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ABSTRACT. Partially ordered sets (X, <) and the corresponding incidence al-
gebra I(X,F) are important algebraic structures also playing a crucial role for
the enumeration, construction and the classification of many discrete struc-
tures. In this paper we consider partially ordered sets X on which some group
G acts via the mapping X X G — X, (z, g) — 29 and investigate such incidence
functions ¢ : X X X — F of the incidence algebra I(X,F) which are invariant
under the group action, i.e. which satisfy the condition ¢(z,y) = ¢(z9,y9) for
all z,y € X and g € G. Within these considerations we define for such inci-
dence functions ¢ the matrices ¢ respectively ¢ by summation of entries of
¢ and we investigate the structure of these matrices and generalize the results

known from group actions on posets.
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1. Introduction

A partially ordered set, for short poset, (X, <) is a set X together with a reflexive,
antisymmetric and transitive binary relation <. Instead of z < y and x # y the
notation x < y is also used. The poset is said to be locally finite if and only if all
its intervals [z,y] == {z € X | x < z < y} are finite. In the following we consider
locally finite posets. Let F be a field. The set I(X,F) consisting of all mappings
¢ X x X — F with the property that ¢(z,y) = 0 unless x < y yields an F-algebra
with respect to the addition

(¢ +¥)(@,y) = d(z,y) + ¥ (z,y),
the scalar multiplication
(f¢)(x7y) :f(b(xay)) fEF,

and the convolution product

(d) * w)(x’y) = Z (;5(1‘,2) : w(z,y) = Z ¢(£C,Z) '¢(Z7y)>

zeX z€[z,y]
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the so-called incidence algebra over F on X. The identity element with respect to
the convolution product is defined by the Kronecker function:
1 ifz=y

6(z,y) =
0 otherwise.

An important element of the incidence algebra is the well-known Zeta-function
which characterizes the poset completely:
1 ifx=y
C(z,y) =

0 otherwise.

An incidence function ¢ is invertible with respect to the convolution product if and
only if the values ¢(z,x) are non-zero. In that case we can construct the inverse

incidence function ¢! recursively:

¢~z z) = ¢z, )"

for all x € X, and

¢~ @ y) = —d(z, )™t Y dlx,2)- 97 (2y)

z:x<z=y
=—o(y,y)" Y ¢ Hw2) (2 )
zix=R2z<y
for all different x,y € X.
Since ((z,z) = 1 for all € X, the Zeta-function is invertible over F and its

inverse is called Moebius-function and is denoted by .

2. Group invariant incidence functions

From now one we assume a (multiplicatively written) group G with neutral
element 1¢ acting on a poset X via the mapping X x G — X, (z,g9) — z9 from
the right, i.e. this mapping satisfies (z9)" = 29" and 2'¢ = z for all 2 € X and

g, h € G. In the following we consider such ¢ € I(X,F) satisfying the equation
p(x,y) = ¢(=7, )

for all x,y € X and g € G. We call such incidence functions G-invariant and we
use the symbol I(X,F)q for the set of all these functions.
A well-known situation occurs if ( € (X,F)q. This is equivalent to

r=<y = 29 <y’

for all z,y € X and g € G. In this case we say that G acts as a group of automor-

phisms on the poset X [3].
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Important properties of I(X,F)g are described in the following lemma:

Lemma 1. Let G be a group acting on a locally finite poset X andF be a field. Then
I(X,F)q is a subalgebra of I(X,TF). In addition I(X,F)g is a monoid with respect
to the convolution product, i.e. 6 € I(X,F)g. Furthermore, if ¢ € I(X,F)qg is an
invertible incidence function in I(X,F) and ( € [(X,F)q, then ¢~ ! € I(X,F)¢.

Proof. (i) Let ¢,¢ € I(X,F)g, f € F and g € G. We now show that the functions
o+, f-¢ and ¢p*1) are also G-invariant. This implies that I(X,F)q is a subalgebra
of I(X,TF):

((b + 1/0(%2!) = (b(l‘,y) + ’(/}(377y)
= ¢(2%,y7) + (27, )
= (0 +¢)(@?,y9),

zeX

= 3" 6(a?,29) (=%, )

zeX

= 3 6, 29) - (=7, y)
zeX
= 3 6@, ) w(Zy?)
z'eX

(@) (27, y7).

(ii) Furthermore, the equivalence z9 = y9 < ¢z =y for all z,y € X and g € G
implies §(z,y) = 6(x9,y9), i.e. I(X,F)¢g is a monoid.

(i) Now, let ¢ € I(X,F)g be an invertible incidence function and let { €
I(X,F)g. We show that ¢~ 1(z,y) = ¢~ 1(29,y9) for all z,y € X and g € G. First
we consider the case that A y. Then we also get 9 A y9 since ¢ € I(X,F)g
and hence we have ¢~ 1(z,y) = 0 = ¢~ 1(29,y9). Now we consider the second case
x < y. There exist chains between z and y. Let ¢(z,y) denote the length of a
maximal chain between x and y. We prove ¢~ !(z,y) = ¢~ 1(29,%9) by induction

onn=4{(x,y):
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I. n =0. First {(z,y) =0, i.e. x =y. Then
¢~ (w,2) = ¢z, 2) 7 = ¢(a?,29) 7! = ¢ (29, 29).

II. n — 1 — n. Then

¢71($,y) = 7¢(yay)71 Z ('2571(‘%,2’) : ¢(Z,y)

z:ix=<z<y
= =6y y) " Y. ¢ (@ 29) (=, y0)
z:mjz<y%/_/

L(x,z)<n

= =0 y)" D o M@, 29) - 629, y?)

zixd <29 <y9

=—o(?y)" > ¢ '@ ¢z y)

29 =2 <y9
= ¢ (2% y?).
(]

From now on let X be a finite poset and let y“ := {y9 | g € G} denote the orbit
of y € X. Then we define for a G-invariant incidence function ¢ € I(X,F)q the

values
da,y%) = > (x,2)
ZGyG
and
Sy )= Y o(z7)
zEyG
for z,y € X.

Lemma 2. Let G be a group acting on the finite poset X and F be a field. Let
¢ € I(X,F)g. Then the equations

¢z, y%) = d(a?,y)
and

Sy< ) = ¢ly“,a)
hold for all z,y € X and g € G.

Proof. We prove the first equation, the proof of the second one is analogous. Let
z,y€ X,g€ Gand ¢ € I(X,F)g. Then we have

d’(zuyc) = ZzEyG (ZS(J::Z) = ZzEyG (b(xgazg) = Zz’eyc ¢(xg7zl) = ¢(Ig7yc)'
O
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Let O4,...,0, denote the orbits of G on the poset X and let x; € O; denote a
representative of the ith orbit. Now we can define two n x n matrices ¢" = ( Z/})
and ¢ = (¢;;) with entries

= o(xi, 05)
and

7\;/j = d)(ozvxj)

The following lemma shows the connection between ¢” and ¢V.

Lemma 3. Let G be a group acting on the finite poset X with corresponding orbits
O1,...,0,, and let F be a field. Let ¢ € I(X,F)g and let

(@ 0
A=
0 (@
Then the following equation holds
Y- A=A-Q".

Furthermore, if the characterstic of the field F does not divide the orbit sizes
|O1],...,|Onl, then
Qz)\/:A.QS/\.Afl.

Proof. Let M = (m;;) = ¢" - A and let N = (n;;) = A-¢". In the following we
show the equality of these two matrices M = N:

My = z/j 10| = ¢(0i, z5) - |0
D 6(0snx) = > $(Oi)

y€0; yeO;

=D > @y =Y Y éy)
y€0; z€0; z€0; yeO;

= Z ¢(z,0;) = Z o(xi, 0;5)
z€0; z€0;

= 04| - ¢(2, 05) = |Oi] - 97
= Njj.
Multiplying the inverse of A from the right yields the second equation. O

From now on we restrict our investigation to the matrix ¢” since the results for

¢V are analogous.
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Lemma 4. Let G be a group acting on the finite poset X and F be a field. Then
0" is the n X n unit matriz, where the dimension n is the number of orbits of G on
the poset X.

Proof. For all i,j € {1,...,n} with ¢ # j we obtain

5= 0(xi,y) =0

ye0;
and

0 =0(wnz)+ Y. Swny)=1+0=1
yeO;:y#xz;

O

Theorem 5. Let G be a group acting on the finite poset X and F be a field. Then

the equations
(f-o)"=f-0" @+)"=¢"+0", (px)" =" "

hold for all ¢, € I(X,F)g and f € F.

Proof. (i)
(f- )iy = (F- ) (@i, 05) = D> (f - O)(wi,y)
y€0;
= fod@ny) =1 dlwiy)
ye0; y€0;
= f . ¢(x27 Oj)
=f-o}
(i)
@+ )5 = @+ ) (@5 05) = > (o + ) (wi,y)
y€0;
= (@i y) + (@) = Y dwny) + Y v(wi,y)
y€0; y€0; yeQ;

= ¢(xi,0;5) + Y(x4, 0;)
= ¢5; + ¥
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(iii)
(x0)fy = (dx ) (i, O;) = > (px)(wi,y)

y€0;
= Z Z ¢(xiaz) : ¢(Zvy) = Z Z (b(xzvz) ¢(Zvy)
ye0; zeX 2€X yeO;
= Z Q/)('Tlvz) Z w(z7y) = Z ¢(J}“2’) 1/)(2, O])
z€X y€eO0; z€X
=3 D @i 2) (2,05 =Y > @i, 2) - Plan, O;)
k z€Oy k z€Oy
= (@, 05) Y dlwiz) =D W(xk, 0;) - d(wi, O)
k 2€0y k

= 6w, Ox) - (wx, 0))
k
= O vy
k
(]

Corollary 6. Let G be a group acting on the finite poset X and F be a field. Let
Ce€I(X,F)g and let ¢ € I(X,F)g be an invertible incidence function. Then ¢” is

invertible and for its inverse holds the following equation
(@) ="

Proof. Let ¢ € I(X,F)g be invertible. Since ¢ is G-invariant we obtain from
Lemma 1 that ¢=! € I(X,F)g. Hence we can apply Theorem 5 and get

N R A

which means that (¢")~! = (¢~1)" since 6" is the unit matrix. O

3. Examples

3.1. Binomial coefficients. We consider for a natural number n the matrix B =
(bij), 0 <'i,j < n, where b;; = (z) is the number of i-subsets which are contained
in a set with j elements. The aim is to compute the inverse matrix B~!. We
take a set X with n elements and consider the action of the symmetric group
Sx :={m: X — X | 7 bijectively } on the power set P(X) :={S|S C X} via the
mapping

P(X)x Sx = P(X),(S,m)— S™:={a" | x € S}.
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It is obvious that Sy acts as a group of automorphisms on P(X). If (¥) denotes the
set of k-subsets of X, the orbits of this action are exactly the sets Oy = (%(),(91 =

()1(), o, 0, = (if) As Sx-invariant incidence function we take the Zeta-function

1 fTCK
C(Ta K) =
0 otherwise
together with its inverse u(7,K) = (=1)/KI=ITI¢(T,K). Then we consider the

matrix ¢V whose entries are

j X
5 =C05,8)= > ¢(S.8)) = (Z> where S; € O; = (;)
se(%)
i.e. we have B = (V. Because of the equation (¢¥)™! = u we obtain for the
inverse of B the matrix p" that is given by the following entries:

u;/J :N(OzaSJ) = Z M(S,S]) = Z (—1)]'71'((5, S])

S€0; se(¥)
— 1 Y s = ()
s ()

Finally we have that the matrix B~! = (b;jl), b;jl = (—l)j’i(Z) is the inverse of
B = (bij), bij = ().

3.2. Table of Marks and Burnside matrix. The table of marks of a group,
introduced by Burnside (see [1]), plays an important role for the enumeration,
construction and classification of discrete structures as groups, graphs and ¢-designs
(see [3,4,5]). Especially the combinatorial chemistry (see [2]) uses the table of marks
as a tool for the enumeration of chemical compounds. Now we show here that the
table of marks is a matrix ¢” with a certain group invariant incidence function ¢.

Let G be a finite group, and let L(G) := {S | S < G} denote the set of all
subgroups of GG. This set together with the inclusion relation forms a finite poset,

the so-called subgroup lattice of G. The group G acts on L(G) by conjugation
L(G) x G — L(G),(g,8) = g 'Sg :={g 7 sg | s € S}
such that G acts on L(G) as a group of automorphisms, i.e. the equivalence
S<T < g 'Sg<g'Tyg

holds for all S|T € L(G) and g € G. The orbits of this action are the conjugacy
classes of subgroups

S:={g7'Sg|g€G}.
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Now if G acts on a set X and if Ng(x) := {g € G | 29 = z} denotes the stabilizer

of an element z € X, the conjugacy class of Ng(z) is

Ne(z) ={g7'Na(x)g | g € G} = {Na(y) | y € 2}

where 2 := {29 | g € G} is the orbit of z, i.e. the elements of an orbit have as

their stabilizers a complete conjugacy class of subgroups of G. We say Ng(z) is

the type of the orbit . For a given subgroup S € L(G) we define
G, X)g = {2 | Na(x) € S}

to be the set of orbits of G on X of type S. The task is now to determine the
cardinality of this set. In order to determine this number we consider the set of
S-invariants:
Xs={xeX|Vge S:a9=uz}.
The cardinality of Xg is called the mark of S on X and we get the following
well-known connection (see [3]):
Xs|= > C(S,T)M|Q(G,X)T|
TeL(G) |T|

If we substitute

el
T

we obtain a mapping ¢ which is obviously an element of I(L(G),Q)g. Moreover, ¢

is an invertible function. Therefore, if 7, ..., S, denote the orbits of G on L(G),

we obtain the equation

¢(S7 T) = C(S’ T)

: =" :
X5, | UG, X)g |
respectively after multiplication with (¢~1)" from the left
UG, X))z X5, |
' —@ |

(G, X) X5,

5|
The matrix

M(G) = ¢"

is known as the table of marks of G and its inverse

is called the Burnside matriz of G.
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3.3. Plesken matrices. The Plesken matrices [6] provide another application of
group invariant incidence functions. If a group G acts on a finite poset X as a group
of automorphisms, i.e. x <y < 29 < y9 and if Oq,...,O,, are the corresponding
orbits with representative x; € O;, then Plesken defined the matrices A" = (ag\j)
and AY = (a);) by

ajy ==y € O; | 2 2 y}|
and

ajj = {y € O |y = x;}.
These matrices play an important role for the determination of the number of
solutions of equations of the form x Ay = z, respectively z V y = z. There is the

following correspondence to the group invariant incidence functions:

Corollary 7. Let G be a group acting on a finite poset X as a group of automor-
phisms. Then A = (" and AY = (V.
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