only if R ∼= Q(R). Moreover, the zero-divisor

graphs of such Boolean rings are completely characterized.

Let S ⊆ V (Γ(R)) be a family of vertices. As in [11], we shall call v a central

vertex of S if v is adjacent to s for all s ∈ S. The following lemma is implicit in

the proofs of Lemma 3.3 and Theorem 3.4 of [11].

Lemma 3.1. Let R be a von Neumann regular ring. Then B(R) is complete if and

only if whenever ∅ 6= S ⊆ V (Γ(R)) is a family of vertices that has a central vertex,

there exists a central vertex v of S possessing a complement that is adjacent to all

of the central vertices of S (and hence, since Γ(R) is uniquely complemented, every

complement of v is adjacent to every central vertex of S).

Proof. To prove the necessity of the stated conditions, suppose that there is a

∅ 6= S ⊆ V (Γ(R)) with central vertices such that, if v is any central vertex of S,

then there exists a central vertex w of S with (1 − ev)w 6= 0. Let S′ = {1 − es ∈
B(R) | s ∈ S}, and let C = {b ∈ B(R) \ {0} | bes = 0 for all s ∈ S}. Note that

C 6= ∅ since ev ∈ C whenever v is a central vertex of S. Moreover, every element

of C is a central vertex of S. Therefore, to every b ∈ C there corresponds a central

vertex w of S such that (1− b)w 6= 0. In particular, (1− b)ew 6= 0. Let f = inf S′

(in D(B(R))). Note that f 6= 0 since b ≤ f whenever b ∈ C. Thus, if f ∈ B(R),

then f ∈ C and hence there is a central vertex w of S such that few 6= ew. But

ew ∈ C, and hence ew ≤ f . This is a contradiction, and therefore f 6∈ B(R). Since

the infimum of a set taken in B(R) agrees with the infimum taken in D(B(R)), we

have that B(R) is not complete.

Conversely, suppose that the stated conditions on V (Γ(R)) are satisfied. Let

∅ 6= S ⊆ B(R) be any family of elements. It is clear that inf S = 0 if 0 ∈ S.

Suppose that 0 6∈ S. If S = {1}, then inf S = 1. If S 6= {1} and contains 1, then

we may remove 1 from S without changing inf S. Thus we may assume 0, 1 6∈ S.
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Since R is reduced, D = annR({1−s}s∈S)+({1−s}s∈S) is dense in R, and hence

in Q(R). Let inf S = f ∈ B(Q(R)). Then f({1− s}s∈S) = (0). Suppose that S has

no infimum in B(R). Then f 6= 0 since f 6∈ B(R). Evidently, annR({1− s}s∈S) 6=
(0) since otherwise fD = (0). That is, C = {v ∈ V (Γ(R)) | v is adjacent to 1 −
s for all s ∈ S} 6= ∅. By hypothesis, there is a v∗ ∈ C whose complements are

adjacent to every element of C. In particular, v(1 − ev∗) = 0 for all v ∈ C. Since

v∗ ∈ C, it follows that ev∗(1 − s) = 0 for all s ∈ S; that is, ev∗ ≤ s for all

s ∈ S. Moreover, if 0 6= v ∈ B(R) with v ≤ s for all s ∈ S, then v ∈ C so that

v(1 − ev∗) = 0; that is, v ≤ ev∗ . But this shows that f = inf S = ev∗ ∈ B(R), a

contradiction. Thus every ∅ 6= S ⊆ B(R) has an infimum, and hence B(R) is a

complete Boolean algebra. ¤

Let R be any ring. We shall say that Γ(R) is central vertex complete, or c.v.-

complete, if Γ(R) satisfies the condition of Lemma 3.1. Thus Lemma 3.1 can be

restated as follows:

Let R be a von Neumann regular ring. Then B(R) is complete if and only if

Γ(R) is c.v.-complete.

As already noted, every ring R satisfies Γ(R) ∼= Γ(T (R)) by [3, Theorem 2.2].

In [3, Theorem 4.1], it is shown that the zero-divisor graphs of two von Neumann

regular rings R and S are isomorphic if and only if there is a Boolean algebra

isomorphism ϕ : B(R) → B(S) such that |[e]R| = |[ϕ(e)]S | for all 1 6= e ∈ B(R).

Therefore, Examples 2.10 and 2.11 illustrate that a von Neumann regular ring R

may fail to satisfy the condition Γ(R) ∼= Γ(Q(R)). (Indeed, if R is the ring in

Example 2.10, then |[e]R| < ℵω+1 for all e ∈ B(R). If R is the ring in Example

2.11, then |[e]R| < ℵ1 for all e ∈ B(R).)

Recall that a von Neumann regular ring R satisfies B(R) = B(Q(R)) if and only

if B(R) is complete [8, Theorem 11.9].

Theorem 3.2. Let R be a reduced ring. Suppose that Γ(R) is a complemented

c.v.-complete graph. If 2e ∈ [e]T (R) and |[e]Q(T (R))| is achieved by regular elements

of Ee(T (R)) for all e ∈ B(T (R)) \ {1}, then Γ(R) ∼= Γ(Q(R)).

Proof. Suppose that Γ(R) is a complemented c.v.-complete graph. Note that

it makes sense to speak of Ee(T (R)) since T (R) is von Neumann regular by [3,

Theorem 3.5]. Also, Γ(R) ∼= Γ(T (R)) implies that B(T (R)) is complete by Lemma

3.1. Thus B(T (R)) = B(Q(T (R))) by [8, Theorem 11.9]. Suppose that 2e ∈
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[e]T (R) and |[e]Q(T (R))| is achieved by regular elements of Ee(T (R)) for all 1 6=
e ∈ B(T (R)). Then Theorem 2.15 implies that |[e]T (R)| = |[e]Q(T (R))| for all 1 6=
e ∈ B(T (R)). Thus Γ(T (R)) ∼= Γ(Q(T (R))) = Γ(Q(R)), where the isomorphism

follows by [3, Theorem 4.1] and the equality follows since Q(T (R)) = Q(R); hence

Γ(R) ∼= Γ(Q(R)) by [3, Theorem 2.2]. ¤

To apply the previous result, one must have information regarding the zero-

divisor graph of R, as well as information about the total quotient ring of R.

However, information regarding T (R) is unnecessary when R is “small.”

Theorem 3.3. Let R be a reduced ring. Suppose that |V (Γ(R))| < ℵω. If 2 6∈ Z(R),

then Γ(R) ∼= Γ(Q(R)) if and only if Γ(R) is a complemented c.v.-complete graph.

Proof. Note that |V (Γ(T (R)))| < ℵω since Γ(R) ∼= Γ(T (R)). Also, 2 is a unit in

T (R) since 2 6∈ Z(R) implies that 2 6∈ Z(T (R)). Finally,

|T (R)| ≤ |Z(T (R))|2 = (|V (Γ(T (R)))|+ 1)2 < ℵω

(the first inequality is an application of the first isomorphism theorem on the

T (R)-module homomorphism T (R) → T (R)r defined by s 7→ sr, where 0 6= r ∈
Z(T (R))).

If Γ(R) ∼= Γ(Q(R)), then Γ(R) is complemented since Q(R) is von Neumann

regular, and is c.v.-complete since B(Q(R)) is complete. Conversely, suppose that

Γ(R) is a complemented c.v.-complete graph. Then Γ(R) ∼= Γ(T (R)) implies that

T (R) is von Neumann regular and B(T (R)) is complete. Therefore, B(T (R)) =

B(Q(T (R))). Moreover, |[e]T (R)| = |[e]Q(T (R))| for all e ∈ B(T (R)) by Corollary

2.16. Thus

Γ(R) ∼= Γ(T (R)) ∼= Γ(Q(T (R))) = Γ(Q(R)),

where the second isomorphism follows from [3, Theorem 4.1]. ¤

Note that a Boolean ring R is rationally complete if and only if B(R) is a

complete Boolean algebra [17, Theorem 12.3.4]. The following theorem was proved

in [11, Theorem 3.4 and Theorem 4.1]. However, a simpler proof is available with

the aid of Lemma 3.1.

Theorem 3.4. Let R be a Boolean ring. Then the following conditions are equiv-

alent:

(1) R is rationally complete.

(2) Γ(R) is c.v.-complete.

(3) Γ(R) ∼= Γ(Q(R)).
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Proof. (1)⇔(2) Lemma 3.1 implies that B(R) is complete if and only if Γ(R) is

c.v.-complete; that is, R is rationally complete if and only if Γ(R) is c.v.-complete.

(3)⇒(2) Since B(Q(R)) is complete, (3) implies that Γ(R) is c.v.-complete by

Lemma 3.1.

(1)⇒(3) This is obvious. ¤

We end this section by observing that the zero-divisor graphs of rationally com-

plete Boolean rings are completely characterized: It is known that a ring R is

Boolean if and only if either R ∼= Z2 or R 6∈ {Z9,Z3[X]/(X2)} and Γ(R) 6= ∅ has

the property that every vertex has a unique complement [11, Theorem 2.5]. Taking

this together with the previous theorem, we have the following corollary.

Corollary 3.5. Suppose that R is a ring which is not isomorphic to either of the

rings in the set {Z9,Z3[X]/(X2)}. Then R is a rationally complete Boolean ring

if and only if either R ∼= Z2 or Γ(R) 6= ∅ is a c.v.-complete graph such that every

vertex has a unique complement.
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