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Abstract. If a finite elementary 3-groups is a direct product of two of its

subsets that contains the identity element such that one of the factors has

three or nine elements then one of the factors does not span the whole group.
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1. Introduction

Let G be a finite abelian group. We will use multiplicative notation in connection

with abelian groups. The identity element of G will be denoted by e. Let A1, . . . , An

be subsets of G. The product A1 · · ·An by definition is equal to

{a1 · · · an : a1 ∈ A1, . . . , an ∈ An}.

If the elements on the list

a1 · · · an, a1 ∈ A1, . . . , an ∈ An

are distinct, then we say that the product A1 · · ·An is direct. If the product

A1 · · ·An is direct and is equal to G, then we say that the equation G = A1 · · ·An

is a factorization of G.

If e ∈ A, then we say that the subset A is normalized. A factorization is called

normalized if each of its factors is a normalized subset. Let 〈A〉 be the smallest

subgroup of G that contains A. In other words let 〈A〉 be the span of A in G. A

normalized subset A of G is called a full-rank subset if 〈A〉 = G. A subset A of G

is called periodic if there is an element g ∈ G \ {e} such that Ag = A.

If the finite abelian group G is a direct product of its cyclic subgroups of orders

t1, . . . , tn, then we say that G is of type (t1, . . . , tn). Let p be a prime. If t1 = · · · =
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tn = p, then G is called an elementary p-group. The number n is called the rank

of G.

Let G be an elementary 3-group of rank k and let G = AB be a normalized

factorization of G. It was shown that if k = 4 or k = 5, then one of the factors

is not a full-rank subset of G in [6] and [1] respectively. In these cases one of the

factors must have at most 9 elements. One might wonder if these results hold in

general for each elementary 3-groups regardless of the rank of the group with the

extra condition that |A| is 3 or 9. The main result of this note gives an answer

to this question in the affirmative. An example, exhibited in [5], shows that if

|A| = |B| = 27 then, there is a normalized factorization G = AB of an elementary

3-group of rank 6 such that A and B are full-rank subsets of G.

2. Lemmas

Let G = AB be a normalized factorization of the finite abelian group G. Suppose

that the factor B is periodic with period d. Set H = 〈d〉. There is a subset D of

B such that the product DH is direct and is equal to B. From the factorization

G = AB = ADH by considering the factor group G/H we get a factorization

G/H = (AH)/H · (DH)/H. (1)

Lemma 1. If G = AB is a full rank factorization then so is (1).

Proof. Assume that G = AB is a full-rank factorization of G. First we will show

that (AH)/H spans G/H. We would like to verify that for each element gH of G/H

there are elements a1H, . . . , asH of (AH)/H and integers α(1), . . . , α(s), such that

gH = (a1H)α(1) · · · (asH)α(s). Since 〈A〉 = G, for each g ∈ G there are elements

a1, . . . , as of A and integers α(1), . . . , α(s), such that g = a
α(1)
1 · · · aα(s)

s . So

gH = a
α(1)
1 · · · aα(s)

s H

= (aα(1)
1 H) · · · (aα(s)

s H)

= (a1H)α(1) · · · (asH)α(s).

This means that (AH)/H spans G/H.

Next we will show that (DH)/H spans G/H. We would like to establish that for

each element gH of G/H there are elements d1H, . . . , dsH of (DH)/H and integers

β(1), . . . , β(s) such that gH = (d1H)β(1) · · · (dsH)β(s). Since B = DH spans G,

for each g ∈ G, there are elements d1, . . . , ds ∈ D, h1, . . . , hs ∈ H and integers
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β(1), . . . , β(s) such that g = (d1h1)β(1) · · · (dshs)β(s). Therefore

gH = (d1h1)β(1) · · · (dshs)β(s)H

= [(d1h1)β(1)H] · · · [(dshs)β(s)H]

= (dβ(1)
1 H) · · · (dβ(s)

s H)

= (d1H)β(1) · · · (dsH)β(s).

This means that (DH)/H spans G/H. ¤

Lemma 2. Let G be a finite abelian 3-group. Let G = AB be a normalized factor-

ization of G, where |A| = 3. Then either 〈A〉 6= G or 〈B〉 6= G.

Proof. Let G be a finite abelian 3-group and let G = AB be a normalized factor-

ization of G with |A| = 3. In order to prove the lemma assume on the contrary

that 〈A〉 = 〈B〉 = G. Among the counter-examples we choose one for which |G| is

minimal.

Since G = AB is a factorization of G and |A| = 3, it follows that |G| = |A||B| ≥
|A| = 3. If |G| = 3, then |B| = 1 and so B = {e}. Now 〈B〉 6= G. Thus in the

remaining part of the proof we may assume that |G| ≥ 9.

Let A = {e, a, b}. Suppose first that |a| ≥ 9. By Lemma 3 of [4], in the

factorization G = AB the factor A can be replaced by A′ = {e, a, a2} to get the

factorization G = A′B. The factorization G = A′B is equivalent to that the sets

eB, aB, a2B (2)

form a partition of G. Multiplying the factorization G = A′B by a we get the

factorization G = (A′a)B. This factorization is equivalent to that the sets

aB, a2B, a3B (3)

form a partition of G. Comparing the partitions (2) and (3) gives that B = a3B.

This means that a3 is a period of B. Set H = 〈a3〉. There is a subset D of B

such that the product DH is direct and is equal to B. From the factorization

G = AB = ADH by considering the factor group G/H we get the factorization

(1). The order of G/H is smaller than the order of G. By the minimality of the

counter-example, either (AH)/H or (DH)/H does not span G/H. On the other

hand by Lemma 1, (AH)/H and (DH)/H are full-rank subsets of G/H. This

contradiction shows that |a| = 3. By symmetry we may assume that |b| = 3 also

holds.

If b = a2, then A is a subgroup of G. Namely, A = 〈a〉. Now 〈A〉 has three

elements and so it cannot be equal to G which has at least nine elements. Thus
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we may assume that b 6= a2. There is an element d ∈ G \ {e} such that b = a2d.

By Lemma 3 of [4], in the factorization G = AB the factor A can be replaced by

A′ = {e, a, a2} to get the factorization G = A′B. The factorization G = AB is

equivalent to that the sets

eB, aB, a2dB (4)

form a partition of G. The factorization G = A′B is equivalent to that the sets

eB, aB, a2B (5)

form a partition of G. Comparing the partitions (4) and (5) gives that a2B = a2dB

and so B = Bd. This means that d is a period of B. Let H = 〈d〉. There is

a subset D of B such that the product DH is direct and is equal to B. From

the factorization G = AB = ADH by considering the factor group G/H we have

the factorization (1). Using the minimality of the counter-example this leads to a

contradiction.

This completes the proof. ¤

The anonymous referee of the paper has pointed out that Lemma 2 holds for

each finite abelian groups not only for 3-groups as stated. By Lemma 1 of [3] if

|A| = 3, then A or B must be periodic without the assumption that G is a 3-group

and the rest of the proof follows roughly as given above.

3. Computations

Suppose we are given a finite abelian group G and a normalized subset A of G

such that |A| divides |G|. The problem is to find each normalized subset B of G for

which G = AB is a factorization of G. Here B is a factor complementing A and so

we can call this problem the complementer factor problem. The fact that G = AB

is a factorization of G is equivalent to that the sets Ab, b ∈ B form a partition of G.

This suggests the following solution to the complementer factor problem. Let us

form the family of the subsets Ag, g ∈ G. Then look for members of this family that

form a partition of G. One can generate all possible partitions of G in a systematic

manner. We will refer to this way of solution as the exact covering method. The

method first was used in [2] to study factorings of elementary 2-groups.

Lemma 3. Let G be an elementary 3-group of rank 6 and let G = AB be a nor-

malized factorization of G, where |A| = 9, |B| = 81. Then either 〈A〉 6= G or

〈B〉 6= G.
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Proof. Let G be an elementary 3-group of rank 6 and let G = AB be a normalized

factorization of G such that |A| = 9, |B| = 81. In order to prove the claim of

the lemma assume on the contrary that 〈A〉 = 〈B〉 = G. Since A spans G we can

choose a basis x1, . . . , x6 of G such that

A = {e, x1, . . . , x6, a, b},

where a, b ∈ G. Set d = x1 · · ·x6ab. We claim that d = e. In order to prove the

claim assume on the contrary that d 6= e. By Lemma 1 of [1], d is an element of

the Corrádi subgroup of A. If d 6= e, then by Lemma 2 of [1], d is a period of B.

Set H = 〈d〉. There is a subset D of B such that the product DH is direct and

is equal to B. From the factorization G = AB = ADH by considering the factor

group G/H we get the factorization (1). The rank of G/H is 5. By Theorem 1

of [1], either (AH)/H or (DH)/H does not span G/H. By Lemma 1, this is a

contradiction. Thus d = e and consequently b = (x1 · · ·x6a)−1. In other words one

can compute b if one knows a.

Let

a = x
α(1)
1 · · ·xα(6)

6 , b = x
β(1)
1 · · ·xβ(6)

6 ,

w(a) = α(1) + · · ·+ α(6), w(b) = β(1) + · · ·+ β(6),

where 0 ≤ α(i), β(i) ≤ 2. We call w(a), w(b) the weight of the elements a and

b respectively. We may assume that w(a) ≤ w(b) since this is only a matter of

interchanging a and b. We may assume that α(1) ≤ · · · ≤ α(6), since this is only a

matter of permuting the elements x1, . . . , x6. There are
(

3 + 6− 1
6

)
=

(
8
6

)
=

(
8
2

)
= 28

choices for α(1), . . . , α(6). However some of these choices can be discarded.

In the α(1) = · · · = α(6) = 0 case a = e would appear in A twice. In the

α(1) = · · · = α(5) = 0, α(6) = 1 case a = x6 would appear in A twice. In the

α(1) = · · · = α(6) = 2 case b = e would appear in A twice. In the α(1) = 1,

α(2) = · · · = α(6) = 2 case b = x1 would appear in A twice. We also have to

discard the cases when w(a) > w(b). We are left with 13 cases listed in Table 1.

The exact cover algorithm provided 27 336 possible complementer factors B to A.

An inspection revealed that none of these is a full-rank subset of G. ¤

Lemma 4. Let G be an elementary 3-group of rank 7 and let G = AB be a nor-

malized factorization of G, where |A| = 9, |B| = 243. Then either 〈A〉 6= G or

〈B〉 6= G.
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Table 1. Choices for a and b and the number of solutions for B.

a b number of B’s

011112 211110 2760

011111 211111 2760

001122 221100 864

001112 221110 864

001111 221111 72

000222 222000 72

000122 222100 72

000112 222110 2760

000111 222111 72

000022 222200 5760

000012 222210 2760

000011 222211 2760

000002 222220 5760

Proof. Let G be an elementary 3-group of rank 7 and let G = AB be a normalized

factorization of G such that |A| = 9, |B| = 243. In order to prove the claim of

the lemma assume on the contrary that 〈A〉 = 〈B〉 = G. Since A spans G we can

choose a basis x1, . . . , x7 of G such that A = {e, x1, . . . , x7, a}, where a ∈ G. Set

d = x1 · · ·x7a. In the way we have seen in the proof of Lemma 3 we can establish

that d = e. Consequently a = (x1 · · ·x7)−1. In other words a can be computed.

The exact cover algorithm gives 158 760 possible solutions for B. An inspections

shows that none of these is a full-rank subset of G. ¤

4. The result

We are ready to prove the main result of the paper.

Theorem 1. Let G be a finite elementary 3-group. Let G = AB be a normalized

factorization of G, where 3 ≤ |A| ≤ 9. Then either 〈A〉 6= G or 〈B〉 6= G.

Proof. Let G be a finite elementary 3-group and let G = AB be a normalized

factorization of G, where 3 ≤ |A| ≤ 9. In order to prove the theorem assume on the

contrary that 〈A〉 = 〈B〉 = G. Among the counter-examples we choose one with

the smallest possible |G|.
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If |A| = 3, then by Lemma 2, either 〈A〉 6= G or 〈B〉 6= G. Thus for the remaining

part of the proof we may assume that |A| = 9.

Let k be the rank of G. Since |A| = 9, it follows that k ≥ 2. If k = 2, then

|B| = 1 and so B = {e}. Now 〈B〉 6= G. Hence we may assume that k ≥ 3. If

k = 3, then |B| = 3 and by Lemma 2, either 〈A〉 6= G or 〈B〉 6= G. Thus we may

assume that k ≥ 4. The k = 4 case is settled in [6]. The k = 5 case is settled in [1].

The k = 6 case is settled in Lemma 3. The k = 7 case is settled in Lemma 4.

Suppose that k = 8. Now since 〈A〉 = G we can choose a basis x1, . . . , x8 of

G such that A = {e, x1, . . . , x8}. Set d = x1 · · ·x8, H = 〈d〉. Clearly d 6= e. By

Lemma 1 of [1], d is an element of the Corrádi subgroup of A and by Lemma 2 of

[1], B is periodic with period d. There is a subset D of B such that the product

DH is direct and is equal to B. From the factorization G = AB = ADH we get the

factorization (1). By Lemma 1 we get that (AH)/H and (DH)/H both span G/H.

On the other hand the rank of G/H is 7 and so by Lemma 4, either (AH)/H or

(DH)/H does not span G/H. This contradiction gives that k ≥ 9. However in this

case A does not have enough elements to span G. This completes the proof. ¤
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