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Abstract. Discrete (quasi-discrete) modules form an important class in mod-

ule theory, they are studied extensively by many authors. The class of lift-

ing modules is obtained by considering only one of the defining conditions

of quasi-discrete modules, namely the condition (D1). Here we focus on and

study principally lifting modules, or modules with the condition (PD1). These

modules are generalizations of lifting modules. We also study direct sums of

P-hollow (semi-hollow) modules. It is known that relative projectivity is es-

sential to study direct sums of quasi-discrete modules. Here we introduce the

definition of relative Pprojectivity, which is essential to examine direct sums

of hollow, and of P-hollow (semi hollow), modules for being principally lifting.

Quasi-discrete module are always direct sums of hollow submodules, we show

that finite dimensional modules with the condition (PD1) are direct sums of

P-hollow (semi-hollow) submodules. We also obtain some properties for mod-

ules with (PD1), which are in analogy with the known properties for lifting

modules.
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1. Introduction

Discrete modules were defined in S. Mohamed and S. Singh [7] under the name

”dual-continuous modules”, and in Oshiro [8], quasi-discrete modules were given

under the name ”quasi-semiperfect modules”. Lifting modules, over Dedekind

domains, were studied by S. Singh [9]; and lifting Z-modules were character-

ized by Mohamed and Abdul-Karim [4 ], under the name ”Semi-dual-continuous

modules”. It is known that every quasi-discrete module is a direct sum of hollow

submodules, unique up to isomorphism, and is fully relatively projective. On the

other hand, a direct sum ⊕
i∈I
Hi of hollow modules is a quasi-discrete module if it

complements direct summands, every local summand is a summand, and the Hi is

⊕
j∈I−{i}

Hj -projective, for every i ∈ I.

Here we study principally lifting modules (or modules with (PD1) for short).

They are considered as generalizations of lifting modules. In [1], the concept
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of finitely lifting (f -lifting for short) modules were given. In fact, f -lifting

modules were originally introduced in Wisbauer [10], where a characterization of

f -lifting modules was given, and it was shown that a module M is f -lifting if

and only if it is principally lifting (or has (PD1)). This interesting result was

also mentioned, without proof, in [1]. Here we show that the condition (PD1) for

modules is inherited by summands. In the presence of the condition (D3), we prove

that the condition (PD1) is equivalent to quasi-discreteness, and this has been

done for finite direct sums of local modules. Semi-hollow modules, which are ob-

viously equivalent to P -hollow modules, were introduced and characterized in [1].

We start section 2 by giving the definition of P -hollow (Semi-hollow) modules,

and their characterizations. In fact, it was shown in [1] that there are two types of

P -hollow modules, namely the local modules and modules which are their own rad-

icals. It is known that lifting modules (or modules satisfying the condition (D1))

are supplemented and each supplement is a summand. Here we show that modules

which satisfy the condition (PD1) need not be even principally supplemented (P -

supplemented), while over principal ideal rings they are P -supplemented. Section

3 is devoted to relative Pprojective modules, this concept is used to study direct

sums of P -hollow modules, and to examine them for being principally lifting mod-

ules. We show that if M = A ⊕ B is a module over a local ring, where A and B

are relatively Pprojective, then M has (PD1) if and only if both of A and B have

(PD1). It is known that a finite direct sum of hollow modules which in pairs are

relatively projective is a quasi-discrete module. Here we show that an arbitrary

direct sum of hollow modules which in pairs are relatively projective must have the

condition (PD1). Over arbitrary rings, direct sums of P -hollow modules which are

in pairs relatively Pprojective are also dealt with.

A submodule A of a module M is called small in M (denoted by A ≪ M) if

A + B ̸= M for any proper submodule B of M . A module H is called hollow if

every proper submodule of H is small in H. A submodule P of a module M is

called a supplement in M of a submodule A if P is a minimal with the property

thatM = A+P , or equivalently, ifM = A+P and A∩P ≪ P . A submodule C of

M is called a supplement submodule if it is a supplement inM for some submodule

of M . M is called a supplemented module if for any submodules A and B of M

with M = A + B, then B contains a supplement of A in M . A module M is

weakly supplemented if every submodule of M has a supplement in M . A module

M is lifting (or has the condition (D1)) if for every submodule A of M , there is a

decomposition M = M1 ⊕M2 such that M1 ≤ A and M2 ∩ A ≪ M . M is said
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to have the condition (D2) in case of if A is a submodule of M such that M/A is

isomorphic to a summand of M , then A is a summand of M . M is said to have the

condition (D3) in case of if M1 and M2 are summands of M with M1 +M2 = M ,

then M1 ∩M2 is a summand of M . A module M is called a discrete module if it

has the conditions (D1) and (D2). A module M is called a quasi-discrete module

if it has the conditions (D1) and (D3). A decomposition M = ⊕
i∈I
Mi of a module

M is said to complement direct summands if for every summand submodule A of

M there exists J ⊆ I such that M = A⊕ ⊕
i∈J

Mi .

All modules M here are unitary right modules over a ring R (not necessary

commutative) with unity. By A ≤ M we mean A is a submodule of M . A ≤⊕ M

stands for A is a direct summand of M .

2. P-hollows and the condition (PD1)

Definition 2.1. ([1], 2.12) A nonzero module M is called semi-hollow if every

proper finitely generated submodule is small in M .

A nonzero moduleM is called P -hollow if every proper cyclic submodule is small

in M .

Hollow modules are obviously semi-hollow (P -hollow) modules. From the fact

that finite sums of small submodules is small, one can easily show that a module

M is a semi-hollow module if and only if it is a P -hollow module.

Lemma 2.2. ([1], 2.15) Let M be a module, then:

(1) If M is (semi-) hollow, then every factor module is (semi-) hollow.

(2) If K ≪M and M/K is (semi-) hollow, then M is (semi-) hollow.

(3) M is semi-hollow if and only if M is local or Rad(M) =M .

Proposition 2.3. The following are equivalent for a module M :

(1) M is P -hollow

(2) N ≪M whenever M/N is a nonzero cyclic module.

Proof. (1)⇒(2) Let 0 ̸= M/B be cyclic, then by (1) of Lemma 2.2 M/B is P -

hollow. By (3) of Lemma 2.2 M/B is local; and hence B ≪M .

(2)⇒(1) Let mR be a proper cyclic submodule of M . If mR is not small in M

then mR + B = M for some proper submodule B of M and since (mR + B)/B

is cyclic, then by (2) we have B is small in M which yields mR = M , which is a

contradiction. Therefore B =M ; i. e. mR≪M . �
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An immediate consequence of Proposition 2.3 is that for cyclic modules the

concepts of hollow and of P -hollow coincide. In particular a ring R (as a right

R-module) is P -hollow if and only if it is local.

Remark 2.4. 1- P -hollow modules need not be hollows, as it is explained in [1]

by considering the set Q of all rational numbers as a Z-module (Q/Z is not hollow,

while Q/N is not cyclic for all proper submodules N of Q).

2- Hollow modules are indecomposable modules, so direct sums of hollow modules

are not hollows, while, according to Lemma 2.2, if M = ⊕
i∈I
Pi, where the Pi are

non cyclic P -hollows for all i ∈ I , then M is P -hollow.

Definition 2.5. ([1], 22.7) A module M is called finitely lifting (or f -lifting for

short) if for any finitely generated submodule A, there is a decomposition M =

N ⊕ S with N ≤ A and A ∩ S ≪ M. M is principally lifting (or has (PD1) for

short) if for all m ∈ M , M has a decomposition M = N ⊕ S with N ≤ mR and

mR ∩ S ≪M .

Observe that every P -hollow module satisfies the condition (PD1).

Lemma 2.6. ([10], 41.13) The following are equivalent for a module M :

(1) M is f-lifting;

(2) M is principally lifting.

Proposition 2.7. The condition (PD1) is inherited by summands.

Proof. Let M have the condition (PD1) and K ≤⊕ M , if k ∈ K, then M has

a decomposition M = N ⊕ S with N ≤ kR and kR ∩ S ≪ M . It follows that

K = N ⊕ (K ∩ S), and kR ∩ (K ∩ S) ≤ kR ∩ S ≪M, so kR ∩ (K ∩ S) ≪ K (due

to K ≤⊕ M). Therefore K has (PD1). �

It is known that an indecomposable module has (D1) if and only if it is a hollow

module, the following Lemma gives an analogy to this fact.

Lemma 2.8. The following are equivalent for an indecomposable module M :

(1) M has (PD1).

(2) M is a P -hollow module.

Proof. Follows directly from the defining condition of (PD1). �

Lemma 2.9. If M has (PD1), then every cyclic submodule C has a supplement S

which is a summand, and C contains a complementary summand of S in M .
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Proof. Follows directly from the defining condition of (PD1), and the fact that a

small submodule of M is small in any summand of M . �

Lemma 2.10. The following are equivalent for a module M .

(1) M has (PD1);

(2) Every cyclic submodule C of M can be written as C = N ⊕S with N ≤⊕ M

and S ≪M .

(3) For each m ∈ M , there exist principal ideals I and J of R such that mR =

mI ⊕mJ , where mI ≤⊕ M and mJ ≪M .

Proof. (1)⇒(2) It is clear.

(2)⇒(1) Let C be a cyclic submodule of M , then by (2) C = N ⊕ S with

N ≤⊕ M and S ≪ M . Write M = N ⊕ N
′
, it follows that C = N ⊕ C ∩ N

′
.

Now let π : N ⊕ N
′ → N

′
be the natural projection, we have C ∩ N ′

= π(C) =

π(N ⊕ S) = π(S) ≪M . Therefore M has (PD1).

(2)⇔ (3) Clear. �

Corollary 2.11. Proper cyclic summands of a P -hollow module are the zero sub-

module.

Lemma 2.12. ([5], Corollary 4.50) Let M =
n
⊕
i=1
Mi where Mi is hollow and Mj-

projective whenever j ̸= i. Then M is a quasi-discrete module.

In the following proposition we show that an arbitrary direct sum of hollow

modules, which in pairs are relatively projective, satisfies the condition (PD1).

Proposition 2.13. Let M = ⊕
i∈I
Hi where every Hi is a hollow module, and is

Hj-projective ( j ̸= i). Then M has (PD1).

Proof. Let C be a cyclic submodule of M , then there exists a finite subset F of

I such that C ⊆ ⊕
i∈F

Hi. By Lemma 2.12, ⊕
i∈F

Hi is quasi-discrete, and hence has

(D1). Thus C can be written as C = N ⊕ S, where N ≤⊕ ⊕
i∈F

Hi (hence N ≤⊕ M)

and S ≪ ⊕
i∈F

Hi. Therefore by Lemma 2.10 M has (PD1). �

Proposition 2.14. Let M be a module with (PD1). If M = X + Y such that

Y ≤⊕ M and X ∩ Y is cyclic, then Y contains a supplement of X in M .

Proof. Since M has (PD1), and X ∩Y is cyclic, we have by Lemma 2.10 X ∩Y =

N ⊕ S, where N ≤⊕ M and S ≪ M . Since Y ≤⊕ M , we have S ≪ Y . Write

Y = N ⊕ N . It follows that X ∩ Y = N ⊕ (X ∩ Y ∩ N1) = N ⊕ (X ∩ N1).

Let π : N ⊕ N1 −→ N1 be the natural projection. It follows that X ∩ N1 =
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π(N ⊕ (X ∩N1)) = π(X ∩ Y ) = π(N ⊕ S) = π(S) hence X ∩N1 ≪ N1, and that

M = X + Y = X +N +N1 = X +N1. Therefore N1 is a supplement of X in M

that is contained in Y . �

Corollary 2.15. Let M be a module with (PD1) over a principal ideal ring R. If

M = X +mR, then mR contains a supplement of X in M .

Proof. By Lemma 2.10, we have mR = N ⊕ S, where N ≤⊕ M and S ≪ M . It

follows that M = X +N , where N is a cyclic summand of M , hence X ∩N is a

cyclic submodule of M , and thus apply Proposition 2.14. �

Lemma 2.16. Let M be a module with (PD1). Then every indecomposable cyclic

submodule C of M is either small in M or a summand of M .

Proof. By Lemma 2.10, we have C = N ⊕ S with N ≤⊕ M and S ≪M . Since C

is indecomposable, we have either C = N or C = S. �

Lemma 2.17. Let M = A⊕B. Then the following are equivalent:

(1) A is B-projective.

(2) If M = N +B, then N ∩B ≤⊕ N (hence M = N1 ⊕B, where N1 ≤ N).

Proof. (1)⇒(2) It is given in ([5], 4.47).

(2)⇒(1) It is given in ([2], Proposition 3.2) �

Proposition 2.18. Let M =
n
⊕
i=1
Pi, where the Pi are local modules for all i. If M

has (D3), then the following are equivalent:

(1) M has (PD1),

(2) M is a quasi-discrete module.

Proof. (1)⇒(2) Since (PD1) and (D3) are inherited by summands, we have Pi⊕Pj

has (PD1) and (D3) for all i, j (i ̸= j). Now if Pi ⊕ Pj = Y + Pj , then Pi
∼=

(Pi ⊕ Pj)/Pj = (Y + Pj)/Pj
∼= Y/(Y ∩ Pj) is a cyclic module. Thus form some

m ∈ Pi ⊕ Pj , Y = mR + (Y ∩ Pj). By (PD1) for Pi ⊕ Pj and by Lemma 2.10,

mR = N ⊕ S with N ≤⊕ Pi ⊕ Pj and S ≪ Pi ⊕ Pj hence Pi ⊕ Pj = Y + Pj =

(N⊕S)+(Y ∩Pj)+Pj = N+Pj and by (D3) for Pi⊕Pj , we have Pi⊕Pj = N⊕Pj

with N ≤ Y . Hence by Lemma 2.17, Pi is Pj-projective for all i ̸= j. Therefore by

Lemma 2.12 M is a quasi-discrete module.

(2)⇒(1) It is obvious. �

Remark 2.19. In general, modules which satisfy both of the conditions (PD1) and

(D3) need not be quasi-discrete modules, for instance the set of rational number Q
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as a Z-module is not a quasi-discrete module but it satisfies both of the conditions

(PD1) and (D3).

Proposition 2.20. Every finite uniform dimensional module with (PD1) is a direct

sum of P -hollow submodules.

Proof. The proof will be by induction on the uniform dimension ofM . If U .dim(M) =

1, then M is an indecomposable module; and hence M is a P -hollow module, by

Lemma 2.8. Now let 2 ≤ U.dim(M) = n <∞. Since M is not a P -hollow module,

then there is m ∈ M such that mR is not small and proper submodule of M . By

(PD1), we have M = N ⊕N
′
, where N ≤ mR and N

′ ∩mR≪M . It is clear that

N and N
′
have uniform dimensions less than n, and hence by induction, each of N

and N
′
is a direct sum of P -hollow submodules. �

3. Pprojectivity and the condition (PD1)

Definition 3.1. Let A and B be R- modules. A is said to be Pprojective relative

to B (or A is B-Pprojective) if for each b ∈ B, each epimorphism g : bR −→ bR/K,

and each homomorphism φ : A→ bR/K, there exists a homomorphism µ : A→ bR

such that gµ = φ.

Lemma 3.2. Let M = A⊕B be an R-module. Then the following are equivalent:

(1) A is B-Pprojective;

(2) A is bR-projective for all b ∈ B;

(3) For each b ∈ B, if A ⊕ bR = Y + bR, then there is L ≤ Y such that

A⊕ bR = L⊕ bR.

Proof. Follows from the definition of relative Pprojectivity, and Lemma 2.17. �

Remark 3.3. Clearly every B-projective module is B-Pprojective, and if B is

a cyclic module then every B-Pprojective module is B-projective. There are R-

modules A and B, where A is B-Pprojective while A is not B-projective. For

example take A = Q (the set of all rational numbers), R = Z, and B = ⊕
i∈I

Z,

where f : ⊕
i∈I

Z → Q is an epimorphism (as Q is a homomorphic image of a free

Z-module). Clearly Q is ⊕
i∈F

Z-projective for each finite subset F of I, hence Q is

(⊕
i∈I

Z)-Pprojective, while Q is not (⊕
i∈I

Z)-projective, since f does not split (due

to Q not a projective Z-module).
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Proposition 3.4. Let M = (⊕
i∈I
Ai) ⊕ ( ⊕

α∈Λ
Bα), where all the Ai are cyclic P -

hollow modules, and all the Bα are non cyclic P -hollow modules. If the Ai is

Aj-Pprojective (for all i ̸= j ∈ I), and is Bα-Pprojective (for all i ∈ I, α ∈ Λ),

then M has (PD1).

Proof. Write A = (⊕
i∈I
Ai) and B = ( ⊕

α∈Λ
Bα). Then M = A ⊕ B. We need to

consider a cyclic submodule (a + b)R in M (a ∈ A, and b ∈ B), and prove that

(a + b)R = P ⊕ S, with P a summand of M and S ≪ M (Lemma 2.10). Now

(a + b)R ≤ aR ⊕ bR ≤ ⊕
i∈F

Ai⊕ ⊕
α∈K

Bα for finite subsets F and K of I and Λ

respectively. So, there is no loss of generality if we assume that I and Λ are finite.

As Ai is Aj- projective for all i ̸= j, A is quasi-discrete (Lemma 2.12). Hence

A = N ⊕ Ň , with aR = N ⊕ T where T := aR ∩ Ň . Since N is Ň -projective ([5],

4.23), we get N is T -projective. Write b =
∑
α∈Λ

bα. As Ai is bαR-projective, Ai

is ⊕
α∈Λ

bαR-projective; and consequently is bR-projective. It then follows that A,

hence N is bR-projective. Therefore N is (T ⊕ bR)-projective. Now

N ⊕ (T ⊕ bR) = aR⊕ bR = (a+ b)R+ bR = (a+ b)R+ (T ⊕ bR). (*)

Hence N ⊕ (T ⊕ bR) = P ⊕ (T ⊕ bR), with P ≤ (a+ b)R (Lemma 2.17). Clearly

T⊕bR≪M . It remains to show that P is a summand ofM . To this end, add Ň+B

to both sides of (*), we getM = P+Ň+B. Now P ∩(Ň+B) ≤ (P+T+bR)∩(Ň+

B) = (N+T+bR)∩(Ň+B) ≤ (Ň+B+T+bR)∩N+(N+Ň+B)∩(T+bR) = T+bR.

Hence P ∩ (Ň +B) ≤ P ∩ (T ⊕ bR) = 0. �

Proposition 3.5. Let M be a module over a local ring R. If M has (PD1), then

every cyclic submodule is either small in M , or a summand of M .

Proof. The proof follows from Lemma 2.16, and the fact that every cyclic module

over a local ring is a local module. �

Corollary 3.6. Let M = A⊕ B be a module over a local ring R, where A and B

are relatively Pprojective. Then M has (PD1) if and only if both of A and B have

(PD1).

Proof. Let C be an arbitrary cyclic submodule of M . Then C = (a+ b)R , where

a ∈ A and b ∈ B. Since A and B have (PD1), then we have nothing to prove

whenever a = 0 or b = 0. Now to avoid triviality we may consider C is not a

small submodule of M . Since (a+ b)R ≤ aR + bR, we have aR or bR is not small

in M . Without loss of generality we may assume aR is not small in M ; hence it

is not small in A. By Proposition 3.5, aR is a summand of A, and hence aR is
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B-Pprojective, hence aR is bR-projective. Since aR ⊕ bR = (a + b)R + bR, we

have by Lemma 3.2 that there is N ≤ (a + b)R such that aR ⊕ bR = N ⊕ bR.

It follows that (a + b)R = N ⊕ [(a + b)R ∩ bR]. Since C is a local module, and

bR is not contained in C, we have that C = N . The proof is ended once we

show that N is a summand of M . It is clear that aR ⊕ B = N + B; and hence

N ∩B = N ∩ (N ⊕ bR) ∩B = (aR⊕ bR) ∩B ∩N = bR ∩N = 0. As aR ≤⊕ A, we

have N ⊕B = aR⊕B ≤⊕ M ; i. e. C = N ≤⊕ M .

The converse follows from Proposition 2.7. �

Proposition 3.7. If M = A⊕B is an R-module, where A is simple and B has a

composition series 0 ≤ K ≤ B, then M has (PD1).

Proof. Let C be a nonzero proper cyclic submodule of M . Without loss of gener-

ality we may assume that C = (a+ b)R, where 0 ̸= a ∈ A and 0 ̸= b ∈ B. It is clear

that C + A = A ⊕ bR, and that bR is either K or B. Since A is simple, we have

that either A ≤ C or A ∩ C = 0. If A ≤ C, then bR = K and C = A⊕K (due to

C a proper submodule of M), where A ≤⊕ M and K ≪M . On the other hand, if

A ∩ C = 0 then C ⊕ A = A ⊕ bR. If bR = B, then C ≤⊕M, and if bR = K, then

C ∼= K is a simple module. But M = C + B with C � B; and hence C ∩ B = 0,

which yields C ≤⊕ M . Therefore M has (PD1). �

It is known that if a module M = A ⊕ B is quasi-discrete, then A and B are

relatively projective. We were aiming to show that if we replace quasi-discreteness

by the condition (PD1) for M = A⊕B, then A and B are relatively Pprojective.

This goal could not be achieved as it is shown in the following example.

Example 3.8. We show that if a module M = A⊕B has (PD1), then A need not

be B-Pprojective. In fact if M = C(p)⊕C(p2), then M as a Z-module has (PD1),

by Proposition 3.7, while C(p) is not C(p2)-Pprojective.

Recall from [2] that: a module A is called B-Sprojective if for every epimorphism

g : B → N and every homomorphism φ : A → N , with kerg has a supplement

submodule in ker(φ⊕g), there exists a homomorphism ψ: A→ B such that ψg = φ.

Lemma 3.9. ([2], Proposition 3.2) The following are equivalent for a module M =

A⊕B.

(1) A is B-Sprojective.

(2) M = B ⊕ Y for every supplement Y of B in M .

Definition 3.10. An R-module M is called principally supplemented (for short

P -supplemented) in case of, for each m ∈ M , if M = mR +N then mR contains
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a supplement of N in M . For a submodule B of M , M is B-supplemented if A

contains a supplement of B in M whenever M = B +A.

From Corollary 2.15, every module with (PD1) over a principal ideal ring R is

P -supplemented.

Lemma 3.11. ([2], Proposition 3.3) The following are equivalent for a module

M = A⊕B.

(1) A is B-projective;

(2) A is B-Sprojective, and M is B-supplemented.

Lemma 3.12. Let M = A ⊕ B be a module such that B has a finite uniform

dimension. If A is a simple module, then A is B-Sprojective.

Proof. Let U .dim(B) = n, then U .dim(M) = n + 1. Now let L be a supplement

of B in M . It follows that L/(L ∩ B) ∼= A is a simple module; and hence L ∩ B
is a maximal submodule of L. But since L ∩ B ≪ L, it follows that L is a local

module. Now if L∩B ̸= 0, then U .dim(L) = U .dim(L∩B) (due to the essentiality

of L over L ∩ B . In this case we have n + 1 = U .dim(M) = U .dim(L + B) =

U .dim(L) + U .dim(B) − U .dim(L ∩ B) = n, which is a contradiction. Hence

L ∩B = 0, and M = L⊕B. Therefore by Lemma 3.9 A is B-Sprojective. �

The following example shows that a module M with (PD1) need not be mR-

supplemented for all m ∈M .

Example 3.13. Consider the Z-module M = C(p) ⊕ C(p2). In Example 3.8, we

have shown that M has (PD1), and from Lemma 3.12 C(p) is C(p2)-Sprojective.

By Lemma 3.11 and since C(p) is not C(p2)-projective, then M is not C(p2)-

supplemented.
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