A NOTE ON CHARACTERIZATION OF $\mathcal{N}_{\mathcal{U}}(D_n)$

Tevfik Bilgin and Necat Gorentas

Received: 8 December 2006; Revised: 28 December 2007 Communicated by A. Çiğdem Özcan

ABSTRACT. In this paper construction of normalizer of D_n in $V(\mathbb{Z}D_n)$ is reduced to construction of integral group ring of its cyclic subgroup. In a better expression, we have shown that $\mathcal{N}_{\mathcal{U}}(D_n) = D_n \times F$, where F is a free abelian group with rank $\rho = \frac{1}{2}\varphi(n) - 1$.

Mathematics Subject Classification (2000): 16S34, 16U60

Keywords : normalizer, centralizer, construction of normalizer, Bass cyclic units and fundamental system of units

Introduction. Let G be a finite group and $\mathbb{Z}G$ be its integral group ring. Let $\mathcal{U}(\mathbb{Z}G)$ denote the unit group of $\mathbb{Z}G$. Let $\mathcal{U} = V(\mathbb{Z}G)$ denote the group of normalized units of $\mathbb{Z}G$ and $\mathcal{Z}(\mathcal{U})$ denote the subgroup of the central units of \mathcal{U} . Let $\mathcal{N}_{\mathcal{U}}(G)$ denote the normalizer of G in $V(\mathbb{Z}G)$. Problem 43 in [9] asks if the following normalizer property holds:

$$\mathcal{N}_{\mathcal{U}}(G) = G\mathcal{Z}(\mathcal{U})$$

First time, the normalizer property was proved for finite nilpotent groups by Coleman[2]. After that, Jackowski and Marciniak [3] extended this property to finite groups of odd and the groups having normal Sylow 2-subgroup. Later, Li, Parmenter and Sehgal[7] showed that if the intersection of non-normal subgroups of G is non-trivial then, G satisfies the normalizer property. Next, the normalizer property is verified by Li[6] for some metabelian groups. And also, Hertweck[5] studied for a family of Frobenius groups with abelian Sylow subgroups.

In this study, we will give some results and construction of $\mathcal{N}_{\mathcal{U}}(D_n)$; normalizer of $D_n = \langle a, b : a^n = b^2 = 1, b^{-1}ab = a^{-1} \rangle$, dihedral group of order 2n, in its normalized units of $\mathbb{Z}D_n$. Let us recall the theorem related to dihedral groups [7].

Theorem 1. Let $G = \langle H, g \rangle$ where H is an Abelian subgroup of index 2. Then the normalizer property holds for G.

It is clear that finite dihedral groups satisfy the normalizer property. In other words, Theorem 1 reduces the construction of the normalizer of a finite dihedral group in its normalized units of $\mathbb{Z}D_n$ to the construction of subgroup of central units of \mathcal{U} .

In this study, we have characterized the normalizer of a dihedral group D_n in the normalized units of its integral group ring as follows:

Theorem 2. $\mathcal{N}_{\mathcal{U}}(D_n) = D_n \times F$, where F is an free abelian group with rank

$$\rho = \frac{1}{2}\varphi(n) - 1.$$

At the end we have given some concrete examples for some dihedral groups.

Reduction to Cyclic Groups. Before to prove previous theorem let us recall some basic facts about the unit group of the integral group ring of a cyclic group and definition of Bass cyclic units [8].

Lemma 3. Let C_n be a cyclic group of order n. The unit group of $\mathbb{Z}C_n$ is trivial if and only if the order of C_n is 1,2,3,4 or 6.

Lemma 4. Let G be a group such that the units of $\mathbb{Z}G$ are trivial and let C_2 be a cyclic group of order 2. Then the units of $\mathbb{Z}(G \times C_2)$ are also trivial.

On the other hand, Bass cyclic units are playing an important role in the characterization.

Definition 5. Let a be an element of order n in a group G. A Bass cyclic unit is an element of the group ring $\mathbb{Z}G$ of the form

$$u_i = (1 + a + \dots + a^{i-1})^{\varphi(n)} + \frac{1 - i^{\varphi(n)}}{n}(1 + a + \dots + a^{n-1}),$$

where i is an integer such that 1 < i < n - 1 and (i, n) = 1.

Corollary 6. Let $C_n = \{a : a^n = 1\}$ be a cyclic group with order n, Then the Bass cyclic units $\langle u_i : 1 < i < n/2, (i, n) = 1 \rangle$ of the $\mathbb{Z}C_n$ generate a subgroup of finite index in $\mathcal{U}(\mathbb{Z}C_n)$.

At first, we'll reduce construction of normalizer of a finite dihedral group in its normalized units of $\mathbb{Z}D_n$ to the construction of $V(\mathbb{Z}\langle a \rangle)$. Now let us remember the conjugate classes of D_n . If n = 2k - 1 then

$$D_n = \{1\} \cup \left(\bigcup_{i=1}^{i=k-1} \{a^i, a^{-i}\}\right) \cup \{ba^i : i = 0, ..., 2k-2\},\$$

and if n = 2k then,

136

$$\begin{split} D_n &= \{1\} \cup \{a^k\} \cup (\bigcup_{i=1}^{i=k-1} \{a^i, a^{-i}\}) & \cup \quad \{ba^{2i} : i = 0, ..., k-1\} \\ & \cup \quad \{ba^{2i+1} : i = 0, ..., k-1\} \end{split}$$

In this case, for an arbitrary $\gamma \in \mathcal{Z}(\mathbb{Z}D_n)$ can be written

$$\gamma = \gamma_0 + \sum_{i=1}^{i=k-1} \gamma_i (a^i + a^{-i}) + \lambda b\hat{a},$$
(1)

where n = 2k - 1, $\lambda, \gamma_i \in \mathbb{Z}$ and $\hat{a} = 1 + a + \dots + a^{2k-2}$. Otherwise

$$\gamma = \gamma_0 + \gamma_k a^k + \sum_{i=1}^{i=k-1} \gamma_i (a^i + a^{-i}) + \lambda_1 b(\hat{a}^2) + \lambda_2 ba(\hat{a^2}),$$
(2)

where n = 2k, $\lambda_1, \lambda_2, \gamma_i \in \mathbb{Z}$ and $\widehat{a^2} = 1 + a^2 + \dots + a^{2k-2}$.

If we denote the commutator subgroup by D'_n then, $D'_n = \langle a^2 \rangle$ and we have

$$D_n/D'_n \cong \begin{cases} C_2 & n = 2k - 1\\ C_2 \times C_2 & n = 2k. \end{cases}$$
(3)

Now, let us introduce a well-known subring of $\mathbb{Z}C_n$ and show both of their normalized units have the same rank.

Remark 7. $\mathbb{Z}[a+a^{-1}] = \{\gamma \in \mathbb{Z}C_n : \gamma_i = \gamma_{n-i}, 0 < i < n\}$ is a subring of $\mathbb{Z}C_n$.

Proposition 8. The rank of the torsion-free part of $V(\mathbb{Z}C_n)$ is equal to the rank of the torsion-free part of $V(\mathbb{Z}[a+a^{-1}])$.

Proof. It is enough to demonstrate that each Bass cyclic unit can be embedded into $V(\mathbb{Z}[a+a^{-1}])$. Let us consider the following mapping :

$$\psi: \mathcal{B} \longrightarrow V(\mathbb{Z}[a+a^{-1}])$$
$$u_i \mapsto a^{-\frac{i-1}{2}}u_i.$$

where u_i is a Bass cyclic unit. Here, let us denote $\hat{a} = 1 + a + \dots + a^{n-1}$. If i = 2m+1 then

$$\psi(u_i) = (a^{-m} + \dots + 1 + \dots + a^m)^{\varphi(n)} + \frac{1 - i^{\varphi(n)}}{n} \hat{a} \in V(\mathbb{Z}[a + a^{-1}]).$$

On the other hand, if i = 2m then we get

$$\psi(u_i) = \left(a^{-\frac{2m-1}{2}} + \dots + a^{-\frac{1}{2}} + a^{\frac{1}{2}} + \dots + a^{\frac{2m-1}{2}}\right)^{\varphi(n)} + \frac{1 - i^{\varphi(n)}}{n}\hat{a}$$

Since n is odd, say n = 2t - 1 for a fixed $t \in \mathbb{N}$ than $a^{\frac{1}{2}} = a^t$. By rewriting, we get

$$\psi(u_i) = (a^{-(2m-1)t} + \dots + a^{-t} + a^t + \dots + a^{(2m-1)t})^{\varphi(n)} + \frac{1 - i^{\varphi(n)}}{n}\hat{a}.$$

So, for each Bass cyclic unit with even index $i, \psi(u_i) \in V(\mathbb{Z}[a+a^{-1}])$.

137

Definition 9. Let
$$\widetilde{\mathbb{Z}}[a+a^{-1}] = \begin{cases} \{\gamma \in \mathbb{Z}[a+a^{-1}] : \gamma_k \in 2\mathbb{Z}\} &, n=2k \\ \mathbb{Z}[a+a^{-1}] &, n=2k-1. \end{cases}$$

Remark 10. It is clear that $\widetilde{\mathbb{Z}}[a + a^{-1}]$ is a subring of $\mathbb{Z}[a + a^{-1}]$ and $V(\mathbb{Z}[a + a^{-1}]) = V(\widetilde{\mathbb{Z}}[a + a^{-1}]) \times \mathcal{Z}(D_n)$.

Now, we can prove the main theorem

Proof. (Theorem 2) Let us consider the natural ring homomorphism:

$$\begin{split} \varphi : \mathbb{Z}D_n &\longrightarrow \mathbb{Z}(D_n/D'_n) \\ & \sum \gamma_g g \mapsto \sum \gamma_g(gD'_n) \end{split}$$

For $\gamma \in \mathcal{Z}(\mathcal{U})$, by using (1) and (2) we have

$$\varphi(\gamma) = \begin{cases} \sum_{i=1}^{i=k-1} \gamma_i D'_n + ([2k-1]\lambda)bD'_n &, n=2k-1 \\ \alpha D'_n + \beta a D'_n + k\lambda_1 b D'_n + k\lambda_2 b a D'_n &, n=2k \end{cases}$$

where α is the sum of γ_i 's with even indices and β is the sum of γ_i 's with odd indices.

If k = 1 then, in both cases D_n is an abelian group itself. So, the result is trivial. If we take k > 1 then neither $[2k - 1]\lambda$ nor $k\lambda_1$ and $k\lambda_2$ can be equal to 1. On the other hand by (3), Lemma 3 and Lemma 4, we have $\varphi(\gamma) \in D_n/D'_n$. Therefore,

$$\gamma \in V(\mathbb{Z}[a+a^{-1}])$$

Since

$$D_n \cap V(\mathbb{Z}[a+a^{-1}]) = \mathcal{Z}(D_n),$$

Here if we choose $F = V(\widetilde{Z}[a + a^{-1}])$ and regard as Remark 10, then we get $\mathcal{N}_{\mathcal{U}}(D_n) = D_n \times F$. Hence, the rank of F is :

$$\rho(F) = \rho(V(\widetilde{Z}[a+a^{-1}]))$$

$$= \rho(V(\mathbb{Z}[a+a^{-1}]))$$

$$= \rho(V(\mathbb{Z} < a >))$$

$$= \frac{1}{2}\varphi(n) - 1.$$

Corollary 11. If we denote $\mathcal{B} = \langle a^{-\frac{i-1}{2}}u_i : u_i \text{ is a Bass cyclic unit} \rangle$ then $\mathcal{N}_{\mathcal{U}}(D_n) \supseteq D_n \times \mathcal{B}$, where $(F : \mathcal{B}) < \infty$.

138

In order to give a complete characterization of F, we need some basic results. For a finite abelian group A, we write [8] :

Theorem 12. $V(\mathbb{Z}A) = A \times F$, where F is a finitely generated abelian group.

Definition 13. In Theorem 12, if $F = \langle u_1, \ldots, u_r \rangle$ then the set $\{u_1, \ldots, u_r\}$ is called a fundamental system of units of $V(\mathbb{Z}A)$.

Karpilovsky [4] have given some characterizations of fundamental system for some groups of small order as follows :

$$V(\mathbb{Z}C_5) = C_5 \times \langle -1 + a^2 + a^3 \rangle,$$

$$V(\mathbb{Z}C_8) = C_8 \times \langle -1 - a - a^2 + a^4 + 2a^5 + a^6 \rangle,$$

$$V(\mathbb{Z}C_7) = C_7 \times \langle 1 - a + a^2 \rangle \times \langle 2 + 2a - a^3 - a^4 - a^5 \rangle,$$

and Bilgin[9] characterized for n = 12 as follows :

$$V(\mathbb{Z}C_{12}) = C_{12} \times \langle 3 + 2a + a^2 - a^4 - 2a^5 - 2a^6 - 2a^7 - a^8 + a^{10} + 2a^{11} \rangle.$$

By using the fundamental system of units we can write the normalizer of D_n respectively.

$$\mathcal{N}_{\mathcal{U}}(D_5) = D_5 \times \langle -1 + (a^2 + a^{-2}) \rangle,$$

$$\mathcal{N}_{\mathcal{U}}(D_8) = D_8 \times \langle -1 - (a + a^{-1}) + (a^3 + a^{-3}) + 2a^4 \rangle,$$

$$\mathcal{N}_{\mathcal{U}}(D_7) = D_7 \times \langle -1 + (a + a^{-1}) \rangle \times \langle -1 - (a + a^{-1}) + 2(a^3 + a^{-3}) \rangle,$$

$$\mathcal{N}_{\mathcal{U}}(D_{12}) = D_{12} \times \langle 3 + 2(a+a^{-1}) + (a^2+a^{-2}) - (a^4+a^{-4}) - 2(a^5+a^{-5}) - 2a^6 \rangle$$

However, in order to give a complete characterization of $\mathcal{N}_{\mathcal{U}}(D_n)$ for each n, first of all, *Problem A* in [4, p.267] must be solved.

References

- T. Bilgin, Characterization of U₁(ZC₁₂), Int. J. Pure and Appl.Math., 14(4), (2004), 531-535.
- [2] D.B. Coleman, On the modular group ring of a p-group, Proc. Amer. Math. Soc., 15 (1964), 511-514.
- [3] S. Jackowski and Z. Marciniak, Group automorphisms inducing the identity map on cohomology, J. Pure Appl. Alg., 44 (1987), 241-250.
- [4] G. Karpilovsky, Unit group of group rings, Long. Sci. Tech., Essex, England, 1989.
- [5] M. Hertweck, Class-preserving automorphism of finite groups (English summary), J. Alg. 241, no.1, (2001),1-26.
- [6] Y. Li, S.K. Sehgal and M.M. Parmenter, On the normalizer property for integral group rings, Comm. Alg., 27 (9), (1999), 4217-4223.
- [7] Y. Li, The normalizer of a metabelian group in integral group ring, J. Alg., 256 (2002), 343-351.
- [8] C.P. Milies and S.K. Sehgal, An introduction to group ring, Kluwer Acad. Publ., the Netherlands, 2002.
- [9] S.K. Sehgal, Units in integral group rings, Longman, Essex, 1993.

Tevfik Bilgin

Fatih University Faculty of Art and Sciences Department of Mathematics, 34500 Istanbul, Turkey E-mail: tbilgin@fatih.edu.tr

Necat Gorentas

Yuzuncu Yil University, Faculty of Art and Sciences Department of Mathematics, 65080 Van, Turkey E-mail: ngortas@yahoo.com