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Introduction 

The Finite Element Method (FEM) is a very popular, even 

industry standard, method used to solve many different 

engineering problems. Within the scope of the method, it is 

possible to develop different element models for different 

problem types. However, there exist edge cases that require 

the fulfillment of special conditions that must be satisfied in 

the problem domain and/or boundaries. For example, it is 

nearly impossible to perform a realistic structural analysis 

with FEM without the use of special end connections, 

especially without releases and/or partial-fixities (R/PFs). 

This is mostly because the support conditions and element 

connections are far from ideal in most cases [1]. Bridges [2], 

multistorey buildings [3], truss and precast structures [4, 5], 

aircraft wings [6], wearable structures [7], furniture 

construction [8] are among many others that detailed 

analysis is carried out using R/PFs while also proving that 

these connections have a big impact on the overall structural 

behavior [9, 10]. In this context, R/PFs have also been an 

important element of various structural design [11, 12, 13, 

14] and structural optimization [15, 16, 17, 18] studies. 

The theory and applications of R/PFs in 1D elements are 

essentially well known. [19] is one of the earliest papers to 

incorporate R/PFs into the matrix stiffness method. [20] 

proposed the use of connection elements for R/PFs to 

establish connection effects. [21] used element’s stiffness 

equations and [22] used energy approach to merge R/PFs 

into the target 1D element. Both provided solution only for 

rotational degree of freedoms DOFs. In [23], existing 

stiffness equations are used to introduce rotational R/PFs 

into a beam element. [24] briefly mentioned a simple 

formulation of 1D elements with all DOFs connected to the 

system via springs. More advanced applications, inter-

element connections [25] and closed form solutions [26] are 

also available. A good overview of the literature on R/PFs 

is given in [27] under the nomenclature of semi-rigid 

connections. 

Custom software developments for R/PFs applications are 

also implemented in [27, 28, 29]. In [30], a new software is 

presented for the analysis of body-in-white structures 

consisting of a custom super beam element to simulate the 

joint flexibility of the rods. In practice, most commercial 

software has built-in support for R/PFs in 1D elements. 

Even if the software does not support, it is always possible 

to perform the calculations by separating the nodes and 

adding spring-equivalent elements between them. Although 

relatively difficult to implement, such a method is used in 

this paper for verification purposes. 

Research Article  

 

 

 

 

 

 

 

 

 

 

 

ARTICLE INFO 

Article history: 

 

Received 24 March 2022 

Received in revised form 29 July 2022 

Accepted 30 July 2022 

Available online 30 September 2022 

Keywords: 

 

Finite Element Method, Releases, 

Partial Fixities, Stiffness Equations, 

Practical Approach  

ABSTRACT 

 
 

The usefulness of Finite Element (FE) models for many engineering purposes depends on the element's 

ability to support a variety of end-connection types including releases and partial-fixities. However, adding 
such features to a FE model would require additional theoretical effort in the element development process. 

Alternatively, zero-length external connector-elements can be used in the mesh structure, but this will 

complicate both mesh definition and assemblage operations. This study shows that the existing stiffness 
equations of any FE model with regular rigid connections can be effectively employed to automatically 

define both end-releases and end-partial-fixities by simply applying a basic matrix-equation modification 

process without the need for any additional theoretical development on the element itself. Our process can 
be summarized in three basic steps. Firstly, element equations are separated from the system equation by 

defining element’s own degree-of-freedoms (DOFs). Secondly, elastic springs are introduced between the 

element and the system. Finally, the element is merged back into the system by eliminating its newly 
defined DOFs from the emerged equations. It has been verified by examples that, using these steps results 

in a new set of element equations with the desired end-releases/partial fixities and can be used in custom 

FE models. 
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The reason why we revisit such a well-studied and old topic 

is that, we feel it is a shortcoming that R/PFs is only 

addressed as a 1D element specific issue in the literature. 

The main objective of this paper is to bring a different 

perspective to the practical application of R/PFs on custom 

FE models. In doing so, we include a more detailed 

inference of the method with a simple but generic 

formulation. In addition, we present numerical error control 

strategies and the usability of the method in elasticity 

elements, with theoretical explorations and sample analysis.  

Material and methods 

A general FE equation can be written in its well-known 

compact form as given in Equation (1) 

[K]𝐔 = 𝐁 + 𝐐 (1) 

where [K] represents the element stiffness matrix, 𝐔 is the 

DOF vector which corresponds to the main unknowns of the 

problem (displacements of the system nodes in structural 

analysis) and 𝐁 and 𝐐 are the body force vector and the 

boundary force vector respectively.  

In order to separate the element from the rest of the system 

we define the independent equation of the element based on 

its own variables as given in Equation (2). 

[K]�̂� = 𝐁 + �̂� (2) 

In the equation, �̂� and �̂� are the element’s newly defined 

DOF vector and boundary force vector respectively. Fig. 1 

shows one of the nodes of the element, which is to be 

connected back to the system via elastic springs.   

 

Figure 1. Disconnecting an element node from the system 

and inserting a spring between them (�̂�: Element node. 𝑛: 

System node).     

 

Since the element is left with its own DOFs, �̂� remains the 

only way to interact with the element. Based on Fig. 1, one 

can re-integrate the element into the system with elastic 

springs considering the corresponding spring equilibrium 

and constitutive equations given in Equation (3) 

Q𝑖 = Q̂𝑖 = 𝑘𝑠𝑖(U𝑖 − Û𝑖) (3) 

and re-writing the element equation in the following form 

as shown in Equation (4). 

[K]�̂� = 𝐁 + [k𝑠](𝐔 − �̂�) (4) 

Here, [k𝑠] is the diagonal matrix that includes the spring 

coefficients for the corresponding DOFs. As an example, 

Fig. 2 illustrates a frame element that is re-integrated to the 

system with different springs assigned for each DOF.   

 

Figure 2. Beam element with end-springs [9]. 

 

In the figure, 𝑎 and 𝑏 represent the element’s own 

independent nodes and the numbers 1 and 2 represent the 

corresponding system nodes (Note: System nodes with the 

same number are the same points, drawn as separate points 

for clarity of shape). Applying the Equation (4) on the frame 

element yields the following explicit form of the element 

equation, as given in Equation (5). 

[𝐾]

{
  
 

  
 

 
�̂�𝑎 
�̂�𝑎
�̂�𝑎
�̂�𝑏
�̂�𝑏
�̂�𝑏 }
  
 

  
 

= 𝐁 +

{
  
 

  
 

 
𝑘𝑢1(𝑢1 − �̂�𝑎)

𝑘𝑣1(𝑣1 − �̂�𝑎)

𝑘𝜃1(𝜃1 − �̂�𝑎)

𝑘𝑢2(𝑢2 − �̂�𝑏)
𝑘𝑣2(𝑣2 − �̂�𝑏)

𝑘𝜃2(𝜃2 − �̂�𝑏)}
  
 

  
 

 (5) 

In order to retain the original form of the element equation 

(the form that contains only the system DOFs), we first 

solve �̂� from the Equation (4) as 

�̂� = [K𝑠](𝐁 + [k𝑠]𝐔) (6) 

Here, [𝐾𝑠] takes the following form. 

[K𝑠] = ([K] + [k𝑠])
−1 (7) 

Equation (7) can be transformed into an equivalent but more 

convenient expression, as given in Equation (8). 

[K][K𝑠] + [k𝑠][K𝑠] = [I] (8) 

Next, we consider the equilibrium of the spring as �̂� = 𝐐 

and substitute Equation (6) into Equation (2). Using 

Equation (8) for the final adjustments, the new stiffness 

equation given in Equation (9) is obtained for the element 

with embedded springs on its ends. 

[K][K𝑠][k𝑠]𝐔 = [k𝑠][K𝑠]𝐁 + 𝐐 (9) 

Note that using Equation (9), end springs can be easily 

attached to any FE model, not just 1D elements. The 

remainder of the text deals with the details of the practical 

use of the equation. 

 

 



DUJE (Dicle University Journal of Engineering) 13:3 (2022) Page 571-578 

 

573 
 

Implementation details and error control 

The simplest application of Equation (9) is the axial bar 

element where there exist only two DOFs. Such an 

element’s well-known stiffness equation is as follows. 

[

𝐸𝐴

𝐿
−
𝐸𝐴

𝐿

−
𝐸𝐴

𝐿

𝐸𝐴

𝐿

] {
𝑢1
𝑢2
} = {

𝐵1
𝐵2
} + {

𝑄1
𝑄2
} (10) 

Elastic springs can be defined on both DOFs with the matrix 

given in Equation (11). 

[k𝑠] = [
𝑘𝑢1 0
0 𝑘𝑢2

] (11) 

By applying Equation (9), the new element stiffness matrix 

can be obtained as 

[K][K𝑠][k𝑠] =

[
 
 
 

𝛼𝐸𝐴

𝛼𝐿 + 𝛽𝐸𝐴
−

𝛼𝐸𝐴

𝛼𝐿 + 𝛽𝐸𝐴

−
𝛼𝐸𝐴

𝛼𝐿 + 𝛽𝐸𝐴

𝛼𝐸𝐴

𝛼𝐿 + 𝛽𝐸𝐴 ]
 
 
 

 (12) 

and the new body force vector as 

[k𝑠][K𝑠]𝐁 =

{
 
 

 
 𝛼𝐿𝐵1 + 𝑘𝑢1𝐸𝐴(𝐵1 + 𝐵2)

𝛼𝐿 + 𝛽𝐸𝐴
𝛼𝐿𝐵2 + 𝑘𝑢2𝐸𝐴(𝐵1 + 𝐵2)

𝛼𝐿 + 𝛽𝐸𝐴 }
 
 

 
 

 (13) 

where; 

𝛼 = 𝑘𝑢1𝑘𝑢2,          𝛽 = 𝑘𝑢1+𝑘𝑢2 (14) 

It is easy to verify that the new element equation converges 

to its original rigid-connected form, by taking limits in the 

Equation (15). 

lim
𝑘𝑢1,𝑘𝑢2→∞

([K𝑠][k𝑠]) = [I], 

lim
𝑘𝑢1,𝑘𝑢2→∞

([k𝑠][K𝑠]) = [I] 
(15) 

For an exact stiffness equation, Equation (9) can be used 

directly only when the numerical values of all spring 

coefficients are known (including releases with 0 (zero) 

stiffness). If one or more connections are rigid, then the 

limit operation must be applied for the respective spring-

coefficients. The result of such a limit for the case where the 

left side of the axial bar is rigid and the right side has an 

elastic connection is given below as an example by 

Equations (16) and (17). 

[K][K𝑠][k𝑠] =

[
 
 
 
 

𝑘𝑢2𝐸𝐴

𝐸𝐴 + 𝑘𝑢2𝐿
−

𝑘𝑢2𝐸𝐴

𝐸𝐴 + 𝑘𝑢2𝐿

−
𝑘𝑢2𝐸𝐴

𝐸𝐴 + 𝑘𝑢2𝐿

𝑘𝑢2𝐸𝐴

𝐸𝐴 + 𝑘𝑢2𝐿 ]
 
 
 
 

 (16) 

 

[k𝑠][K𝑠]𝐁 =

{
 

 
𝑘𝑢2𝐿𝐵1 + 𝐸𝐴(𝐵1 + 𝐵2)

𝐸𝐴 + 𝑘𝑢2𝐿
𝑘𝑢2𝐿𝐵2

𝐸𝐴 + 𝑘𝑢2𝐿 }
 

 

 (17) 

The disadvantage of solving the problem with the limit 

operation is evident in computer implementations, since one 

must consider all different sets of exact stiffness equations 

for all possible connection types. To overcome this 

difficulty and implement the problem in a more practical 

way, the spring coefficients at the rigid ends can be adjusted 

to large numerical values to obtain an approximate result of 

the limit operation, such that; 

𝑘𝑢1, 𝑘𝑢2 ≫ 𝛾
𝐸𝐴

𝐿
,            𝛾 = 104 (18) 

This approach is evident from the rearrangement of the first 

stiffness term of Equation (12) as follows. 

K11 =
𝐸𝐴

𝐿 + (𝛽/𝛼)𝐸𝐴
 (19) 

Equation (19) indicates that a good approximation of the 

fully-rigid connection case can be achieved by choosing the 

numerical values of the spring coefficients according to the 

inequality given in Equation (20). 

𝐿 ≫
𝛽

𝛼
𝐸𝐴      →       

𝛼

𝛽
=

𝑘𝑢1𝑘𝑢2
𝑘𝑢1+𝑘𝑢2

≫
𝐸𝐴

𝐿
 (20) 

This inequality is automatically satisfied by setting the 

spring coefficients to large numerical values, as suggested 

in Equation (18). To verify this, one can substitute the 

suggested values into Equation (20) and find that 𝛾 ≫ 2. 

A similar approach can be used for the mixed connection 

cases. Such examples are investigated in the next section.  

More implementation details 

As a more comprehensive example for different connection 

types, we selected the well-known 2D frame element that is 

already depicted in Fig. 2 of the previous section. The short 

version of the stiffness matrix of that frame with rigid 

connections has the form given in Equation (21). 

[
 
 
 
 
 
𝐸𝐴

𝐿
0 0 .

0
12𝐸𝐼

𝐿3

6𝐸𝐼

𝐿2
.

0
6𝐸𝐼

𝐿2

4𝐸𝐼

𝐿
.

. . . .]
 
 
 
 
 

{
 
 

 
 

 

𝑢1

𝑣1

𝜃1

.

.

. }
 
 

 
 

=

{
 
 

 
 

 

𝑞
𝑥
𝐿/2

𝑞
𝑦
𝐿/2

𝑞
𝑦
𝐿2

12
.

. }
 
 

 
 

+ 𝐐 (21) 

To illustrate the strength and usefulness of the proposed 

method, we define an elastic rotational spring with 𝑘𝜃2 at 
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the right end of the element. For this, it will be sufficient to 

apply the following limit operations given in Equation (22) 

lim
𝑘𝑢1,𝑘𝑢2,𝑘𝑣1,𝑘𝑣2,𝑘𝜃1→∞

([K][K𝑠][k𝑠]), 

lim
𝑘𝑢1,𝑘𝑢2,𝑘𝑣1,𝑘𝑣2,𝑘𝜃1→∞

([k𝑠][K𝑠]𝐁) 
(22) 

which yields the stiffness matrix given in Equation (23) 

[
 
 
 
 
 
 
𝐸𝐴

𝐿
0 0 .

0
12𝐸𝐼(𝐸𝐼 + 𝑘𝜃2𝐿)

𝐿3(4𝐸𝐼 + 𝑘𝜃2𝐿)

6𝐸𝐼(2𝐸𝐼 + 𝑘𝜃2𝐿)

𝐿2(4𝐸𝐼 + 𝑘𝜃2𝐿)
.

0
6𝐸𝐼(2𝐸𝐼 + 𝑘𝜃2𝐿)

𝐿2(4𝐸𝐼 + 𝑘𝜃2𝐿)

4𝐸𝐼(3𝐸𝐼 + 𝑘𝜃2𝐿)

𝐿(4𝐸𝐼 + 𝑘𝜃2𝐿)
.

. . . .]
 
 
 
 
 
 

 (23) 

and the body force vector given in Equation (24). 

[k𝑠][K𝑠]𝐁 =

{
 
 
 

 
 
 

 
𝑞𝑥𝐿/2

𝑞𝑦𝐿(5𝐸𝐼 + 𝑘𝜃2𝐿)

8𝐸𝐼 + 2𝑘𝜃2𝐿

𝑞𝑦𝐿
2(6𝐸𝐼 + 𝑘𝜃2𝐿)

12(4𝐸𝐼 + 𝑘𝜃2𝐿).
. }

 
 
 

 
 
 

 (24) 

It is easy to see that, end releases can also be defined by 

setting 𝑘𝜃2 = 0 in the matrices above, as shown in Equation 

(25). 

[
 
 
 
 
 
𝐸𝐴

𝐿
0 0 .

0
3𝐸𝐼

𝐿3

3𝐸𝐼

𝐿2
.

0
3𝐸𝐼

𝐿2

3𝐸𝐼

𝐿
.

. . . .]
 
 
 
 
 

𝐔 =

{
 
 

 
 

 

𝑞
𝑥
𝐿/2

5𝑞
𝑦
𝐿/8

𝑞
𝑦
𝐿2

8
.

. }
 
 

 
 

+ 𝐐 (25) 

As can be deduced from the given examples, the element 

equation of any end connection type is fairly easy to derive. 

However, as mentioned before, it would be more practical 

to carry out these calculations numerically in computer 

practice. The algorithm of such an application is depicted in 

Fig. 3.  

 

Figure 3. Numerical evaluation of a mixed type end-

connection case. 

Here, 𝑘𝑠𝑟 represents the selected numerical values for the 

rigid connections. The algorithm suggests a relatively 

conservative selection for the numerical values as they are 

set to the maximum absolute value extracted from the 

element stiffness matrix. We observed in the examples that 

selecting  𝑘𝑠𝑟𝑖 ≫ 𝛾𝐾𝑖𝑖 is more than enough for acceptable 

numerical results. 

2D Frame example 

As a more comprehensive example, we selected a 2D Frame 

structure with different types of partial-fixities/releases at 

different end locations as depicted in Fig 4.  

 

 

Figure 4. A 2D Frame structure with various types of 

external loadings, boundary conditions and end-springs 

and releases cases (Note: Top figure: loading conditions. 

Bottom figure: Releases and partial fixities). 

 

According to the figure, two end-releases (moment and 

shear in elements 3-4 and 2-4 respectively) and two partial 

fixities (moment and axial fixities in elements 1-3 and 4-5) 

are placed in the structure. In the analysis, the numerical 

values of the rigid-end springs are chosen to be 10000 times 

the maximum values of the element stiffness coefficients. 

The results obtained by Equation (9) are compared with 

commercial software SAP2000 V18.2.0 [31] as shown in 

Table 1. 

 

Table 1. Horizontal displacements and moment support 

reactions of the 2D Frame structure with releases and 

partial fixities. 

Horizontal 

Disp.[mm] 

Proposed 

Method 

SAP2000 

V18.2.0 

Node #3 0.310702 0.310670 

Node #4 0.201032 0.201022 
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Moment 

Reactions 

[kNm] 

Proposed 

Method 

SAP2000 

V18.2.0 

Node #1 2.0165 2.0161 

Node #2 -43.4482 -43.4480 

 

The results indicate that accuracy can be obtained at the 

level of the selected magnification factor. 

Elasticity element example (plane-stress) 

In order to demonstrate that the proposed method can be 

used for other element types, an example application will be 

given on the well-known plane stress element. The virtual 

work equation of the element is given in Equation (26). 

∬𝛿𝐮𝑇 . 𝛔 ℎ𝑑𝐴
 

𝐴

=∬𝛿𝐮𝑇 . 𝐛 ℎ𝑑𝐴
 

𝐴

+∯𝛿𝐮𝑇 . 𝐪 𝑑𝐿 (26) 

The first two integrals form the stiffness matrix and the 

body force vector, respectively. ℎ: is the thichness and 𝐪 

represents the distributed boundary force per unit length of 

the edges. The essential term, which is important here for 

the purposes of this study, is the boundary integral term (the 

last integral) which forms the boundary force vector 𝐐 of 

the FE model.  

Fig. 5 depicts the discretization of an elastic edge spring 

based on the discretization of the uniformly distributed 𝐪. 

 

Figure 5. Discretization of a continuous edge spring in a 

plane element (Note: 𝑢 = 1). 

 

The figure suggests that, a continuous spring (spring-

constant per unit length) can be discretized just like 𝐪. 

The selected plane-stress problem is shown in Fig. 6. An 

irregular mesh is used to include the effects of all possible 

variables in the problem. Body forces are also included as 

self-weight. The elastic spring connection is inserted only 

in the horizontal direction. Vertical connection between the 

parts is rigid.  

 

Figure 6. Two plane-stress elements connected to each 

other by horizontal elastic springs (𝑃 = 1000 𝑘𝑁). 

 

Spring coefficient, thickness, elasticity modulus, Poisson’s 

ratio and unit weight are selected as; 𝑘 = 68680.282 𝑘𝑁/
𝑚, ℎ = 0.01𝑚, 𝐸 = 70𝐺𝑃𝑎, 𝑣 = 0.3 and 𝜌𝑤 = 77 𝑘𝑁/
𝑚3. 

Based on the spring discretization mentioned, the classical 

FE model of the system can be set up as shown in Fig. 7. 

 

Figure 7. Classic FE model of the example (𝑘𝐿 =
250000 𝑘𝑁𝑚/𝑚).  

 

In order to implement the classical method, node points that 

coincide with the elastic connection region must first be 

separated from each other. Then, springs or equivalent truss 

elements should be placed between these nodes. As these 

points are separated, they will move independently in the 

vertical direction. In order to prevent this, constraints must 

be defined to enforce the vertical displacement equivalence 

between these nodes as a final processing step.  

However, instead of all these steps, the method described in 

this study provides a very practical solution to the problem, 

as depicted in Fig 8. 
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Figure 8. FE model of the proposed method (𝑘𝐿 =
250000 𝑘𝑁𝑚/𝑚).  

 

Note that, in the proposed method the original system mesh 

is preserved as the springs are embedded directly in the 

element on the left (see the local nodes of the element 5̂ and 

2̂). This embedding can be easily accomplished by defining 

the matrix [k𝑠] containing the increased stiffnesses for rigid 

connections and the actual spring constants for elastic ones. 

Afterwards, it will be sufficient to perform the analysis 

using Equation (9) for the left element (see the diagram 

previously given in Fig. 3). The same procedure could be 

followed similarly for the element on the right, which would 

yield the same numerical results. It should also be noted that 

there is no need to define extra constraints for the vertical 

direction as the system DOFs are already preserved. 

The analysis results of both methods are given in Table 2. 

In order to verify the results in SAP2000 [31], one should 

turn-off the so called “incompatible modes” of the plane 

element, which is active by default in the software. 

 

Table 2. Analysis results for the elastic interconnected 

plane-stress problem (γ = 10000). 

 (SAP2000 results are obtained with the classical FE 

model and without incompatible modes). 

Vert. Disp. 

[mm] 

Proposed 

Method 

SAP2000 

V18.2.0 

Node #2 -2.48091 -2.48067 

Node #5 -3.31569 -3.31542 

 

Support React. 

Horiz. [kN] 

Proposed 

Method 

SAP2000 

V18.2.0 

Node #1 450.447 550.423 

Node #3 -374.517 -374.547 

Node #4 -388.572 -388.545 

Node #6 312.641 312.669 

 

Support React. 

Vert. [kN] 

Proposed 

Method 

SAP2000 

V18.2.0 

Node #1 299.642 299.653 

Node #3 414.707 414.682 

Node #4 283.199 283.158 

Node #6 22.490 22.525 

One last example (plane-stress) 

Fig. 9 shows a plane-stress beam connected at its midline 

by horizontal-springs (vertically rigid). 

 

Figure 9. A 2D beam connected by a horizontal 

continuous elastic spring. 

 

Spring coefficient, thickness, elasticity modulus, Poisson’s 

ratio and unit weight are selected as; 𝑘 = 100000 𝑘𝑁/𝑚, 

ℎ = 0.01𝑚, 𝐸 = 70𝐺𝑃𝑎, 𝑣 = 0.3 and 𝜌𝑤 = 77 𝑘𝑁/𝑚3. 

The beam is loaded only by its own weight. Fig. 10 shows 

the displacement and stress fields obtained in three different 

analyses for a selected 40x10 FE mesh.  

 

Figure 10. Presented Method: Displacement (x3000) and 

stress (𝜎𝑋) fields. a) Rigid connection (𝑘 = ∞). b) 

Horizontal partial fixity (𝑘). c) Horizontal release (𝑘 =
0). (Note: Plots are created with the software presented in 

[32]). 

 

The solutions are carried out using Equation (9) for the 

elements adjacent to the spring region. It is worth 

mentioning that in order to obtain the stress field, the DOFs 

in Equation (6) must be calculated first. The displacement 

and stress results for each case are given in Table 3. 
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Table 3. Presented Method: Analysis results for the 

beam with elastic springs in Fig. 9 (γ = 10000). 

Analysis 

ID 

Max. Vert. 

Disp. [mm] 

Max. Horiz. 

Stress. [kPa] 

(a) 𝑘 = ∞ 0.061065 1675.74 

(b) 𝑘 0.093094 2000.02 

(c) 𝑘 = 0 0.130483 2374.87 

 

Table 4. SAP2000: Analysis results for the beam with 

elastic springs in Fig. 9. 

Analysis 

ID 

Max. Vert. 

Disp. [mm] 

Max. Horiz. 

Stress. [kPa] 

(a) 𝑘 = ∞ 0.061065 1675.74 

(b) 𝑘 0.093075 1999.51 

(c) 𝑘 = 0 0.130394 2374.30 

 

Table 4. and Fig. 11 show the displacement and stress fields 

obtained in SAP2000 [31]. The analysis in SAP2000 is 

performed using spring-equivalent truss elements and 

vertical constraints at the elastic midline. 

 

Figure 11. SAP2000: Displacement (x3000) and stress 

(𝜎𝑋) fields. a) Rigid connection (𝑘 = ∞). b) Horizontal 

partial fixity (𝑘). c) Horizontal release (𝑘 = 0). 

 

Concluding remarks 

This paper presented a practical calculation method for 

equipping existing FE models with edge partial-fixities and 

releases. Demonstrated with examples that the application 

of the method consists only of simple matrix operations. 

The numerical results showed that the accuracy can be 

controlled with a single magnification factor. The method 

requires matrix inversion to generate the stiffness equations, 

even for a single spring case, so its implementation in 

commercial software may not be an optimal option in terms 

of speed, but still preferable. On the other hand, being able 

to instantly model existing elements to support different 

types of edge connections will be invaluable, especially for 

researchers who develop custom code in their work. 

References 

[1] C. L. Amba-Rao, “Method of calculation of frequencies 

of partially fixed beams carrying masses,” J. Acoust. 

Soc. Am., vol. 40, no. 2, pp. 367-371, Feb. 1996. DOI: 

10.1121/1.1910079. 

[2] Ö. Çavdar, et al., “Stochastic Finite Element Analysis 

of Structural Systems with Partially Restrained 

Connections subjected to Seismic Loads,” Steel and 

Composite Structures, vol. 9, no. 6, pp. 499-518, Nov. 

2009. DOI: 10.12989/scs.2009.9.6.499. 

[3] R. Shahab et al., “Proposed Simplified Approach for 

the Seismic Analysis of Multi-Storey Moment 

Resisting Framed Buildings Incorporating Friction 

Sliders,” Buildings, vol. 9, no. 5, pp. 1-22, May 2019. 

DOI: 10.3390/buildings9050130. 

[4] M. E. Kartal, “The Effect of Partial Fixity at Nodal 

Points on the Behaviour of the Truss and Prefabricated 

Structures,” M.S. thesis, Zonguldak Karaelmas 

University, Zonguldak, Turkey, 2004 [In Turkish]. 

[5] H. Görgün, “Semi-rigid Behaviour of Connections in 

Precast Concrete Structures,” Ph.D. dissertation, Dept. 

Civil Eng., University of Nottingham, 1997. 

[6] H. Lin, J. Jhou, R. Stearman, “Influence of Joint Fixity 

on the Structural Static and Dynamic Response of a 

Joined-Wing Aircraft: Part I: Static Response,” SAE 

trans., vol. 98, no. 1, pp. 221-234, 1989. DOI: 

10.4236/ojapps.2016.67047. 

[7] A. Bijalwan, A. Misra, “Design and Structural Analysis 

of Flexible Wearable Chair Using Finite Element 

Method,” Open J. Appl. Sci., vol. 6, no. 7, pp. 465-477, 

July 2016. DOI: 10.4236/ojapps.2016.67047. 

[8] M. Zor, M. E. Kartal, “Finite Element Modeling of 

Fiber Reinforced Polymer Based Wood Composites 

Used in Furniture Construction Considering Semi-

Rigid Connections,” Drvna Industrija, vol. 71, no. 4, 

pp. 339-345, Sep. 2020, DOI: 

10.5552/drvind.2020.1916. 

[9] A. C. Altunışık, et al., “Finite Element Model Updating 

of an Arch Type Steel Laboratory Bridge Model Using 

Semi-Rigid Connection,” Steel and Composite 

Structures, vol. 10, no. 6, pp. 543-563, Nov. 2010. DOI: 

10.12989/scs.2010.10.6.541. 

[10] T. Türker, et al., “Assessment of Semi-Rigid 

Connections in Steel Structures by Modal Testing,” 

Journal of Constructional Steel Research, vol. 65, no. 

7, pp. 1538-1547, July 2009. DOI: 

10.1016/j.jcsr.2009.03.002. 

[11] S. S. Bitar, “Semi-rigid action in steel framed 

structures,” Ph.D. dissertation, Fac. Sci. Eng., 

Manchester School of Engineering, May 1995. 



DUJE (Dicle University Journal of Engineering) 13:3 (2022) Page 571-578 

 

578 
 

[12] M. S. Hayalioğlu, S. Ö. Değertekin, H. Görgün, 

“Design of semi-rigid planar steel frames according to 

Turkish Steel Design Code,” Sigma, p. 2, pp. 101-116, 

May 2004. Available: 

https://eds.yildiz.edu.tr/ArticleContent/Journal/sigma/

Volumes/2004/Issues/2/YTUJENS-2004-22-2.356.pdf 

[13] H. B. Basaga, M. E. Kartal, A. Bayraktar, “Reliability 

analysis of steel braced reinforced concrete frames with 

semi-rigid connections,” International Journal of 

Structural Stability and Dynamics, vol. 12, no. 5, pp. 

1250037-1-20. Dec. 2012. DOI: 

10.1142/S021945541250037X. 

[14] T. Yin, et al., “A New Method for Design of the 

Semi-Rigid Steel Frame; The Integration of Joint 

Inverse Design and Structural Design,” Buildings, vol. 

12, no. 7(938), pp. 1-19, July 2022. DOI: 

10.3390/buildings12070938. 

[15] L. M. C. Simões, “Optimization of frames with semi-

rigid connections,” Computers & Structures, vol. 60, 

no. 4, pp. 531-539, 1996. DOI: 10.1016/0045-

7949(95)00427-0. 

[16] M. S. Hayalioglu, S. Ö. Degertekin, “Minimum cost 

design of steel frames with semi-rigid connections and 

column bases via genetic optimization,” Computers & 

Structures, vol. 83, no. 21-22, pp. 1849-1863, Apr. 

2005. DOI: 10.1016/j.compstruc.2005.02.009. 

[17] S. Ö. Değertekin, M. S. Hayalioğlu, H. Görgün, 

“Optimum design of geometrically nonlinear steel 

frames with semi-rigid connections using improved 

harmony search method,” Mühendislik Dergisi, Dicle 

University, Dep. Eng., vol. 2, no. 1, pp. 45-56, 2011. 

[18] A. Elvin, J. Strydom, “Optimizing structures with 

semi-rigid connections using the principle of virtual 

work,” International Journal of Steel Structures, vol. 

18, no. 3, pp. 1006-1017, Apr. 2018. DOI: 

10.1007/s13296-018-0043-9. 

[19] G. R. Monforton, T. S. Wu, “Matrix Analysis of 

Semi-Rigidly Connected Frames,” J. Struct. Div., vol. 

89, no. 6, pp. 13-42, Dec. 1963. DOI: 

10.1061/JSDEAG.0000997. 

[20] T.Q. Li, B. S. Choo, D.A. Nethercot, “Connection 

element method for the analysis of semi-rigid frames,” 

J. Constr. Steel Res., vol. 32, no. 2, pp. 143-171, 1995. 

DOI: 10.1016/0143-974X(95)93170-9. 

[21] W. McGuire, R. H. Gallagher, R. D. Ziemian, Matrix 

Structural Analysis. 2nd ed, USA: John Wiley & Sons 

Inc., 2000, pp. 393–398. 

 

 

 

 

[22] A. Y. Aköz, Enerji Yöntemleri. İstanbul, TR: Birsen 

Yayınevi, 2005, pp. 155–176. 

[23] A. Kassimali, Matrix Analysis of Structures. 2nd ed. 

Cengage Learning, 2012, pp. 537-541. 

[24] M. Yılmaz, Sonlu Elemanlar Analizi: Teori ve Python 

Uygulamaları. İstanbul, TR: Birsen Yayınevi, 2022, 

pp. 127–132.  

[25] P. Nanakorn, “A two-dimensional beam–column 

finite element with embedded rotational 

discontinuities,” Comput. Struct., vol. 82, no. 9-10, pp. 

753-762, Mar. 2004. DOI: 

10.1016/j.compstruc.2004.02.008. 

[26] B. Biondi, S. Caddemi, “Closed form solutions of 

Euler–Bernoulli beams with singularities,” Int. J. 

Solids Struct., vol. 42, no. 9-10, pp. 3027-3044, May 

2005. DOI: 10.1016/j.ijsolstr.2004.09.048. 

[27] M. E. Kartal et al., “Effects of Semi-Rigid 

Connection on Structural Responses,” Electron. J. 

Struct. Eng., vol. 10, pp. 22-35, Jan. 2010. Available: 

https://ejsei.com/EJSE/article/download/122/121 

[28] L. Pinheiro, R. A. Silveira, “Computational 

procedures for nonlinear analysis of frames with semi-

rigid connections,” Latin American Journal of Solids 

and Structures, vol. 2, no. 4, pp. 339-367, Dec. 2005. 

Available:https://www.lajss.org/index.php/LAJSS/arti

cle/view/85/79 

[29] S. Y. Çetin, H. Görgün, D. Kaya, “A computer 

program for linear analysis of two-dimensional semi-

rigid frames,” Dicle University Journal of Engineering, 

vol. 13, no. 2, pp. 351-358, June 2022. DOI: 

10.24012/dumf.1087793. 

[30] W. Zuo et al., “A complete development process of 

finite element software for body-in-white structure with 

semi-rigid beams in .NET framework,” Adv. Eng. 

Softw., vol. 45, no. 1, pp. 261-271, Mar. 2012. DOI: 

10.1016/j.advengsoft.2011.10.005. 

[31] CSI, “SAP2000 Integrated Software for Structural 

Analysis and Design,” Computers and Structures Inc., 

Berkeley, California. 

[32] M. Yilmaz, “Easy pre/post-processing of finite 

elements with custom symbolic-objects: a self-

expressive Python interface,” Computers & Structures., 

vol. 222, pp. 82-97, Oct. 2019. DOI: 

10.1016/j.compstruc.2019.07.002. 

 

 

 

 

 

 


