
International Electronic Journal of Algebra

Volume 3 (2008) 117-124

P.P. PROPERTIES OF GROUP RINGS

Libo Zan and Jianlong Chen

Received: 11 May 2007; Revised: 24 October 2007

Communicated by John Clark

Abstract. A ring is called left p.p. if the left annihilator of each element of

R is generated by an idempotent. We prove that for a ring R and a group G,

if the group ring RG is left p.p. then so is RH for every subgroup H of G; if

in addition G is finite then |G|−1 ∈ R. Counterexamples are given to answer

the question whether the group ring RG is left p.p. if R is left p.p. and G is a

finite group with |G|−1 ∈ R. Let G be a group acting on R as automorphisms.

Some sufficient conditions are given for the fixed ring RG to be left p.p.

Mathematics Subject Classification (2000): 16D50, 16P70

Keywords: p.p. ring, Baer ring, group ring.

Introduction

Throughout this paper all rings are associative with identity. A ring R is called

Baer if the left annihilator of every nonempty subset of R is generated by an idem-

potent. The concept of a Baer ring was introduced by Kaplansky to abstract prop-

erties of rings of operators on a Hilbert space in his 1965 book [9]. The definition

of Baer is indeed left-right symmetric by [9].

Closely related to Baer rings are p.p. rings. A ring R is called a left p.p. ring if

each principal left ideal of R is projective, or equivalently, if the left annihilator of

each element of R is generated by an idempotent. Similarly, right p.p. rings can be

defined. A ring is called a p.p. ring if it is both a left and a right p.p. ring. The

concept of a p.p. ring is not left-right symmetric by Chase [2]. A left p.p. ring R

is Baer (so p.p.) when R is orthogonally finite by Small [11] and a left p.p. ring is

p.p. when R is Abelian by Endo [5]. For more details on left p.p. rings, see [3,7,8].

Baer rings are clearly p.p. rings, and von Neumann regular rings are p.p. rings by

Goodearl [6].
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Given a ring R and a group G, we will denote the group ring of G over R by

RG. Write ∆R(G) for the augmentation ideal of RG generated by {1− g : g ∈ G}.
If H is a finite subgroup of G, we let Ĥ =

∑
h∈H h. If g ∈ G has finite order, we

define ĝ = Ĥ where H = 〈g〉. We write Cn for the cyclic group of order n, Z for the

ring of integers and Zn for the ring of integers modulo n. As usual, Q is the field

of rationals and C is the field of complex numbers. The imaginary unit is denoted

by i. For a subset X of R, lR(X) denotes the left annihilator of X in R.

In [13], Z. Yi and Q. Y. Zhou studied Baer properties of group rings. Motivated

by them, we discuss the p.p. properties of group rings. Some methods and proofs

are similar to those in [13].

1. Necessary Conditions

Theorem 1.1. Let R be a subring of a ring S both with the same identity. Suppose

that S is a free left R-module with a basis G such that 1 ∈ G and ag = ga for all

a ∈ R and all g ∈ G. If S is left p.p., then so is R.

Proof. For a ∈ R, since S is left p.p., lS(a) = Se where e2 = e ∈ S. Write

e = e0g0 + · · · + engn where g0 = 1, gi ∈ G are distinct and ei ∈ R. Then

0 = ea = (e0g0 + · · · + engn)a = e0ag0 + · · · + enagn, and so eia = 0 for i =

0, . . . , n. Thus ei ∈ lS(a) = Se, implying that ei = eie. Then e0g0 = e0 =

e0e = e0(e0g0 + · · · + engn) = e2
0g0 + e0e1g1 + · · · + e0engn, whence e0 = e2

0 ∈ R.

Because e0a = 0, we have Re0 ⊆ lR(a). For r ∈ lR(a) ⊆ lS(a) = Se, we have

r = re = r(e0g0 + · · · + engn) = re0g0 + · · · + rengn. So r = re0 ∈ Re0. Hence

lR(a) = Re0 and R is left p.p. ¤

Corollary 1.2. Let R be a ring and G be a group. If RG is left p.p., then so is R.

Proof. Note that S = RG = ⊕g∈GRg is a free left R-module with a basis G

satisfying the assumptions of Theorem 1.1. ¤

Corollary 1.3. If R[x] or R[x, x−1] is left p.p., then so is R.

Proof. Note that R[x] and R[x, x−1] are free R-modules with bases {xi : i =

0, 1, . . .} and {xi : i = 0,±1, . . .} satisfying the assumptions of Theorem 1.1. ¤

Corollary 1.4. If R[x]/(xn + a1x
n−1 + · · ·+ an) is left p.p., where a1, · · · , an ∈ R

and n is a positive integer, then R is left p.p.

Proof. Note that S = R[x]/(xn + a1x
n−1 + . . . + an) = ⊕n−1

i=0 Rxi is a free left R-

module with a basis {1, x, . . . , xn−1} satisfying the assumptions of Theorem 1.1. ¤
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Theorem 1.5. If RG is left p.p., then so is RH for every subgroup H of G.

Proof. For x ∈ RH, because RG is left p.p. and RH ⊆ RG, we have lRG(x) =

RGe, where e2 = e ∈ RG. Write e =
∑

h∈H ahh +
∑

g/∈H bgg. Then

0 = ex = (
∑

h∈H ahh)x + (
∑

g/∈H bgg)x.

Note that if h ∈ H and g /∈ H then hg /∈ H. This shows that the support of

(
∑

g/∈H bgg)x is contained in G\H. So by the above equality that α :=
∑

h∈H ahh ∈
lRH(x) ⊆ lRG(x) = RGe, and hence

∑
h∈H ahh = (

∑
h∈H ahh)e = (

∑
h∈H ahh)2 + (

∑
h∈H ahh)(

∑
g/∈H bgg).

Therefore, α2 = α and RHα ⊆ lRH(x). If y ∈ lRH(x), then yx = 0. So y =

ye = y(
∑

h∈H ahh) + y(
∑

g/∈H bgg), showing that y = y(
∑

h∈H ahh) = yα. Hence

RHα = lRH(x) and RH is left p.p. ¤

Theorem 1.6. If G is a finite group and RG is left p.p., then |G|−1 ∈ R.

Proof. It is well-known that lRG(Ĝ) = ∆R(G). Since RG is left p.p., we have

∆R(G) = lRG(Ĝ) = RGe where e2 = e ∈ RG. Then ∆R(G) is a direct summand

of RG. By [10, Lemma 3.4.6], |G| is invertible in R. ¤

Example 1.7. ZG is not left p.p. for any nontrivial finite group G.

Example 1.8. Let G be a finite group and n be an integer with n > 1. Then the

following are equivalent:

(i) ZnG is Baer;

(ii) ZnG is (left) p.p.;

(iii) gcd(n, |G|) = 1 and n is square-free.

Proof. (i) clearly implies (ii).

Suppose that (ii) holds. Write n = ps1
1 · · · psk

k where all pi are prime numbers

and si > 0. Then Zn
∼= Zp

s1
1
×···× Zp

sk
k

, and ZnG ∼= Zp
s1
1

G×···× Zp
sk
k

G. It follows

from (ii) that each Zp
si
i

G is p.p. So Zp
si
i

is (left) p.p. and psi
i - |G| by Theorem 1.6.

Claim. If Zp
si
i

is left p.p. then si = 1.

Proof. Assume that si > 1. Since Zp
si
i

is left p.p., lZ
p

si
i

(pi) = Zp
si
i

e, where

e2 = e ∈ Zp
si
i

. Because Zp
si
i

is local, either e = 0 or e = 1. Then lZ
p

si
i

(pi) = 0 or

lZ
p

si
i

(pi) = Zp
si
i

, a contradiction. Thus si = 1 and pi - |G|. Hence (iii) holds.

If (iii) holds, then ZnG is a semisimple ring by Maschke’s Theorem, hence (i)

holds. ¤
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Proposition 1.9. Let R be a von Neumann regular ring and G be a locally finite

group. Then the following are equivalent:

(i) RG is (left) p.p.;

(ii) the order of every finite subgroup of G is a unit in R.

Proof. Suppose that (i) holds. Since RG is left p.p., by Theorem 1.5 we have RH

is left p.p for every finite subgroup H of G. So we have |H|−1 ∈ R by Theorem 1.6.

Hence (ii) holds.

Suppose (ii) holds. By [1], RG is von Neumann regular, so RG is left p.p. ¤

In the following, S3 denotes the symmetric group of order 6.

Lemma 1.10. [4, Lemma 4.7 ] If 6−1 ∈ R, then RS3
∼= R×R×M2(R).

By [8, Proposition 9(i)], if R is a left p.p. ring then so is eRe for e2 = e ∈ R.

Thus if M2(R) is left p.p. then R is left p.p. So we have

Corollary 1.11. If 6−1 ∈ R, then RS3 is left p.p. if and only if M2(R) is left p.p.

2. Group Rings of Finite Cyclic Groups

Let R be a ring and G be a finite group. If the group ring RG is left p.p. then R

is left p.p. and |G|−1 ∈ R by Corollary 1.2 and Theorem 1.6. Thus it is natural to

ask whether the converse holds. In this section, counterexamples to this question

are given.

Proposition 2.1. RC2 is left p.p. if and only if R is left p.p. and 2−1 ∈ R.

Proof. By [13, Lemma 2.1], if 2−1 ∈ R then RC2
∼= R×R. Thus the result follows

from Corollary 1.2 and Theorem 1.6. ¤

Proposition 2.2. RC4 is left p.p. if and only if R[x]/(x2 + 1) is left p.p. and

2−1 ∈ R.

Proof. By [13, Lemma 2.3], if 2−1 ∈ R then RC4
∼= R×R×R[x]/(x2 + 1). Thus

the result follows from Corollary 1.4 and Theorem 1.6. ¤

Proposition 2.3. If R ⊆C, then RC3 is left p.p. if and only if R[x]/(x2 + x + 1)

is left p.p. and 3−1 ∈ R.

Proof. By [13, Lemma 2.5], if R ⊆ C and 3−1 ∈ R then

RC3
∼= R×R[x]/(x2 + x + 1).

Thus the result follows from Corollary 1.4 and Theorem 1.6. ¤
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The proof of the next theorem is similar to that of [13, Theorem 2.6].

Theorem 2.4. Let R be a subring of C and let Q(R) denote the quotient field of

R. Consider the polynomial x2 + a1x + a2 ∈ R[x] with a2
1 − 4a2 6= 0. Let α be a

solution of x2 + a1x + a2 = 0 in C. Then R[x]/(x2 + a1x + a2) is left p.p. if and

only if either α ∈ R or Rα ∩R = 0 (i.e., α /∈ Q(R)).

Proof. Let T denote the ring R[x]/(x2+a1x+a2) and x2+a1x+a2 = (x−α)(x−β)

where α, β ∈C. By hypothesis, α 6= β. First suppose α /∈ Q(R). Then T is a

domain. In particular T is p.p.

Next suppose α ∈ Q(R). Then β ∈ Q(R). Define the map ϕ : R[x] → Q(R) ×
Q(R) by ϕ(f(x)) = (f(α), f(β)). Then the kernel of ϕ is (x2 + a1x + a2). Hence T

can be regarded as a subring of Q(R)×Q(R). It is clear that T is not a domain.

Claim. T is (left) p.p. if and only if T contains the idempotent (0, 1) ∈ Q(R)×
Q(R).

Proof. “ ⇒ ” Since T is not a domain, if T is (left) p.p. then T contains the

nontrivial idempotents of Q(R)×Q(R). The nontrivial idempotents of Q(R)×Q(R)

are exactly (1, 0) and (0, 1). So (0, 1) ∈ T .

“ ⇐ ” Assume (0, 1) ∈ T . Then (1, 0) ∈ T . Consider any (0, 0) 6= (a, b) ∈ T ,

where a, b ∈ Q(R). If a 6= 0, b 6= 0, lT ((a, b)) = 0; if a = 0, b 6= 0, lT ((a, b)) =

T (1, 0); if a 6= 0, b = 0, lT ((a, b)) = T (0, 1). So T is (left) p.p.

Moreover, (0, 1) ∈ T if and only if there exists ax+b ∈ R[x] such that aα+b = 0

and aβ + b = 1. Since x2 + a1x + a2 = (x− α)(x− β), we have that (a1a− 1)b =

[−(α + β)a − 1]b = [−(1 − 2b) − 1]b = 2b(b − 1) = 2(−aα)(−aβ) = 2a2a2. Hence

b = a(a1b− 2aa2). So α = − b
a ∈ R. ¤

Example 2.5. Let R0 = {n/2k : n, k ∈ Z, k ≥ 0}. Then R0 is a subring of Q. Set

R = {a + pbi : a, b ∈ R0}

where p > 2, p is a prime. Then R is a subring of C with 1
2 ∈ R. Because R is a

domain, it is certainly p.p. Clearly i /∈ R. Moreover, for r = p and s = pi, we have

s = pi ∈ R∩Ri. So, by Theorem 2.4, R[x]/(x2 + 1) is not (left) p.p. Hence RC4 is

not (left) p.p. by Proposition 2.2.

Example 2.6. [13, Example 2.8] Let R0 = {n/3k : n, k ∈ Z, k ≥ 0}. Then R0 is

a subring of Q. Set

R = {a +
√

3bi : a, b ∈ R0}.
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Then R is a subring of C with 1
3 ∈ R. Because R is a domain, it is certainly p.p.

Clearly α = −1+
√

3i
2 /∈ R. Let r = 2

√
3i, s = −(3 +

√
3)i. Then s = rα ∈ Rα ∩ R.

Hence RC3 is not (left) p.p. by Proposition 2.3 and Theorem 2.4.

3. Fixed Rings

Let G be a group acting on R as automorphisms and let RG be the fixed ring of

G acting on R. Here we study the conditions under which RG becomes left p.p.

Theorem 3.1. Let R be a ring and G be a group acting on R as automorphisms

such that either (i) eeg = ege for all e2 = e ∈ R and all g ∈ G or (ii) G is finite

with |G|−1 ∈ R. If R is left p.p., so is RG.

Proof. For any a ∈ RG, since R is left p.p., we have lR(a) = Re where e2 = e ∈ R.

For g ∈ G,

Reg = Rgeg = (Re)g = (lR(a))g = lRg (ag) = lR(a) = Re.

It follows that

eg = ege and e = eeg for all g ∈ G. (3.1)

Suppose that (i) holds. It follows that e = eg for all g ∈ G, so e ∈ RG.

Since ea = 0, we have that RGe ⊆ lRG(a). For r ∈ lRG(a), we have ra = 0, so

r ∈lR(a) = Re. Thus r = re ∈ RGe. Hence lRG(a) = RGe.

Suppose that (ii) holds. Let f = 1
|G|

∑
g∈G eg. Note that, for all g, h ∈ G, (3.1)

implies eheg = (ehe)eg = eh(eeg) = ehe = eh. This shows that

f2 =
(

1
|G|

∑
h∈G eh

) (
1
|G|

∑
g∈G eg

)
= 1

|G|2
∑

h∈G

∑
g∈G eheg

= 1
|G|2

∑
h∈G

∑
g∈G eh = 1

|G|
∑

h∈G eh = f.

Moreover, fg = f for all g ∈ G. So f ∈ RG. Because ea = 0 and f = 1
|G|

∑
g∈G eg =

1
|G|

∑
g∈G ege ∈ Re (by (3.1)), we have RGf ⊆ lRG(a). Note that lRG(a) ⊆ lR(a) =

Reg for all g ∈ G. Thus, for r ∈ lRG(a), r = reg for all g ∈ G. Hence r =
1
|G| (|G|r) = 1

|G|
∑

g∈G reg = rf ∈ RGf , so lRG(a) = RGf . Therefore, RG is left

p.p. ¤

The assumptions (i) and (ii) in the previous theorem are necessary by the next

example.

Example 3.2. [12, Example 6.4] Let K be a field with char(K) = p > 0. Let

R = M2(K) and G = 〈g〉 where g : R → R, r 7→ u−1ru, with u =

(
1 1

0 1

)
.

Then R is left p.p. (simple Artinian indeed). Direct calculations show that RG =
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{(
a b

0 a

)
: a, b ∈ K

}
. So J(RG) =

{(
0 b

0 0

)
: b ∈ K

}
. If x =

(
0 1

0 0

)
,

then lRG(x) = J(RG). Because J(RG) can not be generated by an idempotent, RG

is not left p.p. If e =

(
0 1

0 1

)
∈ R, then e2 = e and eg =

(
0 0

0 1

)
. It is clear

that eeg = e 6= eg = ege. Moreover, |G| = p is zero in R.

The next example shows that R being left p.p. is not necessary for RG to be left

p.p.

Example 3.3. [13, Example 3.3] Let K be a field with 2−1 ∈ K and R be the ring{(
a b

0 a

)
: a, b ∈ K

}
. Let g : R → R be given by

(
a b

0 a

)
7→

(
a −b

0 a

)
,

and G = 〈g〉. Then RG =

{(
a 0

0 a

)
: a ∈ K

}
∼= K. So RG is p.p., but R is not

left p.p. by Example 3.2.
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