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Abstract. A challenging problem in recent years has been to find a good

description of the radical of a submodule N of a (Noetherian) module M over

a commutative ring, where the radical of N is the intersection of all prime

submodules of M which contain N . In this paper we give a description of the

radical of N in a Noetherian module M which is amenable to computation

either by hand in simple cases or by using a computer algebra system in other

cases, and illustrate this by examples.
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Since the notion of the radical (sometimes referred to as the M -radical) of a

submodule was introduced in the early 1980’s [10], a number of authors have tried

to describe this radical, either in terms of its elements, or as some sort of decom-

position. As for the former, most of the efforts were directed towards finding a

description similar to the well-known formula for the elements of the radical of

an ideal; namely, for an ideal I of a ring (commutative, with identity) R, then√
I = {r ∈ R : rn ∈ I for some n ∈ Z+}. A method for computing the radical of

a submodule N of a free module F was given in [9], using the symmetric algebra

of F. In other special cases, a “radical formula” was shown to hold, where all the

computations remained within the original module. See, for example, [5], [6], [11]

and [12].

In this paper, we seek a decomposition of the radical of a submodule N of a

module M , as an intersection of (finitely many) known prime submodules lying

over N . One advantage of such a representation is that this allows one to compute

the uniform dimension of M/ rad N (see [16] for details).

Throughout this work, R denotes a commutative ring with identity and M de-

notes a unital R-module. For a submodule N of M we let (N : M) denote the ideal

{r ∈ R : rM ⊆ N}. Similarly, for an element s ∈ R, we let (N :M s) = {m ∈ M :

sm ∈ N}. We remark that this paper owes much to [14].
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1. Associated Primes

Associated primes have been studied rather extensively, with several different

notions of these primes occurring in the literature. For a comparison of (and ref-

erences to) some of the more common definitions of primes associated to an ideal,

see [4].

In this paper, we are interested in primes associated to submodules, and in

particular to primes associated to the radical of a given submodule. It is well-

known that in the Noetherian ring case, the associated primes to a given ideal

coincide with the associated primes to the radical of the ideal, and indeed provide

the decomposition we seek. However, in the module case, things are not nearly so

simple, as we shall show.

Let p be a prime ideal of R and let N be a proper submodule of M. We say that

p is an associated prime of N if (N : m) = p for some m ∈ M \ N. Following [1],

we write AP (N) to denote the set of all associated primes of N . Note that AP (N)

depends on M but it will always be clear which module M we are considering. We

begin with a few elementary results about associated primes.

Proposition 1.1. Let N be a proper submodule of M. Then for any p ∈ AP (N),

we have (N : M) ⊆ p.

Proof. Clear. ¤

A submodule N of an R-module M is said to be prime if N 6= M and whenever

rm ∈ N (where r ∈ R and m ∈ M) then r ∈ (N : M) or m ∈ N. If N is prime,

then the ideal p = (N : M) is a prime ideal of R, and N is said to be p-prime.

Alternatively, a submodule Q of M is said to be primary if Q 6= M and if rm ∈ Q

(where r ∈ R and m ∈ M) implies that either m ∈ Q or r ∈
√

(Q : M). If Q is

primary, then (Q : M) is a primary ideal of R, and in this case we say that Q

is q-primary, where q =
√

(Q : M) is a prime ideal of R. It is worth noting that

if Q is q-primary and (Q : M) = q, then Q is in fact a prime submodule (see

[7, Proposition 1]). As for the next result, while it does not pertain directly to

associated primes, it will prove useful to refer back to it in the sequel.

Proposition 1.2. The intersection of a non-empty collection of p-prime (resp.,

p-primary) submodules is itself a p-prime (resp., p-primary) submodule.

Proof. Elementary. ¤
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A submodule N of M has a primary decomposition if N = Q1

⋂ · · ·⋂ Qn, where

Qi is a primary submodule for each i (1 ≤ i ≤ n). Moreover, we say that an inter-

section N = Q1

⋂ · · ·⋂ Qn is irredundant if N 6= Q1

⋂ · · ·⋂ Qi−1

⋂
Qi+1 · · ·

⋂
Qn

for each i (1 ≤ i ≤ n). An irredundant, primary decomposition N = Q1

⋂ · · ·⋂ Qn

is a normal primary decomposition if
√

(Qi : M) 6= √
(Qj : M) whenever i 6= j. We

remark that ‘normal’ primary decompositions are sometimes instead referred to in

the literature as either ‘minimal’ or ‘reduced’. It is well known that every proper

submodule of a Noetherian module has a normal primary decomposition.

Proposition 1.3. (See [2, Theorem 3.10].) Let R be Noetherian, let N be a proper

submodule of a finitely generated R-module M, and let N =
⋂k

i=1 Qi be a normal

primary decomposition, where each Qi is pi-primary (1 ≤ i ≤ k). Then AP (N) =

{p1, . . . , pk}.

Let N be a submodule of M. The radical of N, denoted rad N, is the intersection

of all prime submodules of M that contain N, unless there are no such prime

submodules, in which case radN = M. Note that this is consistent with the usual

definition of the radical of an ideal of R, in case M = R. It is clear that rad N can

be obtained by intersecting only the minimal prime submodules over N – where P

is a minimal prime submodule over N if P is a minimal element of the set of all

prime submodules of M that contain N. In certain cases, rad N can be expressed

as a finite intersection of prime submodules. Whenever this holds, we make the

obvious modifications to the terminology for a primary decomposition of N, applied

to rad N. Hence, by a prime decomposition of rad N we mean a decomposition

radN = P1

⋂ · · ·⋂ Pn, where n is a positive integer and Pi is a prime submodule

of M for each i (1 ≤ i ≤ n). Letting (Pi : M) = pi for each i (1 ≤ i ≤ n), we say

that an irredundant, prime decomposition radN = P1

⋂ · · ·⋂ Pn is a normal prime

decomposition if pi 6= pj whenever i 6= j.

Since for our purposes, we will often require rad N to be a finite intersection of

primes, then throughout much of this work, we will focus on the Noetherian case,

where for every proper submodule N, radN indeed has a prime decomposition (see

[8, Theorem 4]). One exception to this rule is the following result.

Proposition 1.4. (See [16, Lemma 2.1].) Let N be a submodule of M such that

radN has a prime decomposition. Then radN has a normal prime decomposition.

Moreover, if rad N = P1

⋂ · · ·⋂ Pn and radN = Q1

⋂ · · ·⋂ Qm are both normal

prime decompositions, with (Pi : M) = pi for each i (1 ≤ i ≤ n) and (Qj : M) = qj
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for each j (1 ≤ j ≤ m), then n = m and {p1, . . . , pn} = {q1, . . . , qm}. Therefore,

AP (radN) = {p1, . . . , pn}.

To reiterate, having a normal prime decomposition of rad N is sufficient for

determining the associated primes to rad N. Conversely, at least in the Noetherian

setting, once we have in hand the (finitely many) members of AP (radN), then it is

not terribly difficult to obtain a normal prime decomposition of radN – as Theorem

2.7 testifies.

However, it is important to note that, even in the Noetherian case, the sets

AP (N) and AP (radN) are not necessarily equal. Indeed, as Example 1.6 below

shows, there exists a primary submodule Q such that rad Q is not prime, and in

this case, AP (Q) 6= AP (rad Q). One of the main objects of this paper therefore is

to compare, for a given submodule N of M, the sets AP (N) and AP (rad N). As

noted earlier, there is at least one case where these two sets coincide (Proposition

1.5).

Proposition 1.5. Let R be a Noetherian ring. Then for any ideal I of R, we have

AP (I) = AP (
√

I).

Proof. This is an easy exercise. ¤

Example 1.6. (See [18, Example 1.11].) Let R be the polynomial ring Z[x] and let

M be the R-module R⊕R. Then the submodule Q = R(2, x)+R(x, 0) is a p-primary

submodule of M, where p is the prime ideal Rx. However, radQ = K
⋂

mM is a

normal prime decomposition, where K is the prime submodule R⊕Rx and m is the

maximal ideal R2 + Rx. Hence, AP (Q) = {p}, but AP (rad Q) = {p,m}.

The situation is made even more difficult by the fact that AP (N) is not neces-

sarily contained in AP (rad N), as Example 1.7 shows.

Example 1.7. Let R = Z[x], let p be a prime in Z, let M = R⊕R and let m be the

ideal Rp + Rx. Consider the submodule N = m(p, x) of M. We have m ∈ AP (N),

since (p, x) /∈ N and m = (N : (p, x)). However, m /∈ AP (rad N). To see this, first

note that for any prime submodule P of M such that N ⊆ P, either (p, x) ∈ P or

(P : M) = m. Now since R(p, x) is 0-prime and is contained in mM, it follows that

radN = R(p, x), and thus AP (rad N) = {0}.

To complicate matters still further, consider a minimal prime submodule P over

a submodule N of M. It turns out that (P : M) need not belong to either AP (N)

or AP (radN), as one can see in Example 1.9 below. Compare this with Proposition

1.8.
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Proposition 1.8. (See [2, Theorem 3.1].) Let R be Noetherian and let M be finitely

generated. Then AP (0) contains every minimal prime ideal over annM.

Example 1.9. Let R = Z[x], let p be a prime in Z, let M = R ⊕ R and let

N = Rp ⊕ Rx. Then the minimal prime submodules of N are P1 = Rp ⊕ R,

P2 = R⊕Rx and P3 = mM, where m is the ideal Rp+Rx. However, m = (P3 : M)

is not an associated prime ideal either of N or of rad N, since N = rad N = P1

⋂
P2

is a normal prime decomposition of N.

While several results pertaining to prime ideals do indeed generalise to prime sub-

modules, many other such results (e.g., Propositions 1.5 and 1.8) do not. Amongst

those cases which do not generalise, many fail to do so primarily because of the fol-

lowing: a prime submodule can in fact contain the intersection of two submodules,

without it containing either individually (whereas, whenever a prime ideal contains

an intersection of two ideals, it must contain one of them). This difficulty arises

even in a simple case such as a 2-dimensional vector space, where every proper

subspace is a prime submodule. Note that any two distinct 1-dimensional sub-

spaces have trivial intersection, and hence any third (distinct from the other two)

1-dimensional subspace contains their intersection.

2. Minimal Primes

Throughout this section, let N be a proper submodule of M. Before approaching

the problem of determining the members of AP (radN), we first turn our atten-

tion to finding, for each prime ideal p belonging to AP (rad N), a minimal prime

submodule P over N such that (P : M) = p. From Proposition 1.2 we see that if

P exists, then it is in fact unique, subject to these constraints. Importantly, once

we have such a minimal prime submodule for each member of AP (rad N), then

Theorem 2.7 shows that the intersection of these minimal primes gives a normal

prime decomposition of rad N. Meanwhile, we begin by showing the existence of

such a minimal prime submodule P , in the Noetherian case. Note that the converse

of the next result does not hold (see Example 1.9).

Lemma 2.1. Let R be Noetherian, let N be a proper submodule of a finitely gen-

erated R-module M, and let p be a prime ideal of R. If p ∈ AP (radN) then there

exists a p-prime submodule P of M which is a minimal prime over N.

Proof. By Proposition 1.4 and the remarks immediately preceding it, radN has

a normal prime decomposition, say rad N = P1

⋂ · · ·⋂ Pn, where n is a posi-

tive integer and Pi is a pi-prime submodule of M for each i (1 ≤ i ≤ n). Since
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p ∈ AP (radN), then without loss of generality we may assume that p1 = p. Now

take the intersection of all p-prime submodules containing N, and apply Propo-

sition 1.2, to obtain a prime submodule P which is minimal amongst all p-prime

submodules containing N . In particular, note that P ⊆ P1. We now show that P

is actually a minimal prime over N (not just minimal amongst p-primes). Sup-

pose there exists a prime submodule Q of M such that N ⊆ Q ⊆ P. Then

radN = Q
⋂

P2

⋂ · · ·⋂ Pn is a prime decomposition of rad N, and since there are

n components in this decomposition, it is in fact normal (otherwise we could obtain

a normal prime decomposition from this one, with fewer than n components – but

this would contradict Proposition 1.4). Moreover, from Proposition 1.4 we see that

{(Q : M), p2, . . . , pn} = AP (radN) = {p, p2, . . . , pn}, and hence (Q : M) = p. It

follows that Q = P, and the proof is complete. ¤

Bearing Lemma 2.1 in mind, let p be any prime ideal of R. Following [15], we

let clp(N) denote the p-closure of N, as defined by

clp(N) = {m ∈ M : rm ∈ N for some r ∈ R \ p}.

It is clear that clp(N) =
⋃

r∈R \ p(N :M r) and that N ⊆ clp(N). For our purposes,

the most interesting case is where (N : M) ⊆ p.

We have seen (Example 1.6) that the radical of a primary submodule need not

be prime – there can in fact exist more than one minimal prime submodule over

a primary submodule. The following result is interesting because, while it is fairly

straightforward, it suggests a possible approach to finding minimal primes in the

general case.

Lemma 2.2. If a submodule Q of M is p-primary, then radQ = rad(Q + pM).

Proof. Clearly radQ ⊆ rad(Q + pM). If P is a prime submodule of M containing

Q, then (P : M) ⊇
√

(Q : M) = p, and thus Q + pM ⊆ P. ¤

Our approach then will be to consider submodules of the form N + pM , for any

submodule N of M and prime ideal p of R such that (N : M) is contained in p.

The next two results will prove quite useful in this endeavour.

Lemma 2.3. (See [13, Corollary 3.4].) Let M be finitely generated and let N be

a submodule of M. For every prime ideal p of R such that (N : M) ⊆ p, then

(N + pM : M) = p.

Corollary 2.4. Let N be a submodule of a finitely generated module M and let p

be a prime ideal of R. Then p ∈ AP (N + pM) if and only if (N : M) ⊆ p.
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Proof. Suppose first that (N : M) ⊆ p. There exist a positive integer k and

elements mi ∈ M (1 ≤ i ≤ k) such that M = Rm1 + · · ·+ Rmk. By Lemma 2.3,

p = (N + pM : M) =
k⋂

i=1

(N + pM : mi),

so that p = (N + pM : mi) for some i (1 ≤ i ≤ k). Conversely suppose that

p ∈ AP (N + pM). By Proposition 1.1, (N : M) ⊆ (N + pM : M) ⊆ p. ¤

Theorem 2.5. Let M be finitely generated and let N be a submodule of M such

that (N : M) = p is a prime ideal of R. Then clp(N) is a minimal prime submodule

(of M) over N and (clp(N) : M) = p.

Proof. It is clear that p ⊆ (clp(N) : M). Now let r ∈ (clp(N) : M), and let

M = Rm1 + · · ·+ Rmn. Then there exist s1, . . . , sn ∈ R \ p such that si(rmi) ∈ N

for each i (1 ≤ i ≤ n). Let s = Πn
i=1si and note that rsM ⊆ N, which implies that

rs ∈ (N : M) = p. Since s /∈ p, we must have r ∈ p; hence (clp(N) : M) = p.

It is now easy to see that clp(N) is a prime submodule of M, because if rm ∈
clp(N) (m ∈ M and r ∈ R), and r /∈ (clp(N) : M) = p, then (tr)m = t(rm) ∈ N for

some t ∈ R \ p, which implies that m ∈ clp(N). Finally, suppose that clp(N) is not

a minimal prime over N. Then there exists a prime submodule P of M that contains

N, with P contained in clp(N). Then p = (N : M) ⊆ (P : M) ⊆ (clp(N) : M) = p.

Now if m ∈ clp(N) then there exists some r ∈ R \ p such that rm ∈ N ⊆ P. But

this implies that m ∈ P, and the proof is complete. ¤

Suppose M is finitely generated. Given Lemma 2.3 and Theorem 2.5, in the

case (N : M) ⊆ p, the p-prime submodule clp(N + pM) is of particular interest. Of

course if (N : M) = p, then N = N+pM and we have that clp(N+pM) is a minimal

prime submodule over N. On the other hand, if (N : M) is properly contained in

p, then clp(N + pM) is not necessarily a minimal prime over N. However, it is the

case that any p-prime submodule P of M that contains N must likewise contain

N +pM, and clp(N +pM) is minimal amongst these. We summarise these remarks

in the following

Corollary 2.6. Let N be a submodule of a finitely generated R-module M and let

p be a prime ideal of R such that (N : M) ⊆ p. Then clp(N + pM) is minimal

amongst those p-prime submodules of M that contain N.

We are now ready to show that, at least in some cases, the radical of N can be

expressed in terms of the submodules clp(N + pM), where p ∈ AP (rad N).
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Theorem 2.7. Let R be Noetherian and let N be a proper submodule of a finitely

generated R-module M (so that AP (rad N) is finite). If AP (rad N) = {p1, . . . , pn}
then radN =

⋂n
i=1 clpi(N + piM). Moreover, this intersection is a normal prime

decomposition of rad N .

Proof. To see that rad N ⊆ ⋂n
i=1 clpi

(N +piM), apply Proposition 1.1 and Corol-

lary 2.6. Now as in the proof of Lemma 2.1, rad N has a normal prime decom-

position, say rad N =
⋂m

j=1 Qj , where for each j (1 ≤ j ≤ m), Qj is qj-prime.

By Proposition 1.4, {q1, . . . , qm} = AP (radN) = {p1, . . . , pn} and n = m. With-

out loss of generality, we may take qi = pi for each i (1 ≤ i ≤ n). By Corol-

lary 2.6 we have clpi
(N + piM) ⊆ Qi for each i (1 ≤ i ≤ n). It follows that

radN =
⋂n

i=1 clpi(N + piM), and indeed that this is a normal prime decomposi-

tion. ¤

In the remainder of this section we consider some computational aspects of

clp(N). Firstly, recall that clp(N) can be described as the union of submodules

of the form (N :M r), where r ranges over the elements of R \ p. Proposition

2.10 simplifies this considerably, at least in certain cases (e.g., M is Noetherian).

Furthermore, for a submodule N such that (N : M) is a prime ideal, it would be

convenient to have some equivalent conditions for N to be prime.

Proposition 2.8. (See [19, Lemma 3.5].) Let p be a prime ideal of R and let N

be a submodule of M such that (N : M) = p. The following are equivalent:

(i) N is a p-prime submodule of M ;

(ii) clp(N) = N ;

(iii) (N :M s) = N for all s ∈ R \ p.

We leave the proofs of the next two results to the reader.

Proposition 2.9. Let N be a submodule of M and let r, s ∈ R. Then

(i) ((N :M r) :M s) = (N :M rs) and

(ii) (N :M r) ⊆ (N :M rs).

Proposition 2.10. Let p be a prime ideal of R and let N be a submodule of M

such that (N : M) = p. If clp(N) is finitely generated, then there exists s ∈ R \ p

such that clp(N) = (N :M s).

Let R be Noetherian and let N be a submodule of a finitely generated R-module

M such that (N : M) = p is a prime ideal of R. The preceding three Propositions

collectively tell us that not only does there exist a ring element r ∈ R \ p such that
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clp(N) = (N :M r), but that for any s ∈ R \ p, rs will also work. The next result

tells how to find such a ring element r – provided that one is able (either by hand

or with the aid of a computer algebra system) to compute ann Extk(M/N, R). Note

that in this result, we require the ring R to have finite dimension. In Section 3 we

show that this condition is actually unnecessary.

Theorem 2.11. Let R be Noetherian with finite (Krull) dimension, and let N be

a submodule of a finitely generated R-module M such that (N : M) = p is a prime

ideal of R. For each positive integer k such that ht(p) < k ≤ dim R, there exists

an element rk ∈ annExtk(M/N,R) \ p. Let r = Πdim R
k=ht(p)+1rk. Then there exists a

positive integer j such that (N :M rj) = clp(N).

Proof. If N is prime, the result follows from the fact that p ( annExtk(M/N,R)

for all ht(p) < k ≤ dim R [3, Theorem 1.1] and from Proposition 2.8. If N is

not prime, N has a non-trivial (i.e., n ≥ 2) normal primary decomposition, say

N =
⋂n

i=1 Qi, where for each i (1 ≤ i ≤ n), Qi is pi-primary. Let (Qi : M) = qi

and note that p = (N : M) ⊆ qi for each i (1 ≤ i ≤ n). On the other hand, since⋂n
i=1 qi = (N : M) ⊆ p, then qi ⊆ p for some i (1 ≤ i ≤ n). Hence, without loss

of generality, we may assume that q1 = p = p1. This implies that Q1 is actually

p-prime, and hence Q1 ⊇ clp(N).

Note that p (
⋂n

j=2 qj and so we may choose r ∈
(⋂n

j=2 qj

)
\ p. It turns out that

clp(N) = (N :M r), since for any m ∈ clp(N), we have rm ∈ clp(N)
⋂ (⋂n

j=2 Qj

)
=

N. Now by [3, Theorem 1.1] we see that
⋂

ht(p)<k≤dim R

(
annExtk(M/N,R)

)
⊆ pi

for every i such that 2 ≤ i ≤ n, and since every primary ideal contains a power of

its radical, the result follows. ¤

3. Generalised Associated Primes

We now return to the problem of determining the associated prime ideals of (the

radical of) a submodule N of M. From Theorem 2.7 we have a description, in the

Noetherian case, of the components of a normal prime decomposition of the radical

of N – provided, that is, we know the associated primes of rad N. We have seen,

however, that AP (N) can be quite different from AP (rad N). Nevertheless, one

might hope that there is some sort of connection between these two collections of

associated primes. The results of this section demonstrate one such connection, at

least in the Noetherian case.

Despite the remarks at the end of Section 1, there are in fact some cases where,

if a prime submodule contains an intersection of submodules, then it must contain
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one of these submodules. Note that this result was anticipated by the proof of

Theorem 2.11.

Lemma 3.1. Let N be a proper submodule of a finitely generated R-module M

such that N has a normal primary decomposition N =
⋂n

i=1 Qi, where Qi is pi-

primary for each i (1 ≤ i ≤ n). Then for every minimal prime ideal p to (N : M),

every p-prime submodule P of M which contains N must also contain Qi for some

i (1 ≤ i ≤ n).

Proof. Let qi = (Qi : M) for each i (1 ≤ i ≤ n), and note that
⋂n

i=1 qi = (N :

M) ⊆ p. Hence qi ⊆ p for some i (1 ≤ i ≤ n), and since p is a minimal prime to

(N : M), then qj * p for all j 6= i. Since
(⋂

j 6=i qj

)
Qi ⊆ N ⊆ P and

⋂
j 6=i qj * p,

it follows that Qi ⊆ P. ¤

Compare the following result with Proposition 1.8, and contrast it with Example

1.9.

Corollary 3.2. Let R be Noetherian and let N be a proper submodule of a finitely

generated R-module M. Then for every minimal prime ideal p over (N : M), p ∈
AP (N)

⋂
AP (rad N).

Proof. Let p be a minimal prime over (N : M). It is well-known that, in this

setting, p ∈ AP (N). We also know that rad N has a normal prime decomposition,

say rad N =
⋂n

i=1 Pi, where Pi is pi-prime for each i (1 ≤ i ≤ n). (Note that

AP (radN) = {p1, . . . , pn} by Proposition 1.4). Now for any prime ideal q (including

q = p) containing (N : M), the existence of a q-prime submodule containing N is

given by [13, Theorem 3.3] (even if R is not Noetherian). Hence there exists a p-

prime submodule P that contains radN, and we see from Lemma 3.1 that P must

contain Pi for some i (1 ≤ i ≤ n), and thus p ⊇ pi. Since p is minimal over (N : M),

it follows that p ∈ AP (rad N). ¤

Let N be a proper submodule of a finitely generated module M and let p be a

prime ideal of R such that (N : M) ⊆ p. By Corollary 2.4, p ∈ AP (N + pM). For

a prime ideal q of R we write p −→
N

q provided q ∈ AP (N + pM). Note that if

p −→
N

q then in particular p ⊆ q.

Definition 3.3. Let N be a submodule of a finitely generated module M. A prime

ideal p of R is a generalised associated prime of N if there exists a positive

integer n and there exist prime ideals p0, p1, . . . , pn of R such that p0 ∈ AP (N) and

p0 −→
N

p1 −→
N

p2 −→
N

· · · −→
N

pn = p.
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Note that p0 ∈ AP (N) implies that (N : M) ⊆ p0 so that p0 −→
N

p1 makes

sense. Note also that for each i (1 ≤ i ≤ n − 1), pi ∈ AP (N + pi−1M). So

(N : M) ⊆ (N + pi−1M : M) ⊆ pi and hence pi −→
N

pi+1 makes sense.

For a submodule N of a finitely generated module M, we let GAP (N) denote the

collection of generalised associated primes of N . It is clear that AP (N) ⊆ GAP (N).

We remark that we could have chosen to write p0 −→
N

p1 −→
N+p0M

p2 −→
N+p1M

· · · −→
N+pn−2M

pn = p, instead of the above definition. However, nothing would

have been gained by doing so, since under this alternative we would have had, for

each i (2 ≤ i ≤ n), pi ∈ AP (N + p0M + p1M + · · ·+ pi−1M). But as noted above,

p0 ⊆ p1 ⊆ · · · ⊆ pn, so clearly N + p0M + p1M + · · ·+ pi−1M = N + pi−1M .

Considering that for each link in the chain given in Definition 3.3, we have

pi ∈ AP (N + pi−1M), the next result is perhaps not terribly surprising.

Lemma 3.4. Let N be a submodule of a finitely generated module M , let p ∈
GAP (N) and let n be a positive integer. If p0, p1, . . . , pn are prime ideals satisfying

p0 ∈ AP (N) and p0 −→
N

p1 −→
N

p2 −→
N

· · · −→
N

pn = p, then for each i (0 ≤ i ≤
n − 1), GAP (N + piM) ⊆ GAP (N) and moreover, for each j (0 ≤ i ≤ j ≤ n),

pj ∈ GAP (N + piM).

Proof. Let q ∈ GAP (N + piM) for some i (0 ≤ i ≤ n − 1). Then there exists

a positive integer k and a collection of prime ideals q0, q1, · · · , qk satisfying q0 ∈
AP (N + piM) and q0 −→

N+piM
q1 −→

N+piM
q2 −→

N+piM
· · · −→

N+piM
qk = q. Now since

q0 ∈ AP (N + piM), then we have pi −→
N

q0. We also have (as in the remarks

preceding this result) pi ⊆ q0 ⊆ · · · ⊆ qk, so that for each l (1 ≤ l ≤ k), ql ∈
AP ((N + piM) + ql−1M) = AP (N + ql−1M). In other words, we have

p0 −→
N

p1 −→
N

p2 −→
N

· · · −→
N

pi −→
N

q0 −→
N

q1 −→
N

· · · −→
N

qk = q,

and the first part is proved.

Now let j be such that (i ≤ j ≤ n). Observe that (N + piM : M) = pi, so that

pi ∈ AP (N + piM) (Corollary 3.2). Since j ≥ i, the result follows immediately

from Definition 3.3 and the remarks following it. ¤

Before getting to the first of the two main results of this section, we remark that

our aim in having introduced generalised associated primes has been to provide a

means of determining AP (radN) – or at least a means of narrowing the search

for the elements of AP (rad N). Indeed, the second of our two main results of this
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section, Theorem 3.6, shows that AP (rad N) is in fact contained in GAP (N). How-

ever, this second result would provide little benefit, if it turned out that GAP (N)

were infinite.

Theorem 3.5. Let R be Noetherian and let N be a proper submodule of a finitely

generated R-module M. Then GAP (N) is finite.

Proof. Suppose the result is false. Because M is Noetherian there exists a sub-

module K which is maximal in the collection of proper submodules of M which

have infinitely many generalised associated prime ideals. By Proposition 1.3 we

may write AP (K) = {q1, . . . , qm}, where m is some positive integer. There are two

cases to consider: either (K : M) is prime or it isn’t. If (K : M) is prime, then

it belongs to AP (K) (Corollary 3.2), so without loss of generality, in this case we

suppose q1 = (K : M). Note that, regardless of whether (K : M) is prime, for any

i such that qi 6= (K : M), then qiM * K, and thus K ( K + qiM. Moreover, we

have (K + qiM : M) = qi (Lemma 2.3) and therefore qi ∈ AP (K + qiM) (again,

Corollary 3.2). For convenience, we let t = 1 if (K : M) is prime; otherwise let

t = 0.

Now let p ∈ GAP (K). There exist a positive integer n and prime ideals pi

(0 ≤ i ≤ n) of R such that p0 ∈ AP (K) and

p0 −→
K

p1 −→
K

p2 −→
K

· · · −→
K

pn = p.

Now p0 = qj for some j (1 ≤ j ≤ m). If t < j ≤ m (i.e., qj 6= (K : M)) then we

have p ∈ GAP (K + qjM) (Lemma 3.4). The only other case to consider is where

p0 = q1 = (K : M) (i.e., t = 1 = j). In this case, p0M ⊆ K and thus p1 ∈ AP (K). If

p1M ⊆ K then p0 = p1, which implies that p2 ∈ AP (K). Repeating this argument,

either p = p0 = q1 or p ∈ GAP (K +pkM) where k is the least positive integer such

that 1 ≤ k ≤ n and pk 6= p0. In the latter case, pk ∈ AP (K) and thus pk = qh for

some h (t < h ≤ m).

We have proved that, for any p ∈ GAP (K), either p ∈ AP (K) or p ∈ GAP (K +

qrM) for some r (t < r ≤ m). It follows that

GAP (K) ⊆ {q1, . . . , qm}
⋃

GAP (K + qt+1M)
⋃
· · ·

⋃
GAP (K + qmM).

But by the choice of K, GAP (K + qiM) is finite for all i (t < i ≤ m). Hence

GAP (K) is finite, a contradiction. The result follows. ¤

Let N be a proper submodule of M. Recall that, at least in the Noetherian case,

for every prime ideal p ∈ AP (rad N), then there exists a p-prime submodule P of

M which is a minimal prime over N (Lemma 2.1), but that the converse of this
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does not hold (Example 1.9). With this in mind, we let MP (N) denote the set of

all prime ideals p such that there exists a p-prime submodule P of M which is a

minimal prime over N.

For a proper ideal a of R, we denote the height of a by ht(a) = inf{ht(p) : p is

a minimal prime over a}. In case a = R, we take ht(a) to be one greater than the

dimension of R (or infinity, if R is infinite dimensional). Obviously, in the context

of Theorem 3.5, there is a finite upper bound on the heights of the elements of

GAP (N). We shall see from Theorem 3.6 that the requirement in Theorem 2.11

for R to be finite dimensional is unnecessary; simply replace dim R with γ(N) =

max{ht(p) : p ∈ GAP (N)}.

Theorem 3.6. Let R be Noetherian and let N be a proper submodule of a finitely

generated R-module M. Then AP (rad N) ⊆ GAP (N).

Proof. By Lemma 2.1, it suffices to show that MP (N) ⊆ GAP (N). Let p ∈
MP (N); i.e., there exists a p-prime submodule P which is minimal over N . We

induct on n = ht(p)−ht(N : M). If p is a minimal prime of (N : M) (in particular,

if n = 0) then p ∈ AP (N) ⊆ GAP (N). Alternatively, if p is not a minimal prime

of (N : M), then p properly contains some minimal prime ideal q to (N : M). By

the previous argument, q ∈ GAP (N). Note that (N + qM : M) = q, by Lemma

2.3. It follows that N + qM cannot be prime, since it is contained properly in

P, which is itself a minimal prime to N. By the same token, clq(N + qM) is a

minimal prime to N + qM (Theorem 2.5). Taking into account the obvious fact

that P is likewise a minimal prime to N + qM, we see that clq(N + qM) * P.

It follows that N + qM must have a normal primary decomposition of the form

clq(N + qM)
⋂ (⋂k

j=2 Qj

)
, where for each j (2 ≤ j ≤ k), Qj is qj-primary, and

q ( qj . Now since clq(N +qM) * P, but clq(N +qM)
⋂ (⋂k

j=2 Qj

)
= N +qM ⊆ P,

then qi ⊆ p for some i (2 ≤ i ≤ k). In particular qi ∈ AP (N + qM) and q ( qi ⊆ p.

Hence, as before, we have qi = (N + qiM : M), and clearly P is a minimal prime

to N + qiM, so that p ∈ MP (N + qiM). Now since ht(p) − ht(qi) < n, the proof

follows by induction. ¤

Corollary 3.7. Let R be Noetherian and let N be a proper submodule of a finitely

generated R-module M. Then radN =
⋂

pi∈GAP (N) clpi(N + piM).

Proof. Observe that by Lemma 2.3 and Theorem 2.5, clpi(N+piM) is a prime sub-

module containing N for every pi ∈ GAP (N), so that rad N ⊆ ⋂
pi∈GAP (N) clpi(N+

piM). The result now follows from Theorems 3.6 and 2.7. ¤
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Of course, the prime decomposition given in Corollary 3.7 is not necessarily

a normal prime decomposition – some redundancies are fairly likely to exist. In

the next section we shall provide a result which effectively eliminates whatever

redundancies there might be.

4. Eliminating Redundant Primes

In light of Theorem 2.7, eliminating the redundant prime submodules in the (not

necessarily normal) prime decomposition in Corollary 3.7 amounts to determining

which elements of GAP (N) do not belong to AP (rad N). Admittedly, at first glance

this could effectively be as difficult as determining rad N in the first place. While

it might be fairly easy, for a given submodule L of M, to compute AP (L), we have

already seen that this does not give us AP (rad L). It would be quite helpful if one

would only need to consider the associated primes of a known submodule, rather

than its radical. This was indeed the thinking behind the construction of GAP (N).

Note that in the context of Corollary 3.7, (N + piM : M) = pi for each pi ∈
GAP (N). For this reason, we are mainly concerned at this stage with submodules L

such that (L : M) is a prime ideal. Recall that for any submodule L of a Noetherian

module M, then L is a primary submodule if and only if AP (L) consists solely of

one prime ideal of R.

Lemma 4.1. Let R be Noetherian, let N be a submodule of a finitely generated

R-module M and let p be a prime ideal of R such that (N : M) ⊆ p. Then N + pM

is prime if and only if AP (N + pM) = {p}.

Proof. This follows immediately from the preceding remarks, from Lemma 2.3 and

from the remarks following Proposition 1.1. ¤

We saw in Theorem 3.5 that GAP (N) is finite for any submodule N of a Noe-

therian module M , and in the subsequent remarks, we let γ(N) = max{ht(p) : p ∈
GAP (N)}.

Corollary 4.2. Let R be Noetherian and let N be a submodule of a finitely gener-

ated R-module M such that (N : M) = p is a prime ideal of R. Then N is prime if

and only if ht
(
annExtk(M/N, R)

)
> k for all k such that ht(p) < k ≤ γ(N).

Proof. The result follows from Lemma 4.1 and [3, Theorem 1.1]. ¤

Let R be Noetherian, let N be a proper submodule of a finitely generated R-

module M, and let p ∈ GAP (N). We already know that the minimal primes over

(N : M) belong to AP (rad N) (Corollary 3.2), so we consider the case that p is
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not minimal over (N : M). One fairly obvious strategy for determining whether

p ∈ AP (rad N) is to begin with those primes in GAP (N) of least height, and

work one’s way up. Recall that clp(N + pM) is minimal amongst those p-prime

submodules of M that contain N (but it might not be a minimal prime over N).

It turns out that in following this strategy, then by the time one gets round to

trying to determine whether p ∈ AP (rad N), one can already know all the elements

of AP (rad N) that are properly contained in p. With this in mind, for any p ∈
GAP (N) such that p is not minimal over (N : M), let k(p) denote the set of prime

ideals q belonging to AP (rad N) such that q ( p, let K(p) =
⋂

q∈k(p) clq(N + qM),

and let k(p)c = AP (rad N) \ k(p). We are now ready for the main result of this

section.

Theorem 4.3. Let R be Noetherian and let N be a proper submodule of a finitely

generated R-module M. Let p ∈ GAP (N) such that p is not a minimal prime over

(N : M). Then the following are equivalent:

(i) p ∈ AP (rad N);

(ii) K(p) * clp(N + pM);

(iii) (N + pM : K(p)) = p.

Proof. (i) ⇐⇒ (ii). Recall that rad N =
⋂

q∈AP (rad N) clq(N + qM) is a normal

prime decomposition (Theorem 2.7), and note that K(p) is actually the intersection

of some of the components of this decomposition.

Now if p ∈ AP (radN), then it is clear from Theorem 2.7 that K(p) * clp(N +

pM). Conversely, observe that

clp(N + pM) ⊇ rad N = K(p)
⋂

(
⋂

q∈k(p)c

clq(N + qM)).

Now if K(p) * clp(N + pM), then

p ⊇ (
⋂

q∈k(p)c

clq(N + qM) : M) =
⋂

q∈k(p)c

q,

and thus p ⊇ a for some a ∈ k(p)c. It follows that p = a.

(ii) ⇒ (iii). Since clp(N + pM) is p-prime and K(p) * clp(N + pM), then

(clp(N + pM) : K(p)) = p. We also have pM ⊆ N + pM ⊆ clp(N + pM) and so

p ⊆ (pM : K(p)) ⊆ (N + pM : K(p)) ⊆ (clp(N + pM) : K(p)) = p.

(iii) ⇒ (ii). Observe that ((N + pM)
⋂

K(p) : K(p)) = (N + pM : K(p)) = p.

It is an easy exercise to show that
(

(N + pM)
⋂

K(p)
N

:
K(p)
N

)
= p.
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Now since K(p)/N is finitely generated, then by [13, Theorem 3.3] there exists a

p-prime submodule P ′ of K(p) containing N such that

(N + pM)
⋂

K(p)
N

⊆ P ′

N
.

Thus pM
⋂

K(p) ⊆ (N +pM)
⋂

K(p) ⊆ P ′, and hence, by the Lying Over Theorem

for modules (see [17, Theorem 3.1]), there exists a p-prime submodule P of M such

that P
⋂

K(p) = P ′. This implies that K(p) * P, whereas clp(N + pM) ⊆ P, and

the proof is complete. ¤

As for determining the members of AP (rad N), recall that the strategy outlined

above is to work one’s way up according to the height of the primes in GAP (N),

eliminating the unnecessary primes along the way. It would be quite helpful if

it were true that, for any element p ∈ GAP (N) such that p /∈ AP (rad N), then

for every q ∈ GAP (N) such that p ( q, we would likewise have q /∈ AP (rad N).

Unfortunately, this is not the case, as the next example demonstrates.

Example 4.4. Let R = F [x, y, z], where F is a field, let M = R⊕R⊕R, and let N

be the submodule of M generated by the elements (x, 0, 0), (0, y, 0), (0, 0, x), (0, 0, y)

and (0, 0, z). Then GAP (N) = {Rx, Ry, Rx + Ry, m}, where m = Rx + Ry + Rz.

However, N = rad N = P1

⋂
P2

⋂
P3 is a normal prime decomposition, where P1

is the Rx-prime submodule Rx⊕R⊕R, P2 is the Ry-prime submodule R⊕Ry⊕R

and P3 is the m-prime submodule mM. Thus AP (rad N) = {Rx, Ry, m} (missing

out Rx + Ry).

We conclude with one further example, in order to demonstrate some of the

results of this paper. The computations were carried out in the computer algebra

system Macaulay2.

Example 4.5. Let R = (Z/101Z)[w, x, y, z] and let M = R(5), with standard basis

{e1, . . . , e5}. Let N be the submodule of M given by

N = R(x2y3e1 + w2xe2 − x3y2e3) + R(x2ye4 − z2e5)

+ R(wz2e2 + x3ye3 + x2y2e4) + R(xy2e4 + w3e5).

Since N is generated by 4 elements, then (N : M) = 0. Let p = R(w3x + yz2) and

note that p is a prime ideal of R. We have

GAP (N) = {0, Rx, Ry, p, Rw + Rx,Rw + Ry,Rx + Ry,Rx + Rz,

Rw + Rx + Ry, Rw + Rx + Rz, Rw + Ry + Rz,

Rx + Ry + Rz, Rw + Rx + Ry + Rz},
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and working our way along this list of prime ideals, from least to greatest height,

we get the following prime submodules, which, as it turns out, will yield a normal

prime decomposition of radN :

P0 = (N :M r), where r = w3x5y2 + x4y3z2

P1 = (N + RxM :M wz4) = Rx⊕R⊕Rx⊕Rx⊕R

P2 = (N + RyM :M wz2) = Ry ⊕R⊕Ry ⊕Ry ⊕R

P3 = (N + pM :M x2y3z2)

P4 = (N + (Rx + Rz)M :M w3) = (Rx + Rz)(4) ⊕R.

(We remark that neither P0 nor P3 has a terribly simple description – the latter

being generated by 16 elements, which we decline to list here.) Note that for all

the prime ideals q such that q ∈ GAP (N) \ {0, Rx, Ry, p, Rx + Rz}, we have

(N + qM : K(q)) 6= q. We find then that radN is given by

rad N = P0

⋂
P1

⋂
P2

⋂
P3

⋂
P4,

and that

AP (rad N) = {0, Rx, Ry, p, Rx + Rz}.
As a final remark, we are able to compute (based on ideas found in [14]) the uniform

dimension of M/ rad N, and we find that u(M/ rad N) = 7.
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