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1. Introduction

Throughout this paper, R denotes an integral domain, with quotient field K,

T = R − {0} and M is a unitary R-module. A submodule N of M is called

prime (primary) if N 6= M and for arbitrary r ∈ R and m ∈ M , rm ∈ N implies

m ∈ N or r ∈ (N : M) (rn ∈ (N : M), for some n ∈ N), where (N : M) =

{r ∈ R|rM ⊆ N}. It is clear that when N is a prime submodule, (N : M) is

a prime ideal of R. The radical of N , given by radN , is the intersection of all

prime submodules of M containing N (see [7,9,10]). If there is no prime submodule

containing N , then we put radN = M . An R-module M is called a multiplication

R-module, if for each submodule N of M , there exists an ideal I of R such that

N = IM . (For more information about multiplication modules, see [1,4,14,16].)

An integral domain R is called a valuation ring, if for each x ∈ K − {0}, x ∈ R or

x−1 ∈ R (see [5,6,12]). In the first section of this paper, we generalize the notion of

valuation to a torsionfree R-module and obtain results which characterize it. Then

we prove some interesting results for multiplication valuation modules. In the

second section, we introduce fractional submodules, discrete valuation modules and

obtain some basic results. Finally in the third section, we obtain relations between

Dedekind modules and discrete valuation modules and give some characterizations

for Dedekind multiplication modules.
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2. Valuation Modules

Let R be an integral domain with quotient field K and M a torsionfree R-module.

For y = r
s ∈ K and x ∈ M , then following [13], we say that yx ∈ M if there exists

m ∈ M such that rx = sm. It is clear that this is a well-defined operation.

Lemma 2.1. Let R be an integral domain with quotient field K and M a torsionfree

R-module. Then the following conditions are equivalent:

i) For all y ∈ K and all x ∈ M , yx ∈ M or y−1M ⊆ M .

ii) For all y ∈ K, yM ⊆ M or y−1M ⊆ M .

Definition 2.2. Let R be an integral domain with quotient field K. A torsionfree

R-module M is called valuation R-module (VM) if one of the conditions of Lemma

2.1 holds.

Example 2.3. i) Let R be a domain. R is a valuation ring if and only if R is a

valuation R-module.

ii) Any vector space is a valuation module.

iii) Let R = Z and p be a prime integer number. If M = {pn a
b |a, b, n ∈ Z, b 6= 0,

n ≥ 0, (p, a) = (p, b) = (a, b) = 1}, then M is a valuation module.

iv) Let M be a valuation R-module, then any K-subvector space of MT , which

contains M is a valuation module.

v) Z is not a valuation Z-module.

Following [2], an R-module M is said to be integrally closed whenever ynmn +

· · · + ym1 + m0 = 0, for some n ∈ N, y ∈ K and mi ∈ M , then ymn ∈ M . By [5,

Proposition 5.18], any valuation ring is integrally closed. As the following shows,

valuation modules also have this property.

Lemma 2.4. Any valuation module is integrally closed.

Proof. Let M be a valuation R-module and ynmn + · · ·+ ym1 +m0 = 0, for some

n ∈ N, y ∈ K and mi ∈ M . Since M is a VM, if ymn 6∈ M then y−1M ⊆ M . So

y−1mi ∈ M for all i, 0 ≤ i ≤ n − 1 and hence y−tmi ∈ M , for all t ∈ N and all i,

0 ≤ i ≤ n − 1. Therefore ymn = −mn−1 − y−1mn−2 − · · · − y1−nm0 ∈ M and M

is integrally closed. ¤

A subset N of an R-module M is called R-stable, if RN ⊆ N , i.e. for all r ∈ R

and x ∈ N , rx ∈ N .

Proposition 2.5. Let K be the quotient field of a domain R and M a torsionfree

R-module. Let S be the set, ordered by inclusion, of all non-empty subsets of M .
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Then the following conditions are equivalent:

i) M is a valuation module.

ii) S′ = {(N : M)|N ∈ S} is totally ordered.

iii) For U = {rM |r ∈ R} the subset of S, U ′ is totally ordered.

Proof. i)⇒ii) Let N, L ∈ S be such that there exist r ∈ (N : M)\(L : M)

and s ∈ (L : M)\(N : M). So rM ⊆ N , sM ⊆ L and there exist α, β ∈ M

such that sα 6∈ N , rβ 6∈ L. Since M is a VM for y = s
r ∈ K and α ∈ M ,

if yα ∈ M , there exists m ∈ M such that sα = rm ∈ rM ⊆ N , which is a

contradiction. If y−1M ⊆ M then y−1β ∈ M and so there exists n ∈ M such that

rβ = sn ∈ sM ⊆ L, which is again a contradiction. Therefore S′ is totally ordered.

ii)⇒iii) This is clear.

iii)⇒i) Let y = s
r ∈ K. Since rM, sM ∈ U , (sM : M) ⊆ (rM : M) or

(rM : M) ⊆ (sM : M). So sM ⊆ rM or rM ⊆ sM . Therefore yM ⊆ M or

y−1M ⊆ M and M is a VM. ¤

Corollary 2.6. Let R be a domain and M a torsionfree R-module. Then M is a

valuation module if and only if for any submodules N, L of M , (N : M) ⊆ (L : M)

or (L : M) ⊆ (N : M).

Corollary 2.7. Let K be the quotient field of a domain R and M a faithful multi-

plication R-module. Let S be the set, ordered by inclusion, of all R-stable non-empty

subsets of M . Then the following conditions are equivalent:

i) M is a valuation module.

ii) S is totally ordered.

iii) U = {rM |r ∈ R} the subset of S is totally ordered. Moreover, in this case S is

the set of all submodules of M .

Proof. Since M is multiplication, the equivalence is easily obtained from Proposi-

tion 2.5. For the last part, let N ∈ S. It is enough to show that for any α, β ∈ N ,

α− β ∈ N . By (ii), Rα ⊆ Rβ or Rβ ⊆ Rα. Let Rα ⊆ Rβ, there exists r ∈ R such

that α = rβ. So α− β = (r − 1)β ∈ N . ¤

Corollary 2.8. Let R be a domain and M a faithful multiplication R-module. Then

M is a valuation module if and only if for any two submodules N, L of M , N ⊆ L

or L ⊆ N . If M is also a valuation R-module, then

i) M has a unique maximal submodule.

ii) for a proper submodule N of M , radN is a prime submodule of M .

iii) for a proper submodule N of M , if radN = N , then N is a prime submodule.
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Remark. R2 is a valuation R-module, but not a multiplication R-module. Note

that R⊕ (0) 6⊆ (0)⊕ R and (0)⊕ R 6⊆ R⊕ (0).

Note that R does not have non-zero maximal submodules as an R-module. Any

vector space is a VM, but an infinite dimensional vector space has infinite number

of maximal submodules. So it is not necessary that each valuation module has a

(unique) maximal submodule.

Theorem 2.9. Let M be a valuation R-module. Then

i) For any submodule N of M , such that M
N is a torsionfree R-module, M

N is a VM.

ii) If M is finitely generated, then for each p ∈ Spec(R), Mp is a valuation Rp-

module.

iii) If M ′ is a torsionfree R-module and ϕ : M → M ′ is an epimorphism, then M ′

is a valuation module too.

Proof. i) Let L1
N , L2

N be two submodules of M
N . So L1, L2 are submodules of M ,

containing N . Since M is a VM, by Corollary 2.6, (L1 : M) ⊆ (L2 : M) or (L2 :

M) ⊆ (L1 : M). Let (L1 : M) ⊆ (L2 : M). It is clear that (L1
N : M

N ) ⊆ (L2
N : M

N )

and so by Corollary 2.6, M
N is a VM.

ii) Let p ∈ Spec(R). Since R is a domain and M is torsionfree, it is easy to see that

Rp is a domain and Mp is a torsionfree Rp-module. Let Np, Lp be two submodules

of Mp, corresponding to submodules N and L of M . Since M is a VM, by Corollary

2.6, (N : M) ⊆ (L : M) or (L : M) ⊆ (N : M). Let (N : M) ⊆ (L : M). Since

M is finitely generated, so (Np : Mp)Rp ⊆ (Lp : Mp)Rp . Hence Mp is a valuation

Rp-module.

iii) By part (i). ¤

Prüfer modules has been defined by Naoum and Al-Alwan in [13, page 407].

The R-module M is uniserial, if its submodules are totally ordered by inclusion or

equivalently given a, b ∈ M , either aR ⊆ bR or bR ⊆ aR. It is clear that if M is

a torsionfree uniserial R-module, then M is a valuation R-module. Now, let M be

a torsionfree module over a Prüfer domain R, then M is a Prüfer module if and

only if for every maximal ideal P of R, the RP -module MP is uniserial (see [11,

Theorem 2.4]).

The following two lemmas give the relations between valuation rings and valua-

tion modules.

Lemma 2.10. Let R be a valuation ring and M a torsionfree R-module. Then M

is a valuation R-module.
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Lemma 2.11. If M is a multiplication valuation R-module, then M is finitely

generated and R is a valuation ring.

Proof. Let I, J be ideals of R, then IM , JM are submodules of M and since M

is a VM, by Corollary 2.8, IM ⊆ JM or JM ⊆ IM . Let IM ⊆ JM . Now by

[1, Corollary 3.3, Lemma 4.1] M is finitely generated, and so I ⊆ J . So by [5,

Proposition 5.2], R is a valuation ring. ¤

Let M be a multiplication module. If M is a Dedekind module then by [2,

Theorem 3.12], R is a Dedekind domain. Also by [2, Corollary 3.15], M is Noe-

therian. Hence by [2, Corollary 3.7], every multiplication Dedekind R-module M

is isomorphic to an ideal of R.

Lemma 2.12. Let R be a valuation domain. Then every finitely generated torsion-

free R-module is free.

Proof. [6, §3.6, Lemma 1]. ¤

Corollary 2.13. Let M be a multiplication valuation module over an integral do-

main R. Then M is isomorphic to R.

Proof. By Lemma 2.11, R is a valuation ring. Since M is finitely generated and

torsionfree, by Lemma 2.12, M is free and so isomorphic to R. ¤

Corollary 2.14. Let M be a multiplication valuation R-module. Then any finitely

generated submodule of M is cyclic.

Let M be a multiplication R-module, N = IM and L = JM for some ideals I

and J of R. Following [4], the product of N and L is denoted by N.L or NL and

is defined by IJM . We consider N t = ItM , for any t ∈ R. By [4, Lemma 3.6], if

M is finitely generated faithful multiplication, then ann(M
N )ann(M

L ) = ann( M
NL )

or (N : M)(L : M) = (NL : M).

Theorem 2.15. Let M be a multiplication valuation R-module, N = IM a proper

submodule of M , for ideal I of R and L =
⋂∞

n=1 Nn =
⋂∞

n=1 InM . Then

i) L is a prime submodule of M .

ii) If, for some positive integer t, N t = N t+1, then N is an idempotent prime

submodule.

iii) If U is a submodule of M with N ⊆ radU , then U contains a power of N .

iv) L contains every prime submodule of M which is properly contained in N .

v) Every prime submodule of M which is properly contained in N , is contained in

every power of N .
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Theorem 2.16. Let R be a domain, P a prime submodule of a multiplication

valuation R-module M and P = pM , where p = (P : M) ∈ Spec(R). We have

i) If Q is p-primary and x ∈ M − P , then Q = I(x), where I = {y ∈ K|yx ∈ Q}.
ii) If x ∈ M − P , then P = p(x).

iii) If P 6= P 2, then the only p-primary submodules of M are powers of P .

Furthermore, let P be a maximal submodule. Then

iv) If Q1, Q2 are p-primary, then Q1Q2 is a p-primary submodule.

v) The intersection of all p-primary submodules of M is a prime submodule and

there are no prime submodules of M properly between it and P .

Following [4], an element u of an R-module M is said to be unit provided that

u is not contained in any maximal submodule of M . By [4, Theorem 3.19], in a

multiplication R-module M , u ∈ M is unit if and only if M = Ru.

Theorem 2.17. Let R be a local ring (not necessarily an integral domain) with

unique principal maximal ideal I = (p) and M a multiplication R-module such that⋂∞
n=1(p

n)M = (0). Then the only proper submodules of M are (0) and (pm)M , for

some m ≥ 1. Furthermore, if M is faithful, then either p is nilpotent or M is a

valuation module.

Proof. N = IM is the unique maximal submodule of M . Let L be a proper

submodule of M , so L ⊆ N . If for all n ∈ N, L ⊆ Nn = InM , then L ⊆⋂∞
n=1 InM =

⋂∞
n=1(p

n)M = (0). Otherwise there exists n ∈ N such that L ⊆
(pn)M , but L 6⊆ (pn+1)M . Let a ∈ L\(pn+1)M . Since L ⊆ (pn)M , there exists

α ∈ M such that a = pnα and α 6∈ N . But N is the unique maximal submodule of

M . Hence α is a unit and M = Rα. So (pn)M ⊆ L and therefore L = (pn)M .

Now assume that M is faithful and p is not nilpotent. Since M is a multiplication

module and for all nonzero submodules L1, L2 of M , L1 = (pt)M and L2 = (ps)M ,

for some t, s ∈ N, we have L1 ⊆ L2 or L2 ⊆ L1. Hence by Corollary 2.8, it is enough

to show that R is a domain. Let for a, b ∈ R, ab = 0. It follows that aM = (0) or

aM = (pn)M , for n ∈ N and similarly bM = (0) or bM = (pm)M , for m ∈ N. If

aM = (pn)M and bM = (pm)M then 0 = (ab)M = (a)M(b)M = (pn)M(pm)M =

(pn+m)M . Since M is torsionfree, so pn+m = 0, which is a contradiction. Hence R

is a domain and therefore M is a VM. ¤

Theorem 2.18. Any finitely generated valuation module over a domain R, is

unique (up to isomorphism) and isomorphic to a finite direct sum of the integral

closure of R in its field of fractions.



24 J. MOGHADERI AND R. NEKOOEI

Proof. Let M be a finitely generated valuation R-module. Consider the subring

S = {y ∈ K : yM ⊆ M} of K, the field of fractions of R. Then R ⊆ S ⊆ K and

M is a finitely generated S-module. It is easy to see that S is a valuation ring. By

usual determinant argument, every element of S is integral over R. Thus S ⊆ T

where T denotes the integral closure of R in K. On the other hand, since S is a

valuation ring, it is integrally closed, and so S = T . Moreover, since M is finitely

generated and torsionfree over the valuation ring S, M is free as S-module with

finite rank. This gives that M is unique (up to isomorphism) and isomorphic to a

finite direct sum of the integral closure of R in its field of fractions. ¤

There are plenty of valuation modules which are not finitely generated. For ex-

ample, every valuation ring between R and K is a valuation module over R (as the

one given in Example 2.3. (iii)).

Let Θ(M) = {y ∈ K : yM ⊆ M}. Then Θ(M) is a subring of K with R ⊆ Θ(M)

and M is a Θ(M)-module (see [15]). Let M be a valuation R-module and y ∈ K,

so yM ⊆ M or y−1M ⊆ M . Therefore Θ(M) is a valuation ring. Now let S be

an overring of R. If S is a valuation ring, then it is clear that S is a valuation

R-module. Let M be a finitely generated R-module, so M is a finitely generated

Θ(M)-module. If M is a valuation R-module, then Θ(M) is a valuation ring and

hence Θ(M) is integrally closed. Now suppose that y ∈ K with yM ⊆ M , then

by using the standard determinant argument, we obtain that y is integral over R.

Therefore Θ(M) ⊆ R and so Θ(M) is integrally closed. Hence by Lemma 2.12, we

have the following theorem.

Theorem 2.19. Let M be a finitely generated module over an integrally closed ring

R. If M is a valuation module, then M is a free R-module and R is a valuation

ring.

3. Fractional Submodules and Discrete Valuation Modules

A fractional ideal of R is an R-submodule U of K such that aU ⊆ R, for some

a ∈ R, a 6= 0 (see [5,12]). In this section we generalize this notion to a module and

define discrete valuation modules. Furthermore, we prove some basic results and

obtain relations between fractional submodules and discrete valuation modules.

Definition 3.1. Let R be an integral domain and M a torsionfree R-module.

An R-submodule N of MT is called a fractional submodule of M if there exists

r ∈ T = R− {0} such that rN ⊆ M .
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Example 3.2. i) Let M = R. Then any fractional ideal of R is a fractional

submodule of M .

ii) Let α ∈ MT − {0}. Then N = Rα is a fractional submodule, called a cyclic

fractional submodule.

iii) Any R-submodule of M is a fractional submodule, called an integral submod-

ule.

iv) Let N be an R-submodule of M and α1, . . . , αn ∈ MT − {0}. Then L =

N + Rα1 + · · ·+ Rαn is a fractional submodule of M .

v) Let N and L be two fractional submodules of M . Then N + L and N ∩L are

also fractional submodules.

Lemma 3.3. Let N be a finitely generated R-submodule of MT . Then N is a

fractional submodule and conversely, if M is a Noetherian R-module, then every

fractional submodule of M is finitely generated.

Proposition 3.4. Let R be an integral domain and M a torsionfree R-module.

For the following statements we have (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v) and if M is

multiplication, then (v)⇒ (i).

i) The set of cyclic fractional submodules of M is linearly ordered by inclusion.

ii) The set of fractional submodules of M is linearly ordered by inclusion.

iii) The set of cyclic integral submodules of M is linearly ordered by inclusion.

iv) The set of integral submodules of M is linearly ordered by inclusion.

v) M is a valuation R-module.

Proof. The proof that (i)⇒ (ii)⇒ (iii)⇒ (iv) is clear.

iv)⇒ v) Let y = r
t ∈ K − {0}, then rM, tM are integral submodules of M and

so by (iv), rM ⊆ tM or tM ⊆ rM . Therefore yM ⊆ M or y−1M ⊆ M .

v)⇒ i) Let α = x
t , β = y

s ∈ MT − {0}. Put N = Rα, L = Rβ. Then N , L are

cyclic fractional submodules of M . Since Rsx, Rty are submodules of M , so by

Corollary 2.8, Rsx ⊆ Rty or Rty ⊆ Rsx. Therefore N ⊆ L or L ⊆ N . ¤

Let N be a fractional submodule of M . Consider N ′ = [M : N ] = {y ∈ K|yN ⊆
M}. It is clear that N ′ is an R-submodule of K and N ′N ⊆ M . Similar to the

definition in [13], a fractional R-submodule N of M is called invertible, if N ′N = M .

In particular, if M = R, then any invertible fractional ideal of R is an invertible

fractional submodule.

By [5], a valuation ring is a discrete valuation ring if and only if it is Noetherian.

Definition 3.5. A Noetherian valuation module is called a discrete valuation mod-

ule (DVM).
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Proposition 3.6. Let R be a local domain with unique principal maximal ideal

I = (p) 6= 0, and M a faithful multiplication R-module such that
⋂∞

n=1(p
n)M = (0).

Then M is a DVM.

Proof. It is clear that R is a DVR, and hence by Corollary 2.13, M is a DVM. ¤

It is easy to see that if M is a DVM, then for each p ∈ Spec(R), Mp is a DV

Rp-module.

Proposition 3.7. Let M be a multiplication valuation R-module. Then M is a

DVM if and only if every prime submodule of M is cyclic.

Theorem 3.8. Let R be a domain, and dimR = 1. Let M be a Noetherian, faithful

multiplication R-module and L = JM , for J ∈ max(R). Consider the following:

i) M is a DVM.

ii) Every non-zero proper submodule of M is a power of L.

iii) Every primary submodule of M is a power of its radical.

Then (i) ⇔ (ii) and if R is local then (ii) ⇔ (iii).

Proof. i)⇒ ii) Let M be a DVM and N be a nonzero proper submodule of M .

Since M is Noetherian and dimR = 1, N is a J-primary. Since M is a DVM, it is

easy to see that R is a Noetherian local ring. So by the Nakayama Lemma, J2 6= J

and so L2 6= L. Now by Theorem 2.16(iii), there exists n ∈ N such that N = Ln.

ii)⇒ i) If every non-zero proper submodule of M is a power of L then, by

Corollary 2.8, M is a DVM.

Now let R be local.

ii)⇒ iii) Let Q be p-primary. If Q = 0 then radQ = Q = 0. Now let Q 6= 0. Since

R is local, so J = p and there exists n ∈ N such that Q = Ln = (JM)n = (radQ)n.

iii)⇒ ii) Let N be a non-zero proper submodule of M . Since M is Noetherian,

R is local and dimR = 1, so N is J-primary. Hence there exists n ∈ N such that

N = (radN)n = (
√

(N : M)M)n = (JM)n = Ln. ¤

Proposition 3.9. Let R be a local domain with dimR = 1. Let M be a Noetherian,

faithful multiplication R-module. If every non-zero fractional submodule of M is

invertible, then M is a DVM.

Proof. Let L = JM , for J ∈ Max(R). By Theorem 3.8, it is enough to show that

every non-zero proper submodule of M is a power of L. Let S = {0 6= N < M |
N 6= Ln, for all n ∈ N}. If S 6= ∅, as M is Noetherian, then S has a maximal

element N . Hence N ⊂ L and L
′
N ⊆ M . If L

′
N = M then N = L, which is a
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contradiction. So L
′
N ⊂ M . On the other hand, N ⊆ L

′
N . If N ⊂ L

′
N then

L
′
N /∈ S and so L

′
N = Lt, for some t ∈ N. Therefore N = Lt+1, which is a

contradiction. If N = L
′
N then LN = N and IJM = IM , where I is an ideal of

R such that N = IM . Now by the Nakayama Lemma N = IM = 0, which is again

a contradiction. Therefore S = ∅. ¤

4. Dedekind Modules

Following [13], a non-zero R-module M is called a Dedekind module (DM), if

each non-zero submodule of M is invertible. (For more information, see [2].)

By [2, Corollary 3.15], a multiplication R-module M is a Dedekind R-module if

and only if M is Noetherian, integrally closed and every nonzero prime submodule

of M is maximal. In what follows we give some characterizations for DM with

fractional submodules and DVM.

Theorem 4.1. Let R be a domain and M a torsionfree R-module. Then M is a

DM if and only if every non-zero fractional submodule of M is invertible.

Proof. Let M be a DM and N be a non-zero fractional submodule of M . There

exists r ∈ T such that rN ⊆ M . Since M is torsionfree, rN 6= 0 and so is invertible.

Hence L(rN) = M , where L = [M : rN ]. Therefore (rL)N = M and it is easy to

see that rL = [M : N ]. The converse is clear by the definition of DM. ¤

Theorem 4.2. Let R be a domain and M a Noetherian faithful multiplication

R-module such that every non-zero prime submodule of M is maximal. Then the

following conditions are equivalent:

i) M is a DM.

ii) Mp is a DVM, for any p ∈ Spec(R)− {0}.
iii) Every primary submodule of M is a power of a prime submodule.

Proof. i)⇔ ii) By [3, Theorem 19] and Corollary 2.13, M is a DM if and only if R

is a Dedekind domain if and only if Rp is a DVR for every p ∈ Spec(R) if and only

if Mp is a DVM for every p ∈ Spec(R).

ii)⇒ iii) Let Q be p-primary submodule of M , where Q = qM ,
√

q = p. If Q = 0,

then radQ = Q = 0. Let Q 6= 0. So p 6= 0 and Qp = qMp is a non-zero proper

submodule of DVM, Mp. By Theorem 3.8, there exists n ∈ N such that Qp = pnMp.

Hence q = pn and therefore Q = qM = (pM)n, where pM ∈ Spec(M).

iii)⇒ ii) Let p ∈ Spec(R)−{0}. By Theorem 3.8, it is enough to show that every

non-zero proper submodule of Mp is a power of L = pMp. Let Qp be a non-zero

proper submodule of Mp. So Q = qM is a non-zero proper submodule of M , where
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q = (Q : M). Since Mp is Noetherian and Rp is local with dimRp = 1, so Qp = qMp

is pRp-primary. Hence (qp ∩ R)M is p-primary and there exist n ∈ N such that

(qp ∩R)M = pnM . Therefore Qp = pnMp = Ln. ¤

Theorem 4.3. Let R be a local domain, with unique principal maximal ideal (p)

and dimR = 1. Let M be a faithful multiplication R-module. Then M is a DM if

and only if M is a DVM.

Proof. Let M be a DVM. Since M is multiplication and dimR = 1, by [2, Corollary

3.15] M is a DM. Conversely, let M be a DM. It is enough to show that M is a

VM. Since M is faithful multiplication, R is Noetherian and so
⋂∞

n=1(p
n) = (0).

Therefore
⋂∞

n=1(p
n)M = (0) and by Theorem 2.17, M is a VM. Hence M is a

DVM. ¤
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