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Abstract. We study Hom-bialgebras and objects admitting coactions by

Hom-bialgebras. In particular, we construct a Hom-bialgebra M(2) repre-

senting the functor of 2 × 2-matrices on Hom-associative algebras. Then we

construct a Hom-algebra analogue of the affine plane and show that it is a

comodule Hom-algebra over M(2) in a suitable sense. It is also shown that

the enveloping Hom-associative algebra of a Hom-Lie algebra is naturally a

Hom-bialgebra.
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1. Introduction

A Hom-Lie algebra L has a skew-symmetric bracket [−,−] : L ⊗ L → L and a

linear map α : L → L such that an α-twisted version of the Jacobi identity holds.

It is said to be multiplicative if, in addition, α ◦ [−,−] = [−,−] ◦α⊗2. An ordinary

Lie algebra is a multiplicative Hom-Lie algebra with α = Id. Hom-Lie algebras

were introduced in [8] to describe the structures on certain deformations of the

Witt algebra and the Virasoro algebra. Earlier precursors of Hom-Lie algebras

can be found in [1,9,16]. Hom-Lie algebras are also related to deformed vector

fields [8,13,14,15,22,23], number theory [12], the various versions of the Yang-Baxter

equations, braid group representations, and quantum groups [28] - [35]. Other

papers concerning Hom-type structures are [2]- [7], [10], [17] - [21], and [24] - [27].

A fundamental property of Lie algebras is that they are related to associative

algebras via the commutator bracket construction and the universal enveloping

algebra functor. The associative type objects corresponding to Hom-Lie algebras,

called Hom-associative algebras, were introduced in [18]. A Hom-associative algebra

A has a multiplication µ : A⊗A → A and a linear self-map α such that the following

α-twisted version of associativity holds: µ(α(x), µ(y, z)) = µ(µ(x, y), α(z)). It is

said to be multiplicative if, in addition, α ◦ µ = µ ◦ α⊗2. Ordinary associative

algebras are multiplicative Hom-associative algebras with α = Id. It is proved in
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[18] that a Hom-associative algebra A gives rise to a Hom-Lie algebra HLie(A)

via the commutator bracket construction, i.e., [x, y] = µ(x, y)− µ(y, x). Moreover,

there is an enveloping Hom-associative algebra functor UHLie going the other way,

from Hom-Lie algebras to Hom-associative algebras [24]. As in the classical case,

the functor UHLie is the left adjoint of the functor HLie.

The purpose of this paper is to advance the theory of bialgebras in the Hom-

algebra setting. Hom-type analogues of Hopf algebras have been studied in [19]. In

particular, the authors of [19] considered Hom-versions of the convolution product

and primitive elements. Moreover, in [4] Hom-Hopf algebras are studied from a

categorical view-point. Hom-type analogues of quantum groups, Lie bialgebras,

and infinitesimal bialgebras are studied in [30] - [34].

In the rest of this introduction, let us describe some of the results of this pa-

per. In the theory of bialgebras and quantum groups, a fundamental object is the

bialgebra M(2), which represents the functor M2(−) sending an associative alge-

bra A to the algebra M2(A) of 2 × 2-matrices with elements in A. Moreover, the

matrix multiplication M2(A) ×M2(A) → M2(A) is universally represented by the

comultiplication on M(2).

We will define a suitable notion of Hom-bialgebra, in which the comultiplica-

tion ∆ satisfies an α-twisted version of coassociativity and is a morphism of Hom-

associative algebras. In the first main result of this paper, we construct a Hom-

bialgebra M(2), which is the analogue of M(2) in the Hom-algebra setting. We

show that M(2) is the representing object of the functor that sends a multiplicative

Hom-associative algebra A to the multiplicative Hom-associative algebra M2(A) of

2× 2-matrices with elements in A. Moreover, the multiplication on M2(A) is uni-

versally represented by the comultiplication on M(2).

A more precise version of the following result is proved in Sections 2 and 3.

Theorem 1.1. There exists a Hom-bialgebra M(2) such that:

(1) For any multiplicative Hom-associative algebra A, there is a natural bijec-

tion

HA(M(2), A) ∼= M2(A),

where HA is the category of multiplicative Hom-associative algebras and

HA(−,−) denotes the morphism sets in HA.

(2) The matrix multiplication on M2(A) is represented by the comultiplication

on M(2).
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The significance of the bialgebra M(2) goes beyond the functor M2 represented

by it. In fact, the affine plane A2 = k[x, y] is a non-trivial M(2)-comodule algebra.

In other words, there is a non-trivial M(2)-comodule structure

ρ : k[x, y] → M(2)⊗ k[x, y]

on the affine plane such that ρ is a morphism of algebras. We will construct a

multiplicative Hom-associative algebra A2, the Hom-affine plane, which is the Hom-

algebra analogue of the affine plane. We define what it means for a multiplicative

Hom-associative algebra to be a comodule Hom-algebra over a Hom-bialgebra.

A more precise version of the following result is proved in Section 4.

Theorem 1.2. The Hom-affine plane A2 admits the structure of a non-trivial

M(2)-comodule Hom-algebra.

The rest of this paper is organized as follows. In Section 2 we first recall some ba-

sic definitions about Hom-algebras. The free functor from modules to multiplicative

Hom-associative algebras is constructed (Corollary 2.5). The multiplicative Hom-

associative algebra M(2) is constructed using this free functor. It is then shown that

M(2) represents the functor M2 of 2×2-matrices on multiplicative Hom-associative

algebras (Corollary 2.9).

In Section 3, we equip M(2) with a comultiplication ∆ and observe that ∆

represents the matrix multiplication on M2(A) for a multiplicative Hom-associative

algebra A. Then we observe that, with its comultiplication, M(2) forms a Hom-

bialgebra (Corollary 3.8). It is also observed that a unital version of the enveloping

Hom-associative algebra UHLie(L) is a Hom-bialgebra (Theorem 3.11).

In Section 4, we define the Hom-affine plane A2, using once again the free functor

in Corollary 2.5. Then we extend the usual notion of comodule algebra to the Hom-

algebra setting. Finally, we show that the Hom-affine plane A2 is a non-trivial

M(2)-comodule Hom-algebra (Theorem 4.3).

2. The Hom-associative algebra M(2)

Before we construct M(2), we first recall some relevant definitions about Hom-

modules and Hom-nonassociative algebras that were first introduced in [24]. The

multiplicative Hom-associative algebra M(2) will be constructed using the free mul-

tiplicative Hom-associative algebra functor F in Corollary 2.5. The functor F is

the composition of several free functors, which we discuss first.
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2.1. Conventions. Throughout the rest of this paper, let k denote a field of

characteristic 0. Unless otherwise specified, linearity, modules, and ⊗ are all meant

over k. The category of k-modules is denoted by Mod. The free module on a set S

is denoted by k〈S〉. If S = {a1, . . . , an}, then we write k〈S〉 as k〈a1, . . . , an〉. Given

two k-modules M and N , denote by τ : M ⊗N ∼= N ⊗M the twist isomorphism,

i.e., τ(m⊗ n) = n⊗m for m ∈ M and n ∈N.

For a category C and two objects x and y in C, we denote by C(x, y) the set of

morphisms from x to y in C.

2.2. Hom-modules. By a Hom-module, we mean a pair (V, α) in which V is a

module and α : V → V is a linear map. A morphism (V, α) → (V ′, α′) of Hom-

modules is a linear map f : V → V ′ such that α′ ◦ f = f ◦ α. The category of

Hom-modules is denoted by HomMod. When there is no danger of confusion, we

will denote a Hom-module (V, α) simply by V .

There is a forgetful functor U : HomMod → Mod that sends a Hom-module

(V, α) to the module V , forgetting about the map α. Conversely, there is a free

Hom-module associated to a module.

Theorem 2.1. There is an adjoint pair of functors

F0 : Mod À : HomMod : U

in which F0 is the left adjoint.

Proof. Let V = ⊕k〈S〉 be a module. For each x ∈ S, let xi (i ≥ 1) be a sequence

of independent variables. We also set x = x0. Then we define the module

F0(V ) =
⊕

x∈S; i≥0

k〈xi〉.

Define a linear map α : F0(V ) → F0(V ) by setting α(xi) = xi+1 for each x ∈ S and

i ≥ 0. Then (F0(V ), α) is a Hom-module. Let ι : V → F0(V ) be the inclusion map

defined as ι(x) = x0 for x ∈ S.

Let (N, αN ) be a Hom-module, and let f : V → N be a linear map. We must

show that there exists a unique morphism f̂ : F0(V ) → N of Hom-modules such

that f = f̂ ◦ ι. The desired map f̂ is defined on the generators as

f̂(xi) = αi
N (f(x))

for x ∈ S and i ≥ 0, where αi
N = αN ◦ · · · ◦αN with i copies of αN . It is clear from

this definition that f = f̂ ◦ ι. It is compatible with α because

αN (f̂(xi)) = αi+1
N (f(x)) = f̂(xi+1) = f̂(α(xi)).
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This map f̂ is unique. Indeed, let g : F0(V ) → N be another morphism of Hom-

modules that satisfies f = g ◦ ι. Then we have

g(xi) = g(αi(x0)) = αi
N (g(x0)) = αi

N (f(x)) = f̂(xi).

This finishes the proof. ¤

2.3. Hom-nonassociative algebras. By a Hom-nonassociative algebra, we

mean a quadruple (A, µ, α, η) in which:

(1) (A,α) is a Hom-module;

(2) µ : A⊗A → A, the multiplication, is a bilinear map;

(3) η : k → A, the unit, is a linear map such that the following diagram com-

mutes:

k⊗A
η⊗Id

//

∼=
$$JJJJJJJJJJ A⊗A

µ

²²

A⊗ k
Id⊗η

oo

∼=
zztttttttttt

A

We will write η(1) ∈ A as 1A or simply 1. We also abbreviate µ(x, y) to xy if there

is no danger of confusion.

A morphism f : (A,µ, α, η) → (A′, µ′, α′, η′) of Hom-nonassociative algebras is

a morphism f : (A,α) → (A′, α′) of Hom-modules such that f ◦ µ = µ′ ◦ f⊗2 and

f ◦ η = η′. The category of Hom-nonassociative algebras is denoted by HNA.

Remark 2.2. Note that in [24], a Hom-nonassociative algebra is not required to

have a unit η. Here we call them non-unital Hom-nonassociative algebras. A

morphism f : (A,µ, α) → (A′, µ′, α′) of non-unital Hom-nonassociative algebras is

defined as in the previous paragraph, omitting the condition f◦η = η′. The category

HNA is a faithful subcategory of the category of non-unital Hom-nonassociative

algebras. In what follows, it should be clear from the context whether we consider

units or not.

Suppose that (A,µ, α, η) and (A′, µ′, α′, η′) are Hom-nonassociative algebras.

Then their tensor product is defined in the usual way, (A⊗ A′, µ′′, α ⊗ α′, η ⊗ η′).

Here µ′′ is the composition

(A⊗A′)⊗ (A⊗A′)
IdA⊗τ⊗IdA′−−−−−−−−→ A⊗2 ⊗A′⊗2 µ⊗µ′−−−→ A⊗A′,

where τ is the twist isomorphism A′ ⊗A ∼= A⊗A′.

There is a forgetful functor U : HNA → HomMod that forgets about the

multiplication µ and the unit η. Conversely, there is a free Hom-nonassociative

algebra associated to each Hom-module.
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Theorem 2.3. There is an adjoint pair of functor

F1 : HomMod À HNA : U

in which F1 is the left adjoint.

Proof. This is, in fact, just [24, Theorem 1, p.100] with very minor modifications

to account for the unit η. Using the notations in [24], if (V, α) is a Hom-module,

then we define the module

F1(V ) = k⊕ FHNAs(V ),

where FHNAs is the free non-unital Hom-nonassociative algebra functor in [24,

Theorem 1]. In more details, it is defined as

FHNAs(V ) =
⊕

n≥1

⊕

τ∈T wt
n

V ⊗n
τ , (1)

where Twt
n is the set of weighted n-trees [24, section 2.3] and V ⊗n

τ is a copy of V ⊗n.

Since there is only one weighted 1-tree, there is a natural inclusion V ↪→ FHNAs(V ).

This gives a natural inclusion V ↪→ F1(V ).

We extend the map α on FHNAs(V ) to F1(V ) by setting αF |k = Idk. The unit

ηF : k → F1(V ) is the obvious inclusion. The multiplication µ on FHNAs(V ) is

extended to F1(V ) by setting

µF ((a, x); (b, y)) = (ab, ay + bx + µ(x, y))

for a, b ∈ k and x, y ∈ FHNAs(V ). It is straightforward to check that

(F1(V ), µF , αF , ηF )

is a Hom-nonassociative algebra. The proof that F1 is the left adjoint of the forgetful

functor is essentially identical to the proof of [24, Theorem 1]. ¤

2.4. Hom-associative algebra. By a Hom-associative algebra, we mean a

Hom-nonassociative algebra (A,µ, α, η) such that

µ ◦ (µ⊗ α) = µ ◦ (α⊗ µ) (Hom-associativity)

holds. A Hom-associative algebra is said to be multiplicative if, in addition,

µ ◦α⊗2 = α ◦µ (multiplicativity). A morphism of (multiplicative) Hom-associative

algebras is a morphism of the underlying Hom-nonassociative algebras. The cate-

gory of multiplicative Hom-associative algebras is denoted by HA, which is a full

and faithful subcategory of the category HNA of Hom-nonassociative algebras. As

before, non-unital (multiplicative) Hom-associative algebras are non-unital

Hom-nonassociative algebras satisfying Hom-associativity (and multiplicativity).
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There is a subcategory inclusion U : HA → HNA. Conversely, every Hom-

nonassociative algebra has a unique largest multiplicative Hom-associative algebra

quotient.

Theorem 2.4. There is an adjoint pair of functors

F2 : HNA À HA : U

in which F2 is the left adjoint.

Proof. This is, in fact, [24, section 4.3, p.103] with very minor modifications to

account for the multiplicativity of α. Let (A,µ, α, η) be a Hom-nonassociative

algebra. Using the notations in [24, section 4.3], we define inductively:

J1 = 〈im(µ ◦ (µ⊗ α− α⊗ µ)); im(α ◦ µ− µ ◦ α⊗2)〉,
Jn+1 = 〈Jn ∪ α(Jn)〉, and J∞ =

⋃

n≥1

Jn.

For a subset S ⊆ A, the notation 〈S〉 denotes the smallest submodule of A con-

taining S such that µ(〈S〉, A) ⊆ 〈S〉 and µ(A, 〈S〉) ⊆ 〈S〉 [24, section 3.4]. Now we

define the quotient module

F2(A) = A/J∞,

equipped with the induced maps of µ and α. The unit ηF : k → F2(A) of F2(A)

is the composition k → A → F2(A) of the unit η of A and the quotient map. It

is easy to check that F2(A) is a Hom-associative algebra and that F2 is the left

adjoint of the subcategory inclusion U . ¤

Note that F2 ◦ U = IdHA, since for a multiplicative Hom-associative algebra A,

all the Jn = 0. Thus, Theorem 2.4 says that HA is a reflective subcategory of

HNA.

From Theorems 2.1, 2.3, and 2.4, we have the following three adjoint pairs of

functors:

Mod
F0

// HomMod
F1

//
oo HNA

F2
//

oo HAoo (2)

The three Fi are the left adjoints, and the right adjoints are all forgetful functors.

Since adjoint pairs can be composed to yield another adjoint pair, we obtain the

following immediate consequence.

Corollary 2.5. There is an adjoint pair of functors

F = F2 ◦ F1 ◦ F0 : Mod À HA : U,

in which F is the left adjoint and U(A,µ, α, η) = A.
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We call F : Mod → HA the free multiplicative Hom-associative algebra

functor.

For a module V , using the adjoint pairs in (2), there are natural maps

V ↪→ F0(V ) ↪→ F1(F0(V )) ³ F2(F1(F0(V ))) = F (V ). (3)

Denote by jV : V → F (V ) the composition of these maps. For an element a ∈ V ,

we will abbreviate jV (a) ∈ F (V ) to a.

2.5. Matrix Hom-associative algebras. For a module V , let M2(V ) denote the

module of 2× 2-matrices with elements in V .

Lemma 2.6. Let (A,µ, α, η) be a multiplicative Hom-associative algebra. Then

(M2(A), µ′, α′, η′) is also a multiplicative Hom-associative algebra in which:

(1) the multiplication µ′ is given by matrix multiplication and µ;

(2) α′ is given by α in each entry;

(3) η′(1) =

(
1A 0

0 1A

)
.

Proof. To see that µ′ satisfies Hom-associativity, let X = (xij), Y = (yij), and Z =

(zij) be elements in M2(A). Then the (i, j)-entries in (XY )α′(Z) and α′(X)(Y Z)

are
∑

1≤l,k≤2

(xikykl)α(zlj) and
∑

1≤l,k≤2

α(xik)(yklzlj),

respectively. Since A is a Hom-associative algebra, we have (xy)α(z) = α(x)(yz),

which shows that µ′ satisfies Hom-associativity. The other axioms for M2(A) to be

a multiplicative Hom-associative algebra are equally easy to check. ¤

Definition 2.7. Let a, b, c, and d be independent variables. Define

M(2) = F (k〈a, b, c, d〉),

where F is the free multiplicative Hom-associative algebra functor in Corollary 2.5.

In other words, M(2) is the free multiplicative Hom-associative algebra on four

variables. As in (3), we have a natural map j : k〈a, b, c, d〉 → M(2). With a slight

abuse of notation, we will use a, b, c, and d to denote their images under j as well.

We will use the following result to deduce that M(2) is the representing object

of the matrix functor M2 on the category HA of multiplicative Hom-associative

algebras.
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Theorem 2.8. Let S be a set, and let A be a multiplicative Hom-associative algebra.

Then there is a natural bijection

HA(F (k〈S〉), A) ∼=
∏

x∈S

A

given by f 7→ (f(x))x∈S for f ∈ HA(F (k〈S〉), A).

Proof. By the adjunction in Corollary 2.5, we have natural bijections

HA(F (k〈S〉), A) ∼= Mod(k〈S〉, A) ∼=
∏

x∈S

Mod(k〈x〉, A) ∼=
∏

x∈S

A,

as desired. ¤

Corollary 2.9. Let A be a multiplicative Hom-associative algebra. Then there is

a natural bijection

HA(M(2), A) ∼= M2(A)

given by

f 7−→
(

f(a) f(b)

f(c) f(d)

)

for f ∈ HA(M(2), A).

Proof. As a set, we have M2(A) = A4. The assertion now follows from Theo-

rem 2.8, since M(2) = F (k〈a, b, c, d〉). ¤

3. The Hom-bialgebra M(2)

The main purpose of this section is to observe that M(2) is not just a multi-

plicative Hom-associative algebra, but a Hom-bialgebra. In view of Corollary 2.9,

it is natural to ask if the matrix multiplication µ′ : M2(A) × M2(A) → M2(A)

(Lemma 2.6) can be universally represented by a comultiplication ∆ on the repre-

senting object M(2). This is true, as we will observe below (Theorem 3.3). The

comultiplication ∆ makes M(2) into a Hom-bialgebra (Corollary 3.8). We also ob-

serve that a unital version of the enveloping Hom-associative algebra UHLie(L) is

a Hom-bialgebra (Theorem 3.11).

First we need some preliminary observations.

Lemma 3.1. Let M and N be two modules. Then there is a natural isomorphism

of multiplicative Hom-associative algebras,

F (M)⊗ F (N) ∼= F (M ⊕N),

where F is the free multiplicative Hom-associative algebra functor (Corollary 2.5).
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Proof. This is essentially identical to the proof of the same property of the univer-

sal enveloping algebra functor. In one direction, using Corollary 2.5, the morphism

F (M ⊕N) → F (M)⊗ F (N)

is determined by the linear map

(x, y) 7→ x⊗ 1 + 1⊗ y

for x ∈ M and y ∈ N . In the other direction, the inclusions M ↪→ M ⊕ N and

N ↪→ M ⊕ N induce morphisms F (M) → F (M ⊕ N) and F (N) → F (M ⊕ N),

respectively, of multiplicative Hom-associative algebras. These last two morphisms

together induce the morphism F (M) ⊗ F (N) → F (M ⊕ N). It is easy to check

that the two morphisms that we have defined are inverse to each other. ¤

Lemma 3.2. Let A be a multiplicative Hom-associative algebra. Then there is a

natural bijection

HA(M(2)⊗M(2), A) ∼= M2(A)×M2(A).

Proof. Using Corollary 2.5, Corollary 2.9, and Lemma 3.1, we have the following

natural bijections:

M2(A)×M2(A) ∼= HA(M(2), A)×HA(M(2), A)

∼= Mod(k〈a, b, c, d〉, A)×Mod(k〈a, b, c, d〉, A)

∼= Mod(k〈a′, a′′, b′, b′′, c′, c′′, d′, d′′〉, A)

∼= HA(F (k〈a′, a′′, b′, b′′, c′, c′′, d′, d′′〉), A)

∼= HA(M(2)⊗M(2), A).

¤

In view of the bijections in Corollary 2.9 and Lemma 3.2, it makes sense to try

to represent the multiplication on M2(A) by a morphism ∆: M(2) → M(2)⊗M(2)

of multiplicative Hom-associative algebras. Using Corollary 2.5 and Lemma 3.1, we

have

HA(M(2),M(2)⊗M(2)) = HA(F (k〈a, b, c, d〉),M(2)⊗M(2))

∼= Mod(k〈a, b, c, d〉, F (k〈a′, a′′, b′, b′′, c′, c′′, d′, d′′〉)).
(4)

So it suffices to construct a suitable linear map

∆: k〈a, b, c, d〉 → F (k〈a′, a′′, b′, b′′, c′, c′′, d′, d′′〉).
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To this end, we define such a linear map ∆ as

∆

(
a b

c d

)
=

(
∆(a) ∆(b)

∆(c) ∆(d)

)
=

(
a′ b′

c′ d′

)(
a′′ b′′

c′′ d′′

)
. (5)

The matrix multiplication above is performed using the multiplication in the multi-

plicative Hom-associative algebra F (k〈a′, a′′, b′, b′′, c′, c′′, d′, d′′〉). For example, we

have ∆(a) = a′a′′ + b′c′′ and ∆(c) = c′a′′ + d′c′′.

Theorem 3.3. Let A be a multiplicative Hom-associative algebra. Under the iden-

tifications of Corollary 2.9 and Lemma 3.2, the multiplication on the multiplicative

Hom-associative algebra M2(A) is the induced map

∆∗ : HA(M(2)⊗M(2), A) → HA(M(2), A),

where ∆: M(2) → M(2)⊗M(2) is the map in (5).

Proof. This is just a matter of tracing through the various bijections. ¤

The following result shows that the map ∆ behaves like the dual of the multi-

plication in a Hom-associative algebra.

Proposition 3.4. The map ∆: M(2) → M(2)⊗M(2) in (5) satisfies

(∆⊗ α) ◦∆ = (α⊗∆) ◦∆,

where α : M(2) → M(2) is part of the structure of the multiplicative Hom-associative

algebra M(2).

Proof. By Corollary 2.5, it suffices to check this equality on the generators a, b, c,

and d. Using the notations in (5), we have

((∆⊗ α) ◦∆)

(
a b

c d

)
=

[(
a′ b′

c′ d′

)(
a′′ b′′

c′′ d′′

)](
α(a′′′) α(b′′′)

α(c′′′) α(d′′′)

)

=

(
α(a′) α(b′)

α(c′) α(d′)

)[(
a′′ b′′

c′′ d′′

)(
a′′′ b′′′

c′′′ d′′′

)]

= ((α⊗∆) ◦∆)

(
a b

c d

)
.

In the second equality above, we used the Hom-associativity of the multiplication

in M(2)⊗3 ∼= F (k〈a′, a′′, a′′′, . . .〉) (Lemma 3.1). ¤

The previous result motivates the following definition, which is a slight modifi-

cation of [19] (Remark 3.3).

Definition 3.5. A Hom-bialgebra is a quadruple (B, µ, ∆, α) in which:
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(1) (B,µ, α) is a (non-unital) multiplicative Hom-associative algebra;

(2) The linear map ∆: B → B⊗2, the comultiplication, is Hom-coassociative,

in the sense that

(∆⊗ α) ◦∆ = (α⊗∆) ◦∆.

(3) ∆ is a morphism of Hom-associative algebras.

Example 3.6. A bialgebra (B,µ, ∆) in the usual sense is also a Hom-bialgebra

with α = IdB . ¤

Example 3.7. More generally, let (B, µ, ∆) be a bialgebra, and let α : B → B

be a morphism of bialgebras. Then there is a Hom-bialgebra Bα = (B, µα, ∆α, α)

in which µα = α ◦ µ and ∆α = ∆ ◦ α. In fact, since B is a bialgebra and α is a

bialgebra morphism, one only needs to observe that µα and ∆α are Hom-associative

and Hom-coassociative, respectively. The Hom-associativity of µα is shown in [25,

Corollary 2.5]. The Hom-coassociativity of ∆α is shown by the dual argument; see

[21, Theorem 3.16]. In summary, a bialgebra B deforms into a Hom-bialgebra Bα

via any bialgebra endomorphism α. Moreover, if α = Id, then we have BId = B. ¤

Corollary 3.8. Equipped with the comultiplication ∆: M(2) → M(2) ⊗M(2) in

(5), the multiplicative Hom-associative algebra M(2) becomes a Hom-bialgebra.

Proof. This is an immediate consequence of Definition 2.7, the bijections (4), and

Proposition 3.4. ¤

3.1. Enveloping Hom-bialgebra. The enveloping algebra U(L) of a Lie algebra

L is a bialgebra. In the rest of this section, we observe that a unital version of the

enveloping Hom-associative algebra UHLie(L) of a multiplicative Hom-Lie algebra

L is a Hom-bialgebra. Let us first recall some relevant definitions.

A multiplicative Hom-Lie algebra is a (non-unital) Hom-nonassociative al-

gebra (L, [−,−], α), satisfying the following three conditions for x, y, z ∈ L:

(1) [x, y] = −[y, x] (skew-symmetry);

(2) 0 = [α(x), [y, z]] + [α(z), [x, y]] + [α(y), [z, x]] (Hom-Jacobi identity);

(3) α([x, y]) = [α(x), α(y)] (multiplicativity of α).

Note that a Lie algebra is a multiplicative Hom-Lie algebra with α = Id, since in

this case the Hom-Jacobi identity reduces to the usual Jacobi identity.

A morphism of multiplicative Hom-Lie algebras is a morphism of the underlying

Hom-nonassociative algebras. The category of multiplicative Hom-Lie algebras is

denoted by HL. Note that the multiplicativity of α is not part of the original

definition of a Hom-Lie algebra in [8,18].
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Given a (non-unital) multiplicative Hom-associative algebra (A,µ, α), one can as-

sociate to it a multiplicative Hom-Lie algebra (HLie(A), [−,−], α) in which HLie(A)

is equal to A as a module and [x, y] = xy−yx for x, y ∈ A [18, Proposition 1.7]. This

construction gives a functor HLie from (non-unital) multiplicative Hom-associative

algebras to multiplicative Hom-Lie algebras. In [24, section 4.2] the author con-

structed the left adjoint UHLie of HLie. It is defined as

UHLie(L) = FHNAs(L)/I∞

for a multiplicative Hom-Lie algebra L. Here FHNAs is the free non-unital Hom-

nonassociative algebra functor in (1) and I∞ is a certain submodule.

We now modify UHLie slightly to account for the unit. Fix a multiplicative

Hom-Lie algebra (L, [−,−], α). Consider the Hom-nonassociative algebra

(F1(L), µF , αF , ηF ),

obtained by applying the functor F1 (Theorem 2.3) to the Hom-module (L,α). As

in the proof of Theorem 2.4, we consider the following sequence of submodules in

F1(L):

I
1

= 〈im(µF ◦ (µF ⊗ αF − αF ⊗ µF ); im(αF ◦ µF − µF ◦ α⊗2
F );

[x, y]− (xy − yx) for x, y ∈ L〉
I

n+1
= 〈In ∪ αF (I

n
)〉, and I

∞
=

⋃

n≥1

I
n
.

It is easy to check that the module

U(L) = F1(L)/I
∞

,

when equipped with the induced maps of µF , αF , and ηF , is a multiplicative Hom-

associative algebras. Essentially the same proof as in [24, section 4.2] gives the

following result.

Proposition 3.9. There is an adjoint pair of functors

U : HL À HA : HLie,

in which U is the left adjoint.

Using the proof of Lemma 3.1, we obtain the following result.

Lemma 3.10. Let L and L′ be multiplicative Hom-Lie algebras. Then there is a

natural isomorphism

U(L)⊗ U(L′) ∼= U(L⊕ L′)

of multiplicative Hom-associative algebras.
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Fix a multiplicative Hom-Lie algebra L. Now we equip the multiplicative Hom-

associative algebra U(L) with a comultiplication. Consider the linear map

∆L : L → L⊕ L

given by x 7→ (α(x), α(x)). This is a morphism of multiplicative Hom-Lie algebras.

Applying the functor U above, we obtain a morphism

∆L : U(L) → U(L⊕ L) ∼= U(L)⊗ U(L),

x 7−→ α(x)⊗ 1 + 1⊗ α(x)
(6)

of multiplicative Hom-associative algebras.

Theorem 3.11. Let L be a multiplicative Hom-Lie algebra. Equipped with the co-

multiplication ∆L in (6), the multiplicative Hom-associative algebra U(L) becomes

a Hom-bialgebra.

Proof. It remains to show that ∆L is Hom-coassociative. By Proposition 3.9, it

suffices to check this for elements x ∈ L. We compute as follows:

((α⊗∆L) ◦∆L)(x) = (α⊗∆L)(α(x)⊗ 1 + 1⊗ α(x))

= α2(x)⊗ 1⊗ 1 + 1⊗ (α2(x)⊗ 1 + 1⊗ α2(x))

= α2(x)⊗ 1⊗ 1 + 1⊗ α2(x)⊗ 1 + 1⊗ 1⊗ α2(x)

= (∆L ⊗ α)(α(x)⊗ 1 + 1⊗ α(x))

= ((∆L ⊗ α) ◦∆L)(x).

This shows that ∆L is Hom-coassociative, as desired. ¤

4. The Hom-affine plane as an M(2)-comodule Hom-algebra

The main purpose of this section is to generalize to the Hom-algebra setting

the following fact about the affine plane: Let M(2) denote the polynomial algebra

k[a, b, c, d]. It is a bialgebra when equipped with the comultiplication ∆: M(2) →
M(2)⊗2, defined exactly as in (5). Then there is an M(2)-comodule algebra struc-

ture on the affine plane A2 = k[x, y]. In matrix notation, the M(2)-comodule

structure map on A2 is given by

∆A

(
x

y

)
=

(
∆A(x)

∆A(y)

)
=

(
a b

c d

)
⊗

(
x

y

)
=

(
a⊗ x + b⊗ y

c⊗ x + d⊗ y

)
.

The reader can consult, e.g., [11, Theorem III.7.3], for the proof of the above

statement.

To extend the above statement to the Hom-algebra setting, we first need to

define the concept of comodule Hom-algebra.
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By a multiplicative Hom-coassociative coalgebra, we mean a triple (C, ∆, α)

in which:

(1) (C, α) is a Hom-module;

(2) The comultiplication ∆: C → C⊗2 is Hom-coassociative, i.e., (∆⊗α)◦∆ =

(α⊗∆) ◦∆;

(3) The linear map α is comultiplicative, i.e., ∆ ◦ α = α⊗2 ◦∆.

Note that our definition of a multiplicative Hom-coassociative coalgebra is slightly

different from that of [19, Definition 1.4]. If (B, µ, ∆, α) is a Hom-bialgebra, then

clearly (B, ∆, α) is a multiplicative Hom-coassociative coalgebra.

Let (C, ∆C , αC) be a multiplicative Hom-coassociative coalgebra, and let (M, αM )

be a Hom-module. A C-comodule structure on M consists of a linear map

∆M : M → C ⊗M such that (∆C ⊗ αM ) ◦∆M = (αC ⊗∆M ) ◦∆M .

Definition 4.1. Let (H,µH , ∆H , αH) be a Hom-bialgebra, and let (A,µA, αA) be

a multiplicative Hom-associative algebra. Then an H-comodule Hom-algebra

structure on A consists of an H-comodule structure ∆A : A → H ⊗ A on A such

that ∆A is a morphism of Hom-associative algebras. We call ∆A the structure

map of the H-comodule Hom-algebra A.

The above definition of an H-comodule Hom-algebra coincides with the usual

definition of an H-comodule algebra when H is a bialgebra and A is an associative

algebra (i.e., when αH = IdH and αA = IdA). The following result shows that

comodule algebras deform into comodule Hom-algebras via endomorphisms. This

gives a large class of examples of comodule Hom-algebras.

Theorem 4.2. Let (H, µH ,∆H) be a bialgebra, and let (A,µA) be an H-comodule

algebra with structure map ρ : A → H ⊗ A. Let αH : H → H be a bialgebra mor-

phism, and let αA : A → A be an algebra morphism such that

ρ ◦ αA = (αH ⊗ αA) ◦ ρ. (7)

Define the map ρα = ρ ◦ αA : A → H ⊗A. Then:

(1) (H, µα,H = αH◦µH , ∆α = ∆H◦αH , αH) is a Hom-bialgebra, and (A, µα,A =

αA ◦ µA, αA) is a multiplicative Hom-associative algebra.

(2) ρα is the structure map of an H-comodule Hom-algebra structure on A,

where H and A are given the Hom-bialgebra and multiplicative Hom-associative

algebra structures, respectively, of the previous statement.

Proof. The first assertion is from Example 3.7. To prove the second assertion, we

need to show that:
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(1) ρα gives the Hom-module (A, αA) the structure of an H-comodule, where

H denotes the multiplicative Hom-coassociative coalgebra (H, ∆α = ∆H ◦
αH , αH);

(2) ρα is a morphism of Hom-associative algebras.

First, ρα gives (A,αA) the structure of an H-comodule if and only if

(αH ⊗ ρα) ◦ ρα = (∆α ⊗ αA) ◦ ρα. (8)

The following commutative diagram shows that (8) is true:

A αA

//

ρα

²²

GF ED
ρα

²²

A ρ
//

ρ

}}{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{
αA

²²

H ⊗A

αH⊗αA

²²

αH⊗ρα

¡¡

A
ρ

//

ρ

²²

H ⊗A

IdH⊗ρ

²²

H ⊗A
αH⊗αA

//@A BC
∆α⊗αA

OO
H ⊗A

∆H⊗IdA
// H⊗2 ⊗A.

The lower triangle and the upper-right square are commutative by (7). The lower-

right square is commutative because A is an H-comodule (in the usual sense) by

assumption.

That ρα is a morphism of Hom-associative algebras follows from the following

commutative diagram, where ν = (µH⊗µA)◦ (Id⊗τ ⊗Id) and η = (µα,H⊗µα,A)◦
(Id⊗ τ ⊗ Id):

A⊗A
α⊗2

A

//

µA

²²
µα,A

ÂÂ

GF ED
ρ⊗2

α

²²

A⊗A
ρ⊗2

//

µA

²²

H ⊗A⊗H ⊗A

ν

²²

η

¡¡

A
αA

//

αA

²²

A
ρ

//

αA

²²

H ⊗A

αH⊗αA

²²

A
αA

//@A BC
ρα

OO
A

ρ
// H ⊗A.

The upper-left square is commutative because αA is a morphism of algebras. The

lower-right square is commutative by (7). The upper-right square is commutative

because ρ : A → H ⊗A is a morphism of algebras. ¤



HOM-BIALGEBRAS AND COMODULE HOM-ALGEBRAS 61

4.1. The Hom-affine plane A2. The usual affine plane A2 is the polynomial

algebra k[x, y], i.e., the free commutative algebra on two generators. Thus, it

makes sense to define the Hom-affine plane as A2 = F (k〈x, y〉), where x and

y are two independent variables and F is the free multiplicative Hom-associative

algebra functor (Corollary 2.5).

We are now ready to show that A2 is an M(2)-comodule Hom-algebra.

Theorem 4.3. There is an M(2)-comodule Hom-algebra structure on the Hom-

affine plane A2 given by

∆A

(
x

y

)
=

(
∆A(x)

∆A(y)

)
=

(
a b

c d

)
⊗

(
x

y

)
=

(
a⊗ x + b⊗ y

c⊗ x + d⊗ y

)
(9)

on the generators x, y ∈ A2.

Proof. By Corollary 2.5, we have an adjunction

HA(A2,M(2)⊗A2) ∼= Mod(k〈x, y〉,M(2)⊗A2).

Thus, to define a Hom-associative algebra morphism ∆A : A2 → M(2) ⊗ A2, it

suffices to define a linear map ∆A : k〈x, y〉 → M(2)⊗A2. We define such a linear

map as in (9).

It remains to show that ∆A gives A2 the structure of an M(2)-comodule. In

other words, we need to check the equality

(∆M ⊗ αA) ◦∆A = (αM ⊗∆A) ◦∆A.

Here ∆M and αM denote the comultiplication ∆ (defined in (5)) and α in M(2),

respectively. Since ∆A and ∆M are morphisms of Hom-associative algebras and

since αA and αM are both multiplicative, it suffices to check this equality on the

generators x and y in A2. We will use the identification

M(2)⊗M(2)⊗A2
∼= F (k〈a′, a′′, b′, b′′, c′, c′′, d′, d′′, x, y〉) (10)

of multiplicative Hom-associative algebras provided by Lemma 3.1. Then, on the

one hand, we have

((∆M ⊗ αA) ◦∆A)

(
x

y

)
=

[(
a′ b′

c′ d′

)(
a′′ b′′

c′′ d′′

)](
α(x)

α(y)

)

=

(
(a′a′′)α(x) + (b′c′′)α(x) + (a′b′′)α(y) + (b′d′′)α(y)

(c′a′′)α(x) + (d′c′′)α(x) + (c′b′′)α(y) + (d′d′′)α(y)

)
.
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On the other hand, we have

((αM ⊗∆A) ◦∆A)

(
x

y

)
=

(
α(a′) α(b′)

α(c′) α(d′)

)[(
a′′ b′′

c′′ d′′

)(
x

y

)]

=

(
α(a′)(a′′x) + α(b′)(c′′x) + α(a′)(b′′y) + α(b′)(d′′y)

α(c′)(a′′x) + α(d′)(c′′x) + α(c′)(b′′y) + α(d′)(d′′y)

)
.

Using the Hom-associativity in the Hom-associative algebra in (10), we conclude

that (∆M ⊗αA)◦∆A and (αM ⊗∆A)◦∆A are equal. This shows that ∆A as in (9)

gives the Hom-affine plane A2 the structure of an M(2)-comodule Hom-algebra. ¤
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