
International Electronic Journal of Algebra

Volume 8 (2009) 80-113

IDEALS AND OVERRINGS OF DIVIDED DOMAINS

Gabriel Picavet

Received: 27 November 2009; Revised: 3 June 2010

Communicated by Abdullah Harmancı

Abstract. New properties of divided domains R are established by looking

at multiplicatively closed subsets associated to ring morphisms. Let I be an

ideal of R. We exhibit primary ideals, like I
√

I and In if I is primary. We

show that Ass(I) = V(I) ∩ Spec(RMax(Ass(I))). Moreover, the image of the

maximal spectrum of (I : I) is contained in Ass(I). We show that certain

intersections of ideals are primary ideals. Goldman prime ideals are prime g-

ideals. The characterization of maximal flat epimorphic subextensions gives as

a result that R is a valuation subring of Prüfer hulls. We characterize Fontana-

Houston divided Ω-domains, divided APVDs and divided PPC-domains.
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1. Introduction and notation

This paper deals with commutative unital rings and their (homo)morphisms.

Dobbs introduced the divided property [7]. Let R be an integral domain with

quotient field K, with R 6= K (i.e. R is not a field). A prime ideal P of R is

called divided if PRP = P (equivalently, P is comparable under inclusion to any

(principal) ideal of R). Then R is termed divided if each of its prime ideals is

divided. A divided domain is a quasilocal going-down domain; that is, each of its

overring extensions has the going-down property [7]. We also consider the divided

rings of Badawi [1] that are rings in which each (principal) ideal is comparable to

any prime ideal. A commutative ring R is called treed if two incomparable prime

In memory of P. Samuel.
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ideals of R are coprime. In case R is quasilocal, the treed property for R means

that the spectrum Spec(R) of R is linearly ordered under inclusion. A going-down

integral domain is a treed domain.

We give below a short survey of the main results of the paper. The reader is

thereby invited to look at the definitions and notation involved in the different

sections and, in particular, at the end of this section.

We are aiming to exhibit new results on divided integral domains. As a factor

ring of a divided ring is a divided ring, we are lead to give results on divided rings

and also on quasilocal treed rings, when possible. This provides us results on ideals

and conductor overrings of divided domains. Key tools are multiplicatively closed

subsets (mcs), arising from elements that become units through a ring morphism.

Section 2 introduces two kinds of mcss and gives useful technical results. If I is

an ideal of a ring R, the elements of the mcs Λ(I) are x ∈ R that becomes a unit

in Tot(R/I). Another one mcs is U(I) = {x ∈ R | xI = I}, widely used in the

valuation domain theory [29]. The sets Assf (I) of all Bourbaki associated prime

ideals of I and Ass(I) of all Krull associated prime ideals of I are closely linked to

these mcss. A first observation is that Λ = U on a treed quasilocal domain R if

and only if R is a divided domain (see Section 4).

In Section 3, we consider the properties of the mcs Sf = {s ∈ A | f(s) ∈ U(B)}
associated to a GD ring morphism f : A → B, in case A is a quasilocal treed ring

and in particular a divided ring. We get a key result; that is, Pf := A\Sf = ∪ [A∩
N | N ∈ Max(B)] ∈ Spec(A), Spec(B | A) = (Pf )↓ and there is a factorization

A → APf
→ B, where APf

→ B has the LO and GD properties. If, in addition, R

is a divided ring, then Pf = ∩ [As | s ∈ Sf ]. In case R is an integral domain and f is

a flat epimorphism, then B = APf
(see Theorem 3.3). As a consequence, when A is

an integral domain, A → APf
is the Morita maximal flat epimorphic subextension

of A → B [39]. These results are a powerful tool in the sequel. For instance, we

show that if R is a divided ring, then the maximal flat epimorphic extension of R is

R → Tot(R). When R is a divided domain, we also give information on the Prüfer

hull P (R, T ) associated to an extension of integral domain R ⊆ T by Knebusch and

Zhang [36]. For instance, R is a valuation subring of P (R, T ) and P (R, T ) = Rp

for some p ∈ Spec(R). Applying this result to the Prüfer hull of R gives pleasant

results for P (R). In particular, x ∈ P (R) \R ⇒ x−1 ∈ R.

This section also contains results on ideals of a divided ring. Clearly, each

nonzero ideal of a divided ring R is primal and an ideal I 6= 0 of R is primary if and

only if Iλ := R\Λ(I) =
√

I. Moreover, if R is an integral domain, IRP = I for each
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prime ideal P ⊇ Iλ, whence IRΛ(I) = I. We show that a treed quasilocal ring R is

such that Tot(R) is a quasilocal Kasch ring. Among many consequences deduced

for factor rings, we get that an ideal, whose annihilator is zero, contains a regular

element, so that Tot(R) = Q(R). One main result is that Ass(I) = Assf (I) =

V(I) ∩ (Iλ)↓ for an ideal I 6= 0 of a divided ring R.

Section 4 is concerned with conductor overrings (I : I) associated to a nonzero

ideal I of an integral domain R. We recover results known for valuation domains.

Actually, altough we get many results valid for quasilocal treed domains, we give

here them for divided domains (R,M). Let π be the natural map R → (I : I) and

I] := R \ U(I), then I] = Iλ = Pπ and R → RΛ(I) is the maximal flat epimorphic

subextension of π. If I is a fg-ideal, then Iλ = M and if not, (R : I) = (I : I). When

P 6= 0 is a prime ideal, I 6⊆ P ⇒ (I : I) ⊆ (P : P ). Hence the inclusion defines

a linear order over the family of overrings (P : P ), where P ∈ Spec(R), P 6= 0.

We pause here to claim that if I1, . . . , In are ideals of a divided ring, containing√
0 and such that I1 is a P1-primary ideal and

√
I1 ⊆

√
Ik for k = 2, . . . , n, then

I1 · · · In is a P1-primary ideal. Hence any power of a primary ideal containing
√

0

is primary as well as I
√

I for any nonzero ideal I ⊇√0. Theorem 4.7 is the main

result of this section, proving that tπ(Max((I : I))) ⊆ Ass(I). Hence, in case I

is a primary ideal, tπ(Max((I : I))) = {Iλ}. This generalizes Okabe’s result [41,

Theorem 2.2] and shows that an integral domain R is divided if and only if each

nonzero nonmaximal prime ideal is antesharp (see [22]). We get also that if (R : I)

is a ring, then Iv is a primary ideal.

Section 5 deals only with divided domains R. The consideration of rings of

sections Γ(X) for X ⊂ Spec(R) exhibits prime ideals that are intersections of

certain families of ideals. It is enough to use SX := Sf = {s ∈ R | X ⊆ D(s)},
where f : R → Γ(X) is the natural map, to get a prime ideal PX = ∩ [Rs |
s ∈ SX ] = ∩ [In | n ∈ N, X ⊆ D(I), I ∈ If (R)]. For instance, if X = D(I) for

I ∈ If (R), we get the Okabe’s result: [In | n ∈ N] is a prime ideal PI , such that

(PI)↓ = D(I) [40, Corollary 2.7]. In particular, PI is a prime g-ideal. Actually,

we show that Goldman prime (G)-ideals are identical to prime g-ideals. As a

consequence, each nonzero nonmaximal prime ideal is divisorial. Moreover, R is

an open domain if and only if R is a G-ideal domain. Theorem 5.8 shows that

Gilmer’s characterization [30, Theorem 17.3] of a nonzero unbranched prime ideal

P of a Prüfer domain R is still valid and is equivalent to RP is fragmented. We give

a characterization of the Fontana-Houston divided Ω-domains as QQR-domains in

which each nonzero prime ideal is a G-ideal. In that case, R is a propen domain
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and RP is a valuation Ω-domain for each nonmaximal prime ideal. This section

ends with some calculations of the complete integral closure of a divided domain.

Section 6 deals with some applications. We begin with a descent result of the

divided property. Then we focus on divided i-domains and provide conditions for

an overring to be divided. We give criteria for the natural map R → (I : I) to be

integral. We characterize APVDs inside the divided context. We show that divided

Okabe’s PPC-domains (R, M) [41] are characterized by R is an APVD such that

(M : M) is the minimal overring of R. We end by giving conditions on the sequence

{Ass(In)}n>0 to be stationary for an ideal I of a divided domain. This question

was the subject of many papers in the Noetherian context.

We now give some notation. Let R be an arbitrary commutative unital ring,

then Tot(R) is its total quotient ring, Q(R) is its complete quotient ring, U(R) is

the set of all its units, Max(R) is the set of all maximal ideals, ♥(R) = U(R)∪ {0}
and ( If (R)) I(R) is the set of all its (finitely generated) ideals I 6= R. An overring

of a ring R is an R-subalgebra of Tot(R) and R′ denotes the integral closure of R in

Tot(R). If f : R → S is a ring morphism, Spec(S | R) is the image of the spectral

map tf : Spec(S) → Spec(R). If tf is injective, f is called an i-morphism. For

J ⊆ S, we occasionally write J ∩R instead of f−1(J).

We denote by P ↓ := Spec(RP | R) the generalization of P ∈ Spec(R) and

Q ∈ P ↓ ⇔ Q ⊆ P for Q ∈ Spec(R). Now X↓ := ∪ [P ↓ | P ∈ X] is the generalization

of X ⊆ Spec(R) and X is said to be stable under generalization if X = X↓. We

also set X↑ := {Q ∈ Spec(R) | P ⊆ Q for some P ∈ X} (the specialization of X).

For I ∈ I(R), we set V(I) := {P ∈ Spec(R) | I ⊆ P} (a typical Zariski closed

subset of Spec(R)), D(I) := Spec(R) \ V(I). Now Z(I) is the set of x ∈ R that

are zero-divisors in R/I, Min(I) is the set of minimal prime ideals of I and we set

Min(R) := Min(0) and Minp(R) := {P ∈ Spec(R) | P ∈ Min(Ra) for some a ∈
R \ {0}}

When I and J are ideals of a ring R, we set I : J := {x ∈ R | xJ ⊆ I}. For an

integral domain R with quotient field K, we set (I : J) := {x ∈ K | xJ ⊆ I} if I

and J are R-submodules of K.

A multiplicatively closed subset of a ring is termed a mcs and a smcs, when

saturated. We abbreviate the words “finitely generated ideal” by fg-ideal, going-

down by GD and lying-over by LO.
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2. Zero divisors of factor rings and associated mcs

This section deals with technical results on zero divisors in arbitrary factor rings

and some associated mcs. Here pI is the natural map R → R/I → Tot(R/I) for

I ∈ I(R).

2.1. The smcs Λ and associated prime ideals. Let I ∈ I(R), we set Λ(I) :=

{x ∈ R | I : x = I} = {x ∈ R | pI(x) ∈ U(Tot(R/I))} and Iλ := R \ Λ(I) = Z(I)

(see our paper [43]). Then Λ(I) is a smcs of R and I is called a primal ideal if Iλ

is a (prime) ideal, and then I is called an Iλ-primal ideal. Note that
√

I ⊆ Iλ and

that
√

I = Iλ ⇔ I is a primary ideal.

Then Assf (I) is the set of all Bourbaki associated prime ideals of I. A prime

ideal P belongs to Assf (I) if P ∈ Min(I : r) for some r ∈ R. It is well known that

Iλ = ∪ [P | P ∈ Assf (I)],
√

I = ∩ [P | P ∈ Assf (I)] and V(I) = Assf (I)↑ (see [4,

Ex. 17, p.165 and Ex. 12, p.169 ]).

We also introduce the set Ass(I) of all Krull associated prime ideals of I as in

[27, Section 2]. A prime ideal P of R belongs to Ass(I) if for each x ∈ P there is

some y ∈ R such that x ∈ I : y ⊆ P. In view of [27, Lemma 2.1], P ∈ Spec(R) is

in Ass(I) if and only if P is a union of some elements of Assf (I). It follows that

Assf (I) ⊆ Ass(I) and I is a primal ideal if and only if Iλ ∈ Ass(I).

Note that Iλ = ∪ [P | P ∈ Ass(I)],
√

I = ∩ [P | P ∈ Ass(I)] and Ass(I) ⊆ V(I).

Lemma 2.1. Let R be a ring, I ∈ I(R) and P ∈ Ass(I), then the maximal ideal

N of (R/I)P consists of zero divisors.

Proof. Set P := P/I and S := R/I. If z = x/s is an element of N , where x ∈ S

and s /∈ P , then x belongs to P . Hence there is some y ∈ S such that x ∈ 0 : y ⊆ P .

It follows easily that x/1 is a zero-divisor. ¤

Proposition 2.2. The set I(R) is partially ordered by the relation R defined by

IRJ ⇔ there is some (s)mcs S of R such that J = IS ∩ R for I, J ∈ I(R). Then

IRJ ⇒ I ⊆ J and Λ(I) ⊆ Λ(J).

Proof. The proof is straightforward. ¤

2.2. The smcs Λ and ring morphisms. If f : R → T is a ring morphism, the

mapping J 7→ I := f−1(J) defines an application tf : I(T ) → I(R), which verifies

the following properties:

(λ1): Assf (I) ⊆ tf(Assf (J)); whence f−1(Λ(J)) ⊆ Λ(I) and Iλ ⊆ f−1(Jλ).

(λ2): Set K := JΛ(I) ∩ T (so that JRK), then f−1(Λ(K)) = Λ(I), f−1(K) = I

and f−1(Kλ) = Iλ.



IDEALS AND OVERRINGS OF DIVIDED DOMAINS 85

(λ3): If tf is injective, then f−1(Λ(J)) = Λ(f−1(J)) for J ∈ I(T ).

Note that tf is injective if and only if J = f−1(J)T for all J ∈ I(T ). This

property holds in the following cases:

• f is a flat epimorphism [38, Proposition 2.1, p.111] (an example is given by

R → RS , where S is a mcs of R).

• f verifies the condition (C): for each t ∈ T there are some r ∈ R and u ∈ U(T )

such that t = uf(r). A surjective morphism verifies (C).

The proofs of (λ1) and (λ3) may be found in our paper [43] and the others are

elementary.

Lemma 2.3. Let f : R → T be a ring morphism, J ∈ I(T ) and I := f−1(J).

(a) If f is a flat morphism, then f(Λ(I)) = Λ(IT ) ∩ f(R).

(b) If I is irreducible, then Iλ ∈ tf(V(J) ∩ Spec(TΛ(J) | T )).

Proof. (a) Use the following facts. A flat morphism transforms a regular element

into a regular element. Moreover, R/I → T/IT is flat and injective, because

I = f−1(J) and then I = f−1(IT ).

(b) I is primal, because irreducible and therefore P := Iλ ∈ Ass(I). We can

reduce to a quasilocal ring (R, M), where M = Z(0) and 0 is irreducible in R (con-

sider Tot(R/I) = (R/I)P → (T/J)P and use Lemma 2.1). From [31, Proposition

1.2], we derive that ∪ [0 :R x | x ∈ M \ {0}] = M , where the set {0 :R x} is directed

under inclusion. If T is an extension ring of R, then L := ∪[0 :T x | x ∈ M \ {0}]
is an ideal of T such that any minimal prime ideal N of L contracts to M . Then

N consists of zero-divisors. Indeed, for an element z ∈ N there is some s /∈ N such

that szn ∈ L for a positive integer n. Choose an integer n which is minimum for

the preceding property. Then there is some x ∈ M \ {0} such that sznx = 0 and

t := szn−1x 6= 0. It follows that tz = 0 and z is a zero-divisor of T . Therefore,

N ∩ Λ(0) = ∅ and N ∩ T ∈ V(J) ∩ Spec(TΛ(J) | T ) by (a) and (λ3). ¤

For a mcs S of a ring R and I an ideal of R, we set I(S) := IS∩R; so that, IRI(S)

and Λ(I) ⊆ Λ(I(S)) = Λ(IS)∩R by (λ3) applied to R → RS and Proposition 2.2. If

S = R \ P , where P ∈ Spec(R), we recover the isolated P -component I(P ) := I(S)

of I. Then M is a minimal prime ideal of I if and only if I(M) is a M-primary

ideal [37, Proposition 6] and I(M) is the smallest M-primary ideal containing I.

(λ4): Let I ∈ I(R) with I 6= 0 and P a prime ideal of R with I ⊆ P , then

(IP )λ ∩ R = I(P )λ. In that case, I(P ) = I if Iλ ⊆ P and I ⊂ I(P ) if P ⊂ Iλ [27,

Lemma 1.3]. If I is a P -primal ideal (hence P = Iλ), we get I(P ) = I.
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2.3. The smcs U in a quasilocal treed domain. Let R be a quasilocal treed

domain. We introduce a prime ideal linked to an ideal and used in the theory of

valuation domains [29, p. 69]. Let I 6= 0 be an ideal of R. We set I] := {r ∈ R |
rI 6= I} = R \ U(I), where U(I) := {r ∈ R | rI = I} and we also set 0] = 0. As

U(I) is a smcs, I] is a prime ideal. We list some properties of the operation I 7→ I],

within a quasilocal treed domain R:

(]1): I] is a prime ideal of R, containing I.

(]2): (I])] = I].

(]3): IRI] = I.

(]4): (rI)] = I] for r ∈ R, r 6= 0.

(]5): (IJ)] ⊆ I] ∩ J].

(]6): If P is a prime ideal of R, then RP ⊆ (I : I) ⇔ I] ⊆ P.

(]7): If f : R → T is a ring morphism and I an ideal of R, then U(I) ⊆
f−1(U(IT )); so that, f−1((IT )]) ⊆ I].

(]8): U(I) ⊆ Λ(I).

For (]1) to (]3), rework the proof of [29, Lemma 4.3]. Now (]6) is a consequence

of RP ⊆ (I : I) ⇔ 1/s ∈ (I : I) for s /∈ P.

We note here that (I : I) = RI] = RΛ(I), when R is a valuation domain [29,

Lemma 4.3] and [23, Lemma 3.1.9]. This result will be extended in a next section

to the divided domains context.

3. Properties of quasilocal treed or divided domains

Most of results of this section are derived from the consideration of smcss linked

to ring morphisms. More precisely, to a ring morphism f : A → B, we associate

the smcs Sf := {s ∈ A | f(s) ∈ U(B)}. We first look at some properties of smcs.

When (R,M) is a quasilocal ring, the intersection of an empty family contained

in I(R) is M by convention.

Proposition 3.1. Let (R, M) be a quasilocal treed ring and S a mcs of R such that

0 /∈ S. Then RS = RP for some prime ideal P of R, such that ∩ [Rs | s ∈ S] ⊆ P ,

P ∩ S = ∅ and P ↓ = ∩ [D(s) | s ∈ S].

Proof. We can assume that S is a smcs and then R \S = ∪ [P | P ∈ Spec(R),P∩
S = ∅]. As Spec(R) is linearly ordered, P := R \ S ∈ Spec(R). Set I := ∩ [Rs | s ∈
S∩M ]. Then I ⊂ P holds if S∩M = ∅ since I = M by convention. We can assume

that S ∩M 6= ∅. Let x ∈ ∩ [Rs | s ∈ S ∩M ] and assume that x /∈ P . Then x2 ∈ S

and x = rx2 for some r ∈ R. Hence rx is an idempotent of R. As R is connected,
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either rx = 0 or rx = 1. Then either x = 0 or x ∈ U(R) is a contradiction and

x ∈ P . Now Spec(RS | R) = Spec(RP | R) gives the last statement. ¤

Okabe proved the following result [41, Corollary 2.7]. Let I ∈ If (R), where R is

a divided domain, then P := ∩ [In | n ∈ N] ∈ Spec(R). This result is generalized

below and in a next section. If I is a principal ideal, Okabe’s result is a consequence

of the next corollary.

Corollary 3.2. Let (R,M) be a quasilocal ring.

(a) If R is a divided ring and S a mcs of R with 0 /∈ S, then RS = RP , where

P := ∩ [Rs | s ∈ S \ U(R)] ∈ Spec(R) is such that P ↓ = ∩ [D(s) | s ∈ S].

In particular, let a ∈ R \ ♥(R), then Ra = RP , where P := ∩ [Ran | n ∈ N] ∈
Spec(R) is such that P ↓ = D(a).

(b) If for each a ∈ R \♥(R), there is a prime ideal P ⊆ Ra, such that Ra = RP ,

then R is a divided ring.

Proof. (a) It is enough to show that P ⊆ ∩ [Rs | s ∈ S]. But from s /∈ P for s ∈ S,

we deduce that P ⊆ Rs because R is divided.

Assume that the hypotheses of (b) hold. Let Q ∈ Spec(R) and a ∈ R \Q. If a is

a unit, then Q ⊆ Ra = R. If not, there is some P ∈ Spec(R), such that Ra = RP

and P ⊆ Ra. Then Q ⊆ P ⇒ Q ⊆ Ra. Hence, R is a divided ring. ¤

Let X 6= ∅ be a subset of Spec(A), where A is an integral domain. The ring of

global sections over X is Γ(X) := ∩ [AP | P ∈ X]. We will consider epimorphisms

of the category of commutative rings and in particular flat epimorphisms (see [38,

Chapter 4]). They do not need to be surjective maps.

The following theorem is a (the) key result of this paper.

Theorem 3.3. Let f : A → B be a going-down ring morphism, where A is a

quasilocal treed ring.

(a) Sf is a smcs of A, Pf := A \ Sf ∈ Spec(A) is such that ∩ [As | s ∈ Sf ] ⊆
Pf = ∪ [A ∩ N | N ∈ Max(B)] and Spec(B | A) = (Pf )↓. If in addition, A is a

divided ring, then ∩ [As | s ∈ Sf ] = Pf .

(b) There is a factorization A → APf
→ B, where APf

→ B has the lying-over

property and the going-down property.

(c) In case A is an integral domain, f is a flat epimorphism and X := Spec(B |
A), then B ' Γ(X), Pf = ∪ [P | P ∈ X] and B = APf

.

Proof. (a) Clearly S := Sf is a smcs, Pf := A\S ∈ Spec(A) and Pf = ∪ [f−1(Q) |
Q ∈ Spec(B)]. Then Pf = f−1(Qf ) for some Qf ∈ Spec(B). To see this, we
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observe that PfB 6= B; for if not, 1 = p1b1 + · · ·+ pnbn, where pi ∈ Pi = f−1(Qi),

with Qi ∈ Spec(B) and bi ∈ B. There is some Pj such that Pi ⊆ Pj for each i

and 1 ∈ PjB ⊆ Qj , an absurdity. From PfB 6= B, we deduce that PfB ⊆ N , for

some maximal ideal N of B. Set M := f−1(N), then Pf ⊆ M ⇒ Pf = f−1(Qf )

for some Qf ∈ Spec(B) by the going-down property of f and Spec(B | A) ⊆ (Pf )↓.

The reverse inclusion is again deduced from the going-down property of f and

Pf = f−1(Qf ).

(b) The factorization exists because s ∈ S ⇒ f(s) ∈ U(B) and its properties

follow from (Pf )↓ = Spec(B | A).

(c) A → B identifies to A → Γ(X) by [47, Proposition 4.7]. In view of [38,

Corollaire 3.2, p.114], AS → B is a flat epimorphism with the lying-over property,

whence is faithfully flat. It follows from [38, Lemme 1.2] that AS → B is an

isomorphism. ¤

Morita defines for an arbitrary injective ring morphism f : R → T the maximal

flat epimorphic subextension g : R → E(f) of R → T [39]. We recall that a

going-down morphism A → B is injective when A is an integral domain, because
tf(Min(B)) ⊆ Min(A).

Proposition 3.4. Let f : A → B be an (injective) going-down ring morphism,

where A is a quasilocal treed domain. Then A → APf
is the maximal flat epimorphic

subextension of A → B.

Proof. Let g be the map A → E(f), then we have Sg ⊆ Sf and E(f) = APg by

Theorem 3.3(c). It follows that E(f) ⊆ APf
⊆ E(f) and A → APf

is the maximal

flat epimorphic subextension of A → B. ¤

The above result applies to an extension of integral domains A ⊆ B, where A is

a GD-domain (such extensions have the GD-property).

Corollary 3.5. Let (A, M) be a divided integral domain and f : A → B an exten-

sion of integral domains, then A → APf
is the maximal flat epimorphic subextension

of A → B and Pf = ∩[As | s ∈ Sf ].

Proof. Each extension of integral domains A ⊆ B has the GD-property [8, Theo-

rem 1]. ¤

Corollary 3.6. Let R be a divided domain and f : R → T an injective ring

i-morphism, where T is an integral domain. Then T is a divided domain. In

particular, each overring of a divided i-domain is a divided i-domain, (i.e. R is a

strong divided domain).
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Proof. Observe that Spec(T ) → Spec(RPT
) is a homeomorphism. Then use [48,

Proposition 4.1]. ¤

Proposition 3.7. Let R be a divided (quasilocal) ring and I ∈ I(R).

(a) Iλ ∈ Ass(I) and I is a Iλ-primal ideal.

(b) I is a primary ideal if and only if Iλ =
√

I.

(c) Either J ⊆ Iλ or I ⊆ J holds for any ideal J of R.

(d) If R is an integral domain, IRP = I for each P ∈ V(Iλ).

Proof. (a) and (b) are known and are written here for further references.

(c) Assume that J 6⊆ Iλ, then I ⊆ Iλ ⊆ J follows from Iλ ∈ Spec(R).

(d) Let x/s with x ∈ I and s ∈ Λ(I), then s /∈ Iλ ⇒ Iλ ⊆ Rs. From I ⊆ Iλ, we

deduce x = rs and then r ∈ I, because s ∈ Λ(I). Hence, x/s = r ∈ I completes the

proof of IRΛ(I) = I. Then IRP = I for Iλ ⊆ P is clear because RΛ(I) ⊇ RP . ¤

An ideal I of a ring R is called a divided ideal if the above statement (c) holds.

In case R is an integral domain, (c) is equivalent to IRΛ(I) = I. Dobbs proved part

of (d) in a particular case [12, Proposition 2.2].

We recall that a commutative ring R is called a Kasch ring if its maximal ideals

are of the form 0 : I for some I ∈ I(R). A ring is said to have few zero divisors if

m := 0λ = Z(0) is a finite union of prime ideals. Then R has few zero-divisors if and

only if Tot(R) is semilocal Kasch [19, Theorem]. This corrects a wrong statement

frequently asserted in the literature.

Proposition 3.8. Let (R,M) be a treed quasilocal ring and K := Tot(R).

(a) m ∈ Spec(R) and K = Rm is a quasilocal Kasch ring.

(b) For each I ∈ I(R), each overring of R/I has few zero divisors.

(c) m = 0 : x for some x ∈ R, whence m ∈ Assf (0).

(d) Each ideal I of R such that 0 : I = 0 contains a regular element, whence

Tot(R) = Q(R).

(e) Let P ∈ Spec(R) and I ∈ I(R), then P ∈ Ass(I) ⇔ I(P)λ = P.

(f) Let I ∈ I(R), then Iλ = I : x for some x ∈ R and Iλ ∈ Assf (I). If

I /∈ Spec(R), then Iλ = I : x ⇒ x ∈ Iλ and x2 ∈ I.

(g) Let I, J ∈ I(R), then I : J = I ⇔ J ∩ Λ(I) 6= ∅.

Proof. (a) That K is a Kasch ring follows from [19, Theorem], because m is a prime

ideal. Then (b) is a consequence of (a), because each R/I is a treed quasilocal ring.

(c) Set N = mRm. Since K is a Kash ring, N = 0 : L for some ideal L of K.

Since L is nonzero, there is some k ∈ L such that 0 : k 6= K and then N = 0 : (x/1),

where x ∈ R. It follows that m = 0 : x, because 0 : (x/1) ∩R = 0 : x.
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(d) This is [18, Lemma 1.3].

(e) The statement is [37, Proposition 1].

(f) Since R/I is a treed quasilocal ring, apply (c). If I is not a prime ideal,

Iλ = I : x and Iλ 6= I ⇒ x /∈ Λ(I); so that x ∈ Iλ, x2 ∈ I.

(g) Replace J with I + J containing I and use (d) in the ring R/I. ¤

Lemma 3.9. Let (R,M) be a divided (quasilocal) ring.

(a) M consists of zero divisors ⇔ M = m ⇔ M ∈ Assf (0).

(b) If P ⊂ M ∈ Assf (0) is a prime ideal, then P ∈ Assf (0).

(c) P ∈ Assf (0) ⇔ P = 0(P) : y for some y ∈ R.

Proof. (a) Assume that M consists of zero divisors, then M ⊆ m ⇒ M = m ∈
Assf (0) by Proposition 3.8(c). The converse is clear.

(b) Check that the clever proof of [31, Lemma 1.1] works in our context, because

we only need the comparability of prime ideals with arbitrary ideals. Hence PRP

consists of zero divisors in S := RP and by (a) PRP ∈ Assf (0S). Conclude by

using [4, Exercise 17(d),p.166].

(c) PRP ∈ Assf (0) consists of zero divisors. By Proposition 3.8, we get PRP =

0 : (y/1). Taking inverse images in R of this equation completes the proof. ¤

We generalize [27, Proposition 2.7] to divided rings.

Theorem 3.10. Let R be a divided ring and I ∈ I(R).

(a) Ass(I) = Assf (I) = V(I) ∩ (Iλ)↓ is (Zariski) compact.

(b) P ∈ Ass(I) ⇔ P = I(P) : y for some y ∈R.

Proof. (a) Set N := Iλ/I. Then S := (R/I)N is a divided ring with maximal

ideal M , which consists of zero divisors by Lemma 2.1. Then P ∈ Ass(I) verifies

I ⊆ P ⊆ Iλ. By Lemma 3.9(b), (P/I)S ∈ Assf (0) and then P ∈ Assf (I). It follows

that Ass(I) = Assf (I). The same reasoning shows that V(I) ∩ (Iλ)↓ ⊆ Assf (I).

As the reverse containment is clear, the proof is complete. The compactness of

Assf (I) follows, because it is the intersection of two patches of Spec(R) and a

patch is Zariski compact.

(b) Apply Lemma 3.9(c) to the ring (R/I)Iλ . ¤

Remark 3.11. Let R be a divided ring and f : R → T a ring morphism.

(a) For J ∈ I(T ) and I := f−1(J), then Ass(I) ⊆ tf(Assf (J)). This is [43,

Corollaire, p. 89].

(b) If in addition R is a domain, T an overring of R and P ∈ Spec(R) is such

that PT 6= T , then P = (PT )λ ∩ R and {P} = tf(Ass(PT )). Indeed, we have
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{P} = tf(Assf (PT )) by [17, Proposition 2.1], since a divided integral domain is

straight.

Proposition 3.12. Let (R,M) be a divided integral domain, I ∈ I(R) and P ∈
V(I) (if I ⊃ P , then I(P ) = R and Ass(I) = ∅).

(a) If Iλ ⊂ P , then Ass(I(P )) = Ass(I) and I(P )λ = Iλ.

(b) If Iλ = P , then I(P ) = I.

(c) If Iλ ⊃ P ⊇ I, then Ass(I(P )) = P ↓ ∩ V(I) and I(P )λ = P .

In any case,
√

I(P ) =
√

I.

Proof. We read in [37, Proposition 5] that Ass(I(P )) = P ↓ ∩Ass(I). To complete

the proof, use Theorem 3.10(a). ¤

D. Lazard defined the maximal flat epimorphic extension of a ring R [38] as

an injective flat epimorphism R → E that can be factored by any injective flat

epimorphism R → T .

Proposition 3.13. Let R be a divided ring, with total quotient ring K = Rm.

Then the maximal flat epimorphic extension of R is R → K.

Proof. Let R → E be the maximal flat epimorphic extension. It is enough to show

that g : K → K ⊗R E is an isomorphism. Since g is an injective flat epimorphism,

it is enough to show that the spectral map tg is surjective, because a faithfully flat

epimorphism is an isomorphism [38, Lemme 1.2, p.109]. In view of Remark 3.11(a),

Spec(K | R) = m↓ = Ass(0) ⊆ Spec(E | R). By a well known property of tensor

products, tg is surjective. ¤

We recall that for a nontrivial ring extension R ↪→ T and q ∈ Spec(R), the pair

(R, q) is a valuation pair of T if for each x ∈ T \R there is some c ∈ q with cx ∈ R\q
(see [36]).

Proposition 3.14. Let (R, M) be a divided domain and (R, q) a valuation pair for

an overring T 6= R of R.

(a) Let x ∈ T \R, then x ∈ U(T ) and x−1 ∈ q ⊆ R.

(b) (R,M) is a Manis pair of T .

Proof. (a) Let x ∈ T \R, there is some c ∈ q with cx ∈ R\q. Since R is divided, we

get c ∈ q ⊆ Rcx. Hence there is some r ∈ R such that c = rcx. As cx 6= 0 ⇒ c 6= 0,

we have 1 = rx with r ∈ R. Moreover, c = cxr ∈ q ⇒ r ∈ q.

(b) In view of [36, Theorem 2.5], (a) entails that (b) holds. ¤
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We now intend to give some information about the Prüfer hull P (R, T ) associated

to a ring extension R ↪→ T (Knebusch and Zhang [36, Chapter I]). Let R ↪→ S be

a ring extension, then R is called a S-Prüfer ring if each subextension of R ↪→ S

defines a flat epimorphism. Clearly, an integral domain R is Prüfer if and only

if R is Prüfer in its quotient field. A ring extension R ↪→ T admits a unique

subextension R ↪→ P (R, T ), such that R is Prüfer in P (R, T ) and P (R, T ) contains

every T -overring of R in which R is Prüfer [36, Ch. I,Theorem 5.15].

Proposition 3.15. Let f : R ↪→ T be a going-down extension of integral domains,

where (R, M) is a quasilocal treed domain.

(a) There is p ∈ Spec(R) such that P (R, T ) = Rp.

(b) For x, y ∈ P (R, T ) such that xy ∈ R, then either x ∈ R or y ∈ R.

(c) R is a valuation subring of P (R, T ).

Proof. (a) Since g : R → P (R, T ) is a flat epimorphism, P (R, T ) = RSg by

Theorem 3.3(c). Then take p := R \ Sg.

(b) The (u, u−1)-Lemma for an arbitrary ring extension A ↪→ B generalizes as

follows. Let P ∈ Spec(A) and x, y ∈ B be such that xy ∈ A. There exists either

Px ∈ Spec(A[x]) or Py ∈ Spec(A[y]) lying over P . Set A := R, B := P (R, T ) and

P := M , there is for instance a prime ideal of R[x] lying over M . Because R → R[x]

is a faithfully flat epimorphism, R = R[x] by [38, Ch.IV, Lemme 1.2].

(c) Use [36, Ch. I, Proposition 5.1](iii) and (b). ¤

For an integral domain R with quotient field K, we set P (R) := P (R, K).

Corollary 3.16. Let (R, M) be a divided integral domain.

(a) The Prüfer hull P (R) is of the form P (R) = Rp, where p ∈ Spec(R).

(b) The conductor of R → P (R) is p, R is a valuation subring of P (R) and R

is integrally closed in P (R).

(c) P (R) \R ⊆ U(R) and x ∈ P (R) \R ⇒ x−1 ∈ R.

(d) Every subextension of R ↪→ P (R) is of the form RQ, where Q ∈ Spec(R).

Proof. (a) is already proved.

(b) Use Proposition 3.15 and observe that p is a divided ideal for the statement

about the conductor.

(c) Use Proposition 3.14. ¤

Remark 3.17. The Prüfer hull of an arbitrary ring R is its Prüfer hull P (R) in

Q(R). It may happen that a ring R is Prüfer-closed; that is, R = P (R). We give

here an example without proofs. Let X be a topological space and R := C(X) its
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ring of continuous functions f : X → R. Then R is seminormal, reduced, locally

integral and with divided factor domains. If, in addition, X is a connected metric

space, then Tot(R) is von Neumann regular and R is Prüfer-closed. Hence R is a

locally divided ring, which is Prüfer-closed.

4. Conductor overrings of divided domains

Fossum proved that if P ⊂ Q are ideals of an integral domain R with P ∈
Spec(R), then (Q : Q) ⊆ (R : Q) ⊆ (P : P ) [26, Lemma 3.7]. This property is

considered below in the treed quasilocal domains context.

Proposition 4.1. Let (R, M) be a quasilocal treed domain, 0 6= I ∈ I(R). For the

natural map π : R → (I : I), we set S := Sπ, P := R \ S.

The following statements hold:

(a) Iλ ⊆ I] = ∪ [N ∩ R | N ∈ Max((I : I))] = P . Hence, R → RI] is the

maximal flat epimorphic subextension of R → (I : I) and RI] → (I : I) has the

lying-over and the going-down properties.

(b) If in addition R is divided, then Iλ = ∩ [Rs | s ∈ Λ(I) ∩ M ], IRΛ(I) = I,

RΛ(I) ⊆ (I : I) and I] = P = Iλ = R ∩ Iλ (the second Iλ is relative to (I : I)). In

particular, P] = P for P ∈ Spec(R).

(c) If I ∈ If (R), then I] = M .

(d) If I /∈ If (R), then ∪ [r−1I | Rr ⊃ I] ⊆ (R : I)I ⊆ I] and (R : I) = (I] : I).

Moreover, Iλ ⊆ ∪ [r−1I | r /∈ I] holds.

Proof. (a) The following logical equivalences hold: r ∈ R is a unit in (I : I) ⇔
1/r ∈ (I : I) ⇔ I ⊆ rI ⇔ r /∈ I]. Moreover, let r ∈ R \ I], then I : r = rI : r ⊆
I ⇒ r ∈ Λ(I), whence Iλ ⊆ I].

(b) Assume that R is divided, then Iλ = ∩ [Rs | s ∈ Λ(I) ∩M ] by Corollary 3.2

and IRΛ(I) ⊆ I by Proposition 3.7(d). It follows from (a) that P = I] ⊆ Iλ, since

RΛ(I) ⊆ (I : I) ⇒ RIλ ⊆ RI] and Iλ ⊆ I]. Then use (λ2) for the last equality.

(c) Assume that I ∈ If (R) and let r ∈ U(I). Then r ∈ M implies that I = rI =

MI and, by the Nakayama Lemma, we get I = 0, a contradiction. It follows that

M ⊆ I], whence M = I].

(d) Assume that I /∈ If (R) and let x ∈ (R : I)I \ I]. We can write x =

k1y1 + · · · + knyn, where kiI ⊆ R and yi ∈ I. From I = xI, we deduce that

I ⊆ (y1, . . . , yn) and I is generated by {y1, . . . , yn}, a contradiction. Therefore we

have proved that (R : I)I ⊆ I]. Now if x belongs to ∪ [r−1I | Rr ⊃ I], then

x = r−1y with y ∈ I. From I ⊂ Rr, we get r−1 ∈ (R : I) and x ∈ (R : I)I.
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Therefore, ∪ [r−1I | Rr ⊃ I] ⊆ (R : I)I holds. Now consider x ∈ Iλ. From

I ⊂ I : x, we get some y /∈ I, such that x ∈ y−1I. ¤
Proposition 4.2. Let (R, M) be a quasilocal treed domain. The following state-

ment holds:

(a) Let I, J ∈ I(R) \ {0} be such that I ∩ (R \ J]) 6= ∅. Then (I : I) ⊆ (R : I) ⊆
(J : J), (I : I) 6= (J : J) and J] ⊂ I] hold.

(b) Let I ∈ I(R)\{0} be such that there is some J ∈ I(R) verifying J∩(R\I]) 6=
∅, then (M : M) ⊆ (I : I) holds.

If in addition R is a divided domain, the following statements hold:

(c) If I and P ∈ Spec(R) are nonzero ideals of R, then

(1) P ∈ D(I) ⇔ P ⊂ I ⇒ (I : I) ⊂ (P : P ).

(2) RP ⊆ (I : I) ⇔ P ∈ V(Iλ).

(3) RP ⊆ (R : I) ⇔ P ∈ V(I).

(d) If I, J ∈ Spec(R) \ {0}, then I ⊃ J implies (I : I) ⊂ (J : J). Hence the

inclusion defines a linear order over the family of overrings C(R) := {(I : I) | I ∈
Spec(R)} with minimum member (M : M). If (M : M) is a valuation domain,

each element of C(R) is a valuation domain.

Proof. (a) Let r ∈ I ∩ U(J), then (R : I)r ⊆ R entails that (R : I)Jr ⊆ J and,

since r ∈ U(J), we get (R : I) ⊆ (J : J); so that, (I : I) ⊆ (R : I) ⊆ (J : J).

It follows that J] ⊆ I] by Proposition 4.1(a). If (I : I) = (J : J), then I] = J]

because RI] = RJ] by (b). This is a contradiction, because I ∩ (R \ J]) = ∅. It

follows that (I : I) ⊆ (R : I) ⊂ (J : J) and J] ⊂ I]. To complete the proof, observe

that Spec(R) is linearly ordered.

(b) If J ∩ (R \ I]) 6= ∅ and J 6= R, then M ∩ (R \ I]) 6= ∅ and we can use (a).

(c) (1) and (2) are clear, because U(I) = Λ(I) for any ideal I and because of

(]6). We show (3). Let P ⊇ I be a prime ideal, then IRP ⊆ PRP = P ⊆ R

because P is divided. Therefore, RP ⊆ (R : I) holds. Conversely, assume that

IRP ⊆ R holds. If P = M , there is nothing to show. If not, assume that I 6⊆ P .

Then RP ⊆ R ⇒ P = M leads to a contradiction.

(d) is a consequence of (c)(1). ¤

We defined in our paper [43] the Λ-topology on Y := I(R) as follows. Set

Yr := {I ∈ Y | r ∈ Λ(I)} for r ∈ R. Then the set {Yr | r ∈ R} is a basis of open

subsets on Y and defines the Λ-topology on Y . It induces the Zariski-topology

on Spec(R). Let f : R → T be a ring morphism, then tf : I(T ) → I(R) is

Λ-continuous if and only if f−1(Λ(J)) = Λ(f−1(J)) for each J ∈ I(T ). If tf is



IDEALS AND OVERRINGS OF DIVIDED DOMAINS 95

injective, then tf is continuous. We could write a non-integral domain version for

the next result.

Proposition 4.3. Let R be a treed quasilocal domain and Y := I(R). There exist

two maps λ, ] : I(R) → Spec(R) defined respectively by λ(I) = Iλ and ](I) = I].

Then R is a divided domain if and only λ = ]. In that case the map λ = ] is

a surjective open continuous map and Yr is a compact open subset of Y for each

r ∈ R.

Proof. Proposition 4.1(b) shows that R is divided implies λ = ]. Assume that

λ = ] and let I ∈ I(R). Then we have I = IRI] = IRIλ by (]3), whence I = IRΛ(I)

and R is divided. In that case λ verifies the properties claimed above, essentially

because the identity map of Spec(R) can be factored Spec(R) ↪→ I(R) → Spec(R).

The compactness assertion is [43, Corollaire 1,p.86], because each ideal I 6= R of R

is primal. ¤

Let (R, M) be a divided ring. We set n :=
√

0. If I is an ideal of R, then either

I ⊆ n or n ⊂ I. Note that n ⊂ I ⇔ n /∈ Ass(I). We look at the behavior of such

ideals, generalizing [12, Proposition 2.2].

Proposition 4.4. Let (R,M) be a divided ring and n :=
√

0.

(a) Let an ideal I ∈ I(R) be such that n /∈ Ass(I), then Λ(I) = U(I).

(b) Λ(Ik) ⊆ Λ(I1 · · · In) for k = 1, . . . , n when I1, . . . , In ⊃ n.

(c) Let I1, . . . , In ⊃ n be ideals of R, such that I1 is a primary ideal and P1 :=√
I1 ⊆

√
Ik for each k = 1, . . . , n, then:

(i) I1 · · · In is a P1-primary ideal.

(ii) If Λ(I1) = · · · = Λ(In), then I1 ∩ · · · ∩ In is a P1-primary ideal.

(d) If Q is a P -primary ideal and Q ⊃ n, then Q = Qx for each x ∈ R \ P . If

Q ∈ If (R), then P = M .

Proof. (a) Set S := R/n and J := I/n. Then Λ(J) = U(J) follows from Propo-

sition 4.1. Let p : R → S the natural map. In view of (λ3) in Section 2.2,

p−1(Λ(J)) = Λ(I). We show that p−1(U(J)) = U(I). This follows from p(r) ∈
U(J) ⇔ p(r)J = J ⇔ I ⊆ rI + n. Since rI ⊆ n ⇒ I ⊆ n is a contradiction, we get

n ⊆ rI and then I = rI. Hence Λ(I) = U(I) is proved.

(b) is a consequence of (a) because Λ(I) = U(I) if n /∈ Ass(I).

(c)(i) This is a consequence of Proposition 3.7(c), because
√

I1 · · · In = P1 = Iλ
1 ⊇

(I1 · · · In)λ ⇒ (I1 · · · In)λ =
√

I1 · · · In.

(c)(ii) Use Λ(I1) ∩ · · · ∩ Λ(In) ⊆ Λ(I1 ∩ · · · ∩ In).
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(d) Mimic the proof of [30, Theorem 17.3(a)]. The only change is as follows.

For x /∈ P , we have x /∈ n and x−1 exists in the total quotient ring Rn of R. It is

enough to choose A = Qx−1. In case Q ∈ If (R), use Proposition 4.1(c), because√
Q = Q] by Proposition 3.7(c). ¤

In particular, In is a primary ideal for each primary ideal I ⊃ n of R and each

positive integer n. This was proved by Dobbs for the powers of a prime ideal of

a divided integral domain [12, Proposition 2.2(a)]. Moreover, I
√

I is a
√

I-primary

ideal for I ∈ I(R) such that n ⊂ I.

Let R be an integral domain, with quotient field K. An ideal I of R is called

K-irreducible if I = J1 ∩ J2, where J1, J2 are R-submodules of K implies either

I = J1 or I = J2. In the same way, the complete K-irreducibility of I is defined by

considering infinite families of R-submodules of K.

Proposition 4.5. Let R be a divided domain and P ∈ Spec(R). Then P is K-

irreducible if and only if RP is a valuation domain. In that case, P = PRP is

K-completely irreducible in RP . A nonzero ideal I ∈ I(R) is K-irreducible if RI]

is a valuation domain.

Proof. It is enough to apply [28, Corollary 20.2.8]. For the second part, observe

that a proper ideal of a valuation domain is irreducible, whence K-irreducible by

[28, Corollary 20.2.7(ii)]. In view of [28, Lemma 20.2.3(iii)], we get that I is K-

irreducible because IRI] = I. ¤

Okabe proved that a quasilocal domain R is divided if and only if Max((P : P ))

contracts to P in R for each P ∈ Spec(R) [41, Theorem 2.2]. We further generalize

this result to an arbitrary ideal. A nonzero prime ideal P of an integral domain R

is called antesharp in [22] if Max((P : P )) ∩ V(P ) contracts to P in R.

Proposition 4.6. Let (R, M) be a quasilocal domain. The following statements

are equivalent:

(1) R is a divided domain;

(2) Each nonzero nonmaximal prime ideal of R is antesharp;

(3) P + Rr is a principal ideal for each P ∈ Spec(R) \ {M} and for each r /∈ P .

Proof. (1) ⇒ (2) is a consequence of Okabe’s result and (2) ⇒ (3) by [22, Propo-

sition 2.3]. Assume that P + Rr = Rs for r /∈ P . Then we have s = p + rx and

r = sy, where p ∈ P , x, y ∈ R. We draw from these relations s(1 − xy) ∈ P and

s /∈ P . It follows that 1 − xy ∈ M and xy is a unit, whence Rr = Rs. Therefore,

P ⊆ Rr and P is divided. Hence, (3) ⇒ (1). ¤



IDEALS AND OVERRINGS OF DIVIDED DOMAINS 97

We give below information about the factorization R → RΛ(I) → (I : I), when

R is a divided integral domain and generalize Okabe’s result [41, Theorem 2.2] to

arbitrary ideals. We keep the notation of Proposition 4.1 and set Iv = (R : (R : I)).

Theorem 4.7. Let (R, M) be a divided domain and I ∈ I(R), I 6= 0. The following

statements hold.

(a) Spec((I : I) | R) = (Iλ)↓, tπ(Max((I : I))) ⊆ V(I) ∩ (Iλ)↓ = Assf (I) =

Ass(I) and Iλ ∈ tπ(Max((I : I))).

(b) Rad((I : I))∩R ∈ Ass(I) and
√

I =
√

J ∩R for some ideal J ⊆ Rad((I : I)).

(c) If I is a primary ideal, i.e.
√

I = Iλ, then aπ(Max((I : I))) = {Iλ},
π−1(Iλ) = V(I), Max((I : I)) ⊆ V(I) and (I:I)

√
I ⊆ Rad((I : I)).

Hence, {π−1(Iλ),D(I)} defines a partition of Spec((I : I)) and the mapping

Q 7→ (Q : I) is a bijection D(I) =
√

I
↓ \ {√I} → D(I), with inverse Q′ 7→ Q′ ∩ R.

Moreover, RIλ → (I : I) has the lying-over and going-down properties.

(d) Iλ =
√

I in case (R : I) = (I : I) and then I is a primary ideal. In particular,

if (R : I) is a ring, then (R : I) = (R : Iv) = (Iv : Iv) and Iv is a primary ideal.

(e) If I is not a principal ideal, then (R : I) = (Iλ : I). In particular, (R : P ) =

(P : P ) for a non-principal ideal P ∈ Spec(R) \ {0,M}.

Proof. (a) Spec((I : I) | R) = (Iλ)↓ by Proposition 4.1(a)(b). Let M be a maximal

ideal of (I : I) and suppose that I 6⊆ M . Then M + I = (I : I) implies that

1 = m + i, where m ∈ M and i ∈ I. Let x ∈ RΛ(I), then xm = x− xi ∈ RΛ(I) ∩M

shows that RΛ(I) = RΛ(I) ∩ M + IRΛ(I). As IRΛ(I) = I by Proposition 4.1(b),

we get that RΛ(I) = RΛ(I) ∩ M + I with I ⊆ Iλ = IλRΛ(I). In short, we have

RΛ(I) = RΛ(I) ∩M + IλRΛ(I), from which we deduce that RΛ(I) ∩M 6⊆ IλRΛ(I).

Then IλRΛ(I) ⊆ RΛ(I) ∩M , because RΛ(I) is a divided domain and consequently,

RΛ(I) = RΛ(I) ∩M , an absurdity. Thus we have proved that aπ(Max((I : I))) ⊆
V(I). By using Theorem 3.10(a) we complete the proof of the first statement of

(a). Since Iλ is lain over by Q ∈ Spec((I : I)), pick some N ∈ Max((I : I)) with

Q ⊆ N . Then N ∩R ⊆ Iλ because N ∩R ∈ Ass(I) gives us N ∩R = Iλ.

(b) Use (a) and the going-down property of R → (I : I).

(c) Use the known fact that for a ring extension A ⊆ B and a nonzero ideal I

shared by A and B, the mapping Q 7→ Q∩A induced by Spec(B) → Spec(A) defines

a bijection D(I) → D(I). Use also [40, Proposition 1.3] and Proposition 3.7(c).

(d) Choose P =
√

I in Proposition 4.2(c)(3) and assume that (R : I) = (I : I),

then RP ⊆ (I : I) ⇒ Iλ ⊆ P by Proposition 4.2(c)(2) and Iλ =
√

I follows. In

view of [33, Proposition 2.2], we have (R : I) = (Iv : Iv) if (R : I) is a ring. Then

(I : I) ⊆ (R : I) gives (I : I) ⊆ (Iv : Iv); so that, (Iv)λ ⊆ Iλ.
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(e) It is enough to show that (R : I) ⊆ (Iλ : I). Assume the contrary. There

are x ∈ K, a ∈ I and b ∈ Λ(I) such that xa = b and xI ⊆ R. It follows that

c = a/b ∈ IRΛ(I) = I and xc = 1. This is absurd, because xI = R ⇒ I is a

principal ideal. Now by [9, Corollary 2.4], a nonzero principal prime ideal of a

going-down domain is a maximal ideal. ¤

5. Goldman prime ideals and divided open rings

Let R be a ring. For X 6= ∅, X ⊆ Spec(R), we set U(X) := ∪ [P | P ∈ X],

R(X) := ∩ [P | P ∈ X] and SX := {s ∈ R | X ⊆ D(s)}. If I is an ideal of R, we set

SI = SD(I). Then SX is a smcs of R, 0 /∈ SX , RX := RSX
is called the localization

of R at X and Xu := Spec(RX | R) = {P ∈ Spec(R) | P ⊆ U(X)} is stable under

generalizations and compact [47, Remark 2.8(4)]. If f : R → T is a ring morphism

such that Spec(T | R) ⊆ X↓, there is a factorization R → RX → T .

Then Y := Spec(R) is endowed with the flat topology F , whose closed sets are the

Zariski compact subsets of Y that are stable under generalization. This topology

was introduced by M. Hochster under another name. We proved that its closed

subsets are of the form Spec(T | R), where R → T is a flat morphism [45, Section

IV]. If X
F

is the F -closure of X ⊆ Y and FX is the family of all elements I ∈ If (R)

such that X ⊆ D(I), we have X
F

= ∩ [D(I) | I ∈ FX ] and SX = S
X

F .

We defined in “collective” form the g-ideal rings in [44, Section V] as rings in

which each prime ideal is a g-ideal. Fontana and Houston in [21, Proposition 1.8]

give a characterization of prime g-ideals, which is essentially extracted from our

paper. We recall that a prime ideal P is called a g-ideal in case P ↓ is an open

subset of Spec(R), necessarily of the form D(a), where a ∈ R is nonzero. Actually,

P is a g-ideal if and only if RP = Ra for some a ∈ R \ {0} : See also [2, page 77].

The next proposition generalizes and completes Okabe’s result about the set

intersection of the power of a fg-ideal [41, Corollary 2.7].

Proposition 5.1. Let (R, M) be a divided integral domain and X 6= ∅ a subset of

Spec(R).

(a) SX = {s ∈ R | s ∈ U(Γ(X))}, PX := U(X) = R \ SX = ∩ [Rs | s ∈ SX ] is a

prime ideal of R and Xu = (PX)↓.

(b) PX = P
X

F , X
F

= (PX)↓ and PX = ∩ [In | n ∈ N, I ∈ FX ].

(c) Let I, J ∈ I(R), I 6= 0 and J = (a1, . . . , an) ∈ If (R) be such that D(I) =

D(J). Then PI := ∩[Jn | n ∈ N] = ∩ [Rs | s ∈ SI ] is a prime ideal of R and D(I) =

(PI)↓. In particular, PI is a prime g-ideal and RPI
= Ra, where a ∈ {a1, . . . , an}.

Proof. (a) Use Theorem 3.3 with f : R → RX and Sf = SX .
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(b) We can assume that X is compact and stable under generalizations. From

X = ∩ [D(I) | I ∈ FX ], we deduce that PX ∈ D(I) for each I ∈ FX . Indeed,

I ⊆ PX = U(X) ⇒ I ⊆ P for some P ∈ X, because I ∈ If (R) and X is linearly

ordered. We are lead to the contradiction P ∈ X ⊆ D(I). Therefore, PX belongs

to X; so that, (PX)↓ ⊆ X ⊆ Xu = (PX)↓ by the first part of the proof. The last

part of (b) is a consequence of (c), because P ↓X = ∩ [P ↓I | I ∈ FX ] and the set

intersection of the PIs is a prime ideal.

(c) X := D(I) = D(J) is F -closed and then X = (PX)↓ by (b). We have to show

that H := ∩ [Jn | n ∈ N] = PX . From PX ∈ X we get that PX ⊆ H, because R is

divided. Now if s ∈ Jn for each n and s /∈ PX , we get s ∈ SX and then J ⊆√Rs.

Since J is a fg-ideal, there is some positive integer k such that Rs ⊆ Jk+p ⊆ Rs

for each integer p. Therefore, Jk = (Jk)2 and Jk is an idempotent fg-ideal of the

integral domain R and Jk = 0, a contradiction. Therefore, H ⊆ PX . ¤

Corollary 5.2. Let (R, M) be a divided ring and J ⊃ n a f.g. ideal of R, then

∩[Jn | n ∈ N] = ∩ [Rs | s ∈ SI ] is a prime ideal of R.

Proof. Consider J/n in R/n. ¤

Remark 5.3. For the notions involved in this remark, we refer to a paper by

Badawi and Houston [3]. They proved that if I is a proper powerful ideal of an

integral domain R, then ∩ [In | n ∈ N] is a (strongly) prime ideal [3, Proposition

1.8]. This is a consequence of the following facts: a power of a powerful ideal is a

powerful ideal and if J is an ideal of R, then either J ⊆ I or I2 ⊆ J . If R is an

APVD, each P ∈ Spec(R) is strongly primary and then P 3 is a powerful ideal [3,

Corollary 2.6]. It follows that ∩ [In | n ∈ N] is a prime ideal for each I ∈ I(R).

Actually, an APVD is a divided domain (R, M). For an ideal I ⊆ M , we have

I3 ⊆ M3 with M3 powerful and by [3, Proposition 1.4], I3 is a powerful ideal.

If I is an ideal of an integral domain R, many authors call the ring of global

sections Γ(D(I)) over D(I) the Kaplansky transform of the ideal I, using the no-

tation Ω(I) (see for instance [23, Chapter III]). Then D(I) endowed with the sheaf

induced by the scheme Spec(R) is called an affine open subset if it is a scheme. An

affine open subset is a quasi-compact subset but the converse does not generally

hold. The reader is referred to [32], in order to get information.

Theorem 5.4. Let (R, M) be a divided integral domain, I 6= 0 an ideal of R and

Y := D(I).
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(a) There is a factorization R → RPI
→ Γ(Y ), where PI = R \ SI = ∩ [Rs | s ∈

SI ] is a prime ideal.

(b) Y is an affine open subset if and only if there is some J ∈ If (R) such that√
I =

√
J and RPI

= Γ(D(I)). In that case, R → RPI
is a flat epimorphism of finite

presentation (as an R-algebra) of the form R → Ra, where a belongs to a set of

generators of J .

Proof. Consider the natural map f : R → Γ(Y ) = ∩ [RP | P ∈ Y ]. It is easy to

check that Sf = SI and (a) follows from Proposition 5.1. By [47, Proposition 4.16],

Y is an affine open subset if and only if R → Γ(Y ) is a flat epimorphism. In view of

Theorem 3.3(c), this condition holds if and only if Γ(Y ) := RPI
. Then R → RPI

is

of finite presentation, because Y → X is an open immersion [46, Lemme 4.9]. ¤

Recall from the Kaplansky’s book [35] the following notation and results. An

integral domain R with quotient field K is called a G-domain if {0} is an open

subset of Spec(R) (⇔ Ra = K for some a ∈ R \ ♥(R)). For a ring R and P ∈
Spec(R), the pseudo-radical of P is π(P ) := ∩ [Q ∈ Spec(R) | Q ⊃ P ]. Now

P ∈ Spec(R) is called a G-ideal if R/P is a G-domain; that is π(P ) 6= P .

An integral domain is called a G-ideal domain if each prime ideal of R is a

G-ideal.

Note that a ring R is divided if and only if its prime G-ideals are divided, since

any prime ideal of R is an intersection of prime G-ideals.

For an arbitrary ring it is known that P is a G-ideal ⇔ P = M ∩ R for some

M ∈ Max(R[X]). We have a better result in a divided ring.

Proposition 5.5. Let R be a divided ring and P ⊃ n a prime G-ideal. There is

M ∈ Max(R[X]), such that Pn = Mn ∩R for each n ∈ N.

Proof. For a prime G-ideal P , there is a maximal ideal M = P [X] + (aX − 1)

of R[X], where a /∈ P , and such that P = M ∩ R. We need only to show that

Mn ∩ R ⊆ Pn. Let r = (p(X) + q(X)(aX − 1))n ∈ R, where p(X) ∈ P [X] and

q(X) ∈ R[X]. We can write r = p(X)n + (aX − 1)s(X) where s(X) ∈ R[X].

Consider this equation in RP [X] and substitute 1/a to X as a ∈ U(RP ). We get

r = p(1/a)n and then atr ∈ Pn for some positive integer t. Since Pn is P -primary

by Proposition 4.4, we see that r ∈ Pn. ¤

Papick introduced propen domains R [42] (such that Spec(S) → Spec(R) is a

Zariski-open map for each overring S 6= K of R). An integral domain R is called

open if R is propen and Spec(K) → Spec(R) is open (i.e. R is a propen G-domain).

A propen domain is a going-down domain. For all these facts, see [42].
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Theorem 5.6. Let (R, M) be a divided (quasilocal) integral domain.

(1) Let P ∈ Spec(R) \ {0}, then P is a G-ideal ⇔ P is a g-ideal.

(2) If P 6= 0,M is a prime g-ideal, RP = Rr for some r ∈ R \ ♥(R) and

P = ∩ [Rrn | n ∈ N] for P 6= M .

(3) Let r ∈ R \ ♥(R), then ∩[Rrn | n ∈ N] is a prime g-ideal P 6= M and

P = ∩[Rsn | n ∈ N] for some s ∈ R \ ♥(R) is equivalent to
√

Rs =
√

Rr.

(4) Each P ∈ Spec(R) \ {0,M} is an intersection of g-ideals and is divisorial.

(5) P ↓ \ {P} = D(P ) is an open subset for each P ∈ Spec(R).

(6) R is an open domain if and only if R is a G-ideal domain and also, if and

only if R is a g-ideal domain.

In particular, a finite dimensional divided domain is an open domain.

Proof. (1) A g-ideal is clearly a G-ideal. Consider a G-ideal P . To prove our

claim, we can assume that P 6= M and P is nonzero. In light of [32, 0.1.3.3], we

have RP = lim−→Ra, where a varies in R\P . Then [32, Proposition 0.3.4.10] provides

us the relation (?): P ↓ = ∩ [D(a) | a /∈ P ], where we can assume that a /∈ U(R), for

if not, D(a) = Spec(R) is surperfluous. There is at least a nonunit a /∈ P , because

P 6= M . In view of Corollary 3.2, there is a prime ideal P (a) = ∩ [Ran | n ∈ N]

such that D(a) = P (a)↓. Then the relation (?) implies that P ⊆ P (a). Assume

that P ↓ is not equal to any open subset D(r), then P = P (a) implies P ↓ = D(a),

a contradiction; whence P ⊂ P (a). The inclusion P ⊆ ∩ [P (a) | a ∈ R \P ] is clear.

Let x 6= 0 be in the intersection of all the P (a), then x /∈ U(R) and x ∈ P ; deny,

then x /∈ P shows that x ∈ P (x) = ∩ [Rxn | n ∈ N]. In that case x = rx2 for some

r ∈ R and x is a unit, an absurdity. Therefore, P = π(P ), an absurdity since P is a

G-ideal. Thus P ↓ = D(r) for some r ∈ R and RP = Rr. Set Q := ∩ [Rrn | n ∈ N],

then Rr = RQ by Corollary 3.2. It follows that P = Q. Hence, (1) is proved.

(2), (3) Use Corollary 3.2.

(4) It is well-known that a prime ideal of an arbitrary ring is equal to a set

intersection of G-ideals.

(5) A divided prime ideal P is comparable to each prime ideal.

(6) The proof is an easy consequence of [42, Proposition 3.2], because a divided

domain is a going-down domain. If R is finite dimensional, let P ∈ Spec(R) be such

that P 6= M , then π(P ) 6= P shows that P has a prime ideal π(P ) right above P ;

so that, P is a G-ideal. ¤

Dobbs calls an integral domain R either pointwise non-Archimedean or a power-

Ahmes domain if ∩ [Rrn | n ∈ N] 6= 0 for all r ∈ R \ {0} [10, Theorem 2.4]. We

recover below [10, Theorem 2.6] with a complement.
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Proposition 5.7. Let R be a divided domain. The following statements are equiv-

alent:

(a) R is a power-Ahmes domain;

(b) R is not a G-domain;

(c) Each nonzero prime ideal of R has infinite height.

Proof. If R is a power-Ahmes domain, assume that 0 is a G-ideal. There is some

a ∈ R \ ♥(R), such that {0} = D(a). In view of Corollary 3.2 (a), we get ∩ [Ran |
n ∈ N] = 0, a contradiction. Hence R is not a G-domain. Conversely, if R is not

a G-domain, let a 6= 0 in R. If a is a unit, then Ran = R and R 6= 0. If not,

P := ∩ [Ran | n ∈ N] is a prime G-ideal, which is nonzero and R is a power-Ahmes

domain. Hence (a) is equivalent to (b) and (a) ⇔ (c) by [10, Theorem 2.6]. ¤

An integral domain R is called fragmented if for each r ∈ R \ ♥(R), there exists

s ∈ R \ ♥(R) such that r ∈ ∩ [Rsn | n ∈ N]. We generalize a result of Dobbs [11,

Theorem 2.5] and recover Gilmer’s results on unbranched prime ideals of Prüfer

domains [30, Theorem 17.3].

Theorem 5.8. Let (R, M) be a divided integral domain and P ∈ Spec(R) \ {0}.
The following statements are equivalent:

(1) RP is fragmented;

(2) P is the union of all (some) prime ideals Q ⊂ P ;

(2’) P is the union of all (some) prime ideals P ′ ⊆ Q ⊂ P for each P ′ ⊆ P ;

(3) If I is an ideal of R such that
√

I = P , then I = P ;

(4) P 6=√Rr for each r ∈ R ⇔ P /∈ Minp(R);

(5) If Q is a P -primary ideal, then Q = P ;

(6) For x ∈ P \ {0}, there is a strictly ascending chain C := {Pn}n∈N ⊆ P ↓ with

x ∈ P0.

If one of the preceding equivalent conditions holds, P is called a (Gilmer) un-

branched prime ideal and in that case ht(P ) = ∞.

Proof. (1) ⇔ (2) In light of [11, Theorem 2.5], P is the union of all Q ∈ Spec(R)

with Q 6= P if and only if RP is fragmented.

(2) ⇒ (3). Suppose that (2) holds and let I be an ideal with
√

I = P , then

I ⊆ P . If I 6= P and if Q ⊆ I for all Q ∈ Spec(R) with Q ⊂ P , then P ⊆ I ⊂ P ,

a contradiction. If there is some Q ⊂ P with I ⊂ Q, then P =
√

I ⊆ Q, a

contradiction. Hence, I = P .

(3) ⇒ (4). Suppose that
√

Rr = P and that (3) holds. Then P =
√

Rr2 and then

P = Rr = Rr2 ⇒ r ∈ {0, 1}, a contradiction.
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(4) ⇒ (2) Assume that (4) holds and let P ′ = ∪ [Q ∈ Spec(R) | Q ⊂ P ] ∈
Spec(R). If P ′ ⊂ P , let r ∈ P \ P ′; so that

√
Rr ⊆ P and actually

√
Rr ⊂ P .

Therefore,
√

Rr = Q ⊂ P and r ∈ P ′ leads to a contradiction. Hence P = P ′.

(3) ⇒ (5) is clear.

(5) ⇒ (2). Let P ′ = ∪ [Q ∈ Spec(R) | Q ⊂ P ] ∈ Spec(R) and suppose that

P ′ ⊂ P . The prime ideals P ′ and P are adjacent. Set S = R/P ′ and N = P/P ′,

then (S,N) is a one-dimensional integral domain. Let r̄ ∈ S \ N . Then Sr̄ and

Sr̄2 are N -primary ideals, which gives two P -primary ideals P ′ + Rr 6= P ′ + Pr2,

a contradiction. Hence P = P ′ and (2) holds.

(1) ⇔ (6) This is [5, Corollary 2.10]. ¤

It follows that P = P 2 if P is unbranched (⇔ P /∈ Minp(R)) by Proposition 4.4).

The same property holds for a P -primary ideal I. We say that P ∈ Spec(R) is

strongly unbranched if for an ideal I of R, Iλ = P ⇒ P = I. Then P is strongly

unbranched implies that P is unbranched, because
√

I = Iλ if I is primary.

Remark 5.9. We refer the reader to [23, Section 5.1] for the definitions and results

on localizing systems. Let R be a divided domain, F a localizing system and the

natural map f : R → RF = ∪ [(R : I) | I ∈ F ]. We observe that R \ Pf := Sf =

{r ∈ R | Rr ∈ F}. We set P = ∪ [Q ∈ Spec(R) | Q /∈ F ].

(a) Suppose that P ∈ F ; so that P is unbranched and P = P2. Then we

have P ⊆ ∩ [I | I ∈ F ] ⊆ ∩ [Rr | r ∈ Sf ] = Pf , with P, Pf ∈ Spec(R). Setting

FP := {I | P ⊆ I}, we get that FP = F . We claim that P = ∩ [I | I ∈ F ] = Pf .

If P is not principal, (R : P) = (P : P) by Theorem 4.7(e). Now by the Fossum’s

result [26, Lemma 3.7] applied to P ⊂ I, we get that (R : I) ⊆ (P : P). It follows

that RF = (R : P) = (P : P) and Pf = P = ∩ [I | I ∈ F ]. Now if P is principal,

then Pf ⊆ P gives the same result.

(b) What happens when P /∈ F? This holds for a localizing system FS associated

to a smcs S of a divided domain but we have an answer by Corollary 3.2. For

instance, let I be an ideal of a ring R and the localizing system FI := {J | I :

J = I}, which by Proposition 3.8(g) is nothing but FΛ(I) and in this case P /∈ FI .

Let X be a subset of Spec(R), where R is a divided integral domain. Consider the

localizing system F̃X = {I | X ⊆ D(I)}. Proposition 5.1 gives a result and P /∈ F̃X

if X is compact. Note that the question is completely solved in [23, Section 5.1] for

valuation domains.

(c) We come back to the maximal flat epimorphic subextensions of Section 3.

Let A be a treed quasilocal domain, f : A → B an injective ring morphism and

F := {I | IB = B} the fg-localizing system associated to f . In light of [47, Lemma
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2.5], AF = {b ∈ B | A : b ∈ F}. The maximal flat epimorphic subextension of

A → B can be gotten by transfinite induction, the first step being AF [39, p.36].

In view of [20, Corollary 1.15, Lemma 1.11], there is some P ∈ Spec(A), such that

F = FP because Spec(A) is linearly ordered. Hence A → AF = AP is a flat

epimorphism factoring A → B and is the maximal flat epimorphic subextension of

A → B. Proposition 3.4 shows that P = Pf .

Fontana and Houston define an Ω-domain as an integral domain R whose over-

rings are of the form Ω(I) := Γ(I) for some ideal I of R [21].

Proposition 5.10. Let R be a divided domain and P ∈ Spec(R) \ {0}.
(1) If RP = Γ(I) for some ideal I of R such that I ⊆ P , then P is unbranched,

I = P and
√

I =
√

J where J ∈ If (R).

(2) P is a prime g-ideal ⇔ RP = Γ(I) for some (necessarily fg)-ideal I of R.

Proof. (1) Since f : R → Γ(I) is a flat epimorphism, D(I) is an affine open subset

[47, Proposition 4.16] or [25, Theorem 2.4] and then
√

I =
√

J where J is a fg-ideal

and Sf = R \ P = R \ ∪ [Q | Q ∈ D(I)]. It follows that P = ∪ [Q | Q ∈ D(I)].

Moreover, Q = P ⇒ I ⊆ Q for Q ∈ D(I) is absurd, whence Q ⊂ P . Thus

P = ∪ [Q | Q ⊂ I] is unbranched and P ⊆ I.

(2) Since prime g-ideals and prime G-ideals coincide, we deduce from [21, Lemma

2.4] that RP = Γ(I) ⇒ RP = Γ(π(P )). If P is not a prime g-ideal, taking I :=

π(P ) ⊆ P , we draw from (1) that P is unbranched and P =
√

J , where J ∈ If (R).

Then P =
√

J = ∪ [Q | Q ⊂ P ] leads to the contradiction P ⊆ Q for some Q ⊂ P .

Hence P is a g-ideal. For the converse, use that a prime g-ideal P is such that

RP = Rr = Γ(Rr) for some r ∈ R. ¤

The following result completes [21, Theorem 3.12], where only one divided prime

ideal is involved.

Theorem 5.11. Let (R, M) be a divided domain. Then R is an Ω-domain if and

only if R is a QQR-domain and each nonzero prime ideal is a G-ideal (g-ideal). In

that case, R is a propen domain and RP is a valuation Ω-domain for each prime

ideal P 6= M .

Proof. An Ω-domain R is clearly a QQR-domain; that is, each overring is of the

form ∩i∈IRPi with {Pi}i∈I ⊆ Spec(R). Proposition 5.10 implies that each nonzero

prime ideal is a G-ideal. Assume that the preceding conditions hold. It is enough

to show that RP = Γ(π(P )) for P ∈ Spec(R) because ∩αΓ(Iα) = Γ(ΣαIα). If P



IDEALS AND OVERRINGS OF DIVIDED DOMAINS 105

is a G-ideal, then D(π(P )) = P ↓ and then RP = Γ(π(P )). Moreover, R0 = Γ(0).

Then RP is a valuation domain by [21, Theorem 3.12](1). ¤

We denote by R? and R+ the complete integral closure and the Swan’s seminor-

malization of a domain R with quotient field K [49]. Set π := π(0) and π+ := π(0)

for the pseudo-radicals of 0 in R and R+. A conducive domain is a domain R,

whose overrings 6= K admit a nonzero conductor [14]. Completely integrally closed

is shorten into cic.

Proposition 5.12. Let (R, M) be a divided domain.

(a) If P ∈ Spec(R) \ {0}, then RP ⊆ (P : P ) ⊆ R?. Hence dim(R) ≤ 1 if R is

cic.

(b) If R is not a G-domain, then R? = K.

(c) If R is a G-domain, π =
√

Rr for some r ∈ R, ht(π) = 1, Rπ ⊆ (π : π) ⊆
R? = (Rπ)?, R? is integrally closed and R?? is cic.

(d) If R is a G-domain, then (R+)? = (π+ : π+) is cic and then R?? ⊆ (R+)?.

(e) If R is a conducive G-domain, then R? ⊆ K is a minimal extension; so that

R? = (R+)? is cic and seminormal.

Proof. (a) Use R? = ∪ [(I : I) | I ∈ I(R) \ {0}] and the fact that P is divided.

(b) Observe that R is a power-Ahmes domain by Proposition 5.7, because R is

not a G-domain. It follows easily that R? = K.

(c) We have π =
√

Rr for some r ∈ R by Theorem 5.8. Then ht(π) = 1 and

Rπ ⊆ (π : π) ⊆ R? are clear. Let x = b/a ∈ R?. There is some nonzero u ∈ R such

that uxn ∈ R for all n > 0. It follows that 1/a ∈ (Rb)?. In view of Corollary 3.2,

P := ∩ [Rbn | n ∈ N] is a prime g-ideal such that Rb = RP . Since R is not a G-

domain, P is nonzero. It follows that R? ⊆ ∪ [(RP )? | P 6= 0, P g-ideal] ⊆ (Rπ)?,

because π ⊆ P and then R? = (Rπ)?. The last statements are proved in [50].

(d) Since R ⊆ R+ is subintegral [49], Spec(R+) → Spec(R) is a homeomorphism.

We deduce from [48, Proposition 4.1] that the G-domain R+ is divided. Hence we

can assume that R is seminormal. Let I be a nonzero ideal of R. If π ⊆ I, then

(I : I) ⊆ (π : π) [26, Lemma 3.7]. If I ⊂ π, then
√

I = π and (I : I) ⊆ (π : π) since

R is seminormal [24, Theorem 3.3]. It follows that R? = (π : π). Then R? = (π : π)

is cic by [15, Corollary 2.12].

(e) is a consequence of [14, Proposition 4.3]. ¤

Remark 5.13. Let (R, M) be a divided G-domain, such that RP is a valuation

domain for each P ∈ Spec(R) \ {M}.
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(a) If dim(R) ≥ 2, we get that R? = Rπ = (π : π), because a one-dimensional

valuation domain is completely integrally closed. This property holds for either

APVD’s or divided Ω-domains whose dimension is ≥ 2 (see [6, Lemma 3.1] and

Theorem 5.11).

(b) Let I be a nonzero non-Archimedean ideal of R (such that Iλ 6= M). By

reworking the proofs of [12, Theorem 2.3] and [12, Corollary 2.4], we may get that I

is R-flat, but there is an easier proof as follows. Observe that IRΛ(I) = I is torsion-

free over the valuation domain RΛ(I), whence is flat. By transitivity of flatness, I

is R-flat. In particular, a non-maximal prime ideal of R is flat when R is either an

APVD or a divided Ω-domain. Dobbs observed that in case (R, M) is a coherent

divided domain each non-maximal prime ideal is flat if and only if RP is a valuation

domain for each P ∈ Spec(R) \ {M} [12, Remark 2.10].

6. Some applications

We first give a descent result.

Proposition 6.1. Let f : R ↪→ T be an extension of integral domains, where T is

a divided domain and with respective quotient fields K and L, such that R = K∩T .

(a) An ideal I of R is divided and primal if there is some J ∈ I(T ), such that

I = f−1(J).

(b) If in addition R is a quasilocal treed domain and R → T has the going-down

property, then R is a divided integral domain.

Proof. (a) Let I = f−1(J), in view of (λ2) in Section 2.2, we can suppose that

f−1(Λ(J)) = Λ(I). Consider x ∈ IΛ(I), then x ∈ JΛ(J) = J , because Λ(I) ⊆ Λ(J).

It follows that x ∈ RΛ(I) ∩ J ⊆ K ∩ J ∩ T = I. Thus I = IΛ(I) follows. Moreover,

f−1(J]) = R \ Λ(I) is a prime ideal.

(b) With the notation of Theorem 3.3, for P := Pf we have TP = T and

K ∩ T = RP , whence R = RP . To complete the proof, apply (a) to the ring

morphism R = RP → T defined in Theorem 3.3, since this morphism has the

lying-over property. ¤

The above result shows that if either R → T is faithfully flat or R is going-down

and R → T is pure and if T is a divided integral domain, then so is R.

In the sequel, we focus on divided i-domains.

Proposition 6.2. Let (R,M) be a quasilocal i-domain, with integral closure (V, N),

a valuation domain. If I 6= 0, R is an ideal with
√

I = P , then (In : In) ⊆ VP for

each positive integer n. In particular, if M =
√

I, then (In : In) is integral over R.
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Proof. Reworking the proof of [17, Proposition 6.1(a)], we first consider the case√
I = M . Setting J := InV , we know that (J : J) = VJλ by [23, Lemma 3.1.9].

Then In ⊆ J ⊆ Jλ gives M ⊆ Jλ and M = R∩Jλ. Since R is an i-domain, it follows

that Jλ = N and In : In ⊆ VN = V since R ⊆ V is an INC-extension. Now if√
I = P , it is enough to consider RP instead of R, because (In : In) ⊆ (In

P : In
P ). ¤

Corollary 6.3. Let (R, M) be a divided i-domain with integral closure (V, N) a

valuation domain and I ∈ I(R), I 6= 0 a P -primary ideal. Then VP is the integral

closure of (In : In) ⊇ RP .

Proof. Observe that InRP = In and that In is P -primary. Use also Theorem 4.7.

¤

The above result holds for I
√

I for an ideal I 6= R, 0 (see Proposition 4.4). Next

we generalize an Okabe’s result [41, Corollary 3.13] and clarify Corollary 6.3.

Proposition 6.4. Let R be a divided integral domain and I a nonzero P -primary

ideal of R. Then Spec((I : I)) → Spec(RP ) is a homeomorphism if and only if
(I:I)
√

I is a (the unique) maximal ideal of (I : I). In that case, each overring of R,

between (I : I) and RP , is a divided domain.

Proof. The equivalence claimed is a consequence of Theorem 4.7(c) because a GD

morphism A → B, whose spectral map is bijective, is such that Spec(B) → Spec(A)

is a homeomorphism. Then (I : I) is divided by [48, Proposition 4.1]. ¤

An ideal I of an integral domain R, with quotient field K, is called strongly

primary if for x, y ∈ K, the relation xy ∈ K ⇒ either x ∈ I or yn ∈ I for some

positive integer n. Then I ∈ I(R) \ {0} is strongly primary if and only if (I : I) is

a valuation domain and (I:I)
√

I ∈ Max((I : I)) [3, Theorem 2.11].

Badawi and Houston introduced almost pseudo-valuation domains (APVDs) in

[3]. An integral domain R is an APVD if (R, M) is quasilocal and M is strongly

primary. An APVD (R, M) is a divided domain and RP is a valuation domain for

each prime ideal P 6= M (see [6, Lemma 3.1]). In the next result, we examine some

(partial) converse.

An ideal I of a treed quasilocal domain (R, M) is termed Archimedean if I] = M .

Actually, an ideal I of a valuation domain is Archimedean if and only if (I : I) = R,

since (I : I) = RI] [29, p.71].

Assume that (R, M) is a treed quasilocal domain. By Proposition 4.1(c) a fg-ideal

of R is Archimedean. Observe that I] is Archimedean in RI] , because I]RI] = I].
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An ideal I of R is Archimedean if (I : I) = R, since RI] ⊆ (I : I). An M -primary

ideal I is Archimedean.

Proposition 6.5. Let (R,M) be a quasilocal integral domain.

(a) If R is a treed domain and I 6= 0 is a strongly primary ideal of R, then

I] =
√

I (I is a primary ideal). Hence, I is Archimedean ⇔√I = M .

(b) R is an APVD if and only if R is divided, Spec((M : M)) → Spec(R) is

injective (a homeomorphism) and (M : M) is a valuation domain. In that case,

each nonzero prime ideal P 6= M is non-Archimedean.

(c) Suppose that R is treed. Let I 6= R be an ideal of R, such that RI] is a

valuation domain, then (I : I) is a valuation domain and I is comparable with any

prime ideal of R.

(d) Suppose that RP is a valuation domain for each prime ideal P 6= M and that

R is treed. Then any non-Archimedean ideal I 6= R is comparable to any prime

ideal of R.

(e) In particular, if M is strongly unbranched, R is treed and RP is a valuation

domain for each prime ideal P 6= M , then R is divided.

Proof. (a) Let x ∈ R \√I, in view of [3, Lemma 2.3] we have xI = I, whence

x /∈ I]. It follows that I ⊆ I] ⊆√I and I] =
√

I.

(b) Use [3, Theorem 3.4], Proposition 6.2 and that an APVD is divided [3,

Proposition 3.2]. Moreover, each nonzero prime ideal is strongly primary. Hence

P ] = M implies P = M .

(c) Since RI] is a valuation domain and RI] ⊆ (I : I), we get that (I : I) is a

valuation domain. It follows from [34, Lemma 1] that I is comparable with any

prime ideal of R.

(d) An ideal I which is not Archimedean is such that I] 6= M , whence RI] is a

valuation domain. To conclude, use (b). ¤

Okabe defines a PPC-domain as an integral domain R with quotient field K such

that each overring S 6= K is of the form (P : P ) for some P ∈ Spec(R) [41]. Any

PVD (R,M) is a PPC-domain if (M : M) is a minimal overring of R. The following

result is proved by Okabe, in case R is integrally closed [41, Theorem 3.5].

Proposition 6.6. Let R be an integral domain. Then (R, M) is a divided PPC-

domain if and only if R is an APVD and (M : M) is the minimal overring of

R.

Proof. Assume that R is a divided PPC-domain. Observe that R′ = (P : P ) for

some P ∈ Spec(R). As RP ⊆ (P : P ), we get that RP = R because R → RP is
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integral and P = M the maximal ideal of R. Then Q ⊂ M implies R′ = (M : M) ⊂
(Q : Q) by Proposition 4.2(d). It follows that R → R′ = (M : M) is a minimal

morphism and (M : M) is the minimal overring of R. Moreover, R is an i-domain

by a result of Gilbert, quoted by Dobbs [13, Theorem 4.1], whence (R′,M ′) is a

valuation domain. In view of Proposition 6.5(b), R is an APVD.

Now suppose that (R, M) is an APVD and (M : M) is the minimal overring of

R. Then (M : M) is a valuation domain by Proposition 6.5(b). The overrings of

R, different from R, are the overrings of the valuation domain (M : M). But an

overring of (M : M) is of the form (P ′ : P ′), where P ′ is a prime ideal of (M : M).

Since R is divided, Spec(R)\{M} = Spec(R′)\{M ′} by [16, Proposition 5.6] applied

to the minimal morphism R → (M : M). Therefore, if P ′ 6= M ′, such an overring

is of the form (P : P ) with P ∈ Spec(R). Now (M ′ : M ′) = (M : M)M ′ = (M : M)

by [23, Lemma 3.1.9]. It follows that R is a divided PPC-domain. ¤

Proposition 6.7. Let (R, M) be a divided i-domain such that RP is a valuation

domain for each P ∈ Spec(R) \ {M}. If R has finite Krull dimension, then each

overring extension R → S is either integral or of the form R → RP , where P =

R ∩ N and N is the maximal ideal of S. In particular, such a domain is strong

divided (each of its overrings is divided).

Proof. In view of [17, Proposition 6.1(b)], we have a factorization R → RP → S,

with P = R ∩ N and RP → S is integral. Then RP = S in case P 6= M . If not,

R = RP and then R → S is integral. ¤

Let R be an integral domain and I ∈ I(R). Then RI is the union of the sequence

of overrings {(In : In)}n>0 and defines a map βI : R → RI . Many authors studied

asymptotic prime divisors in Noetherian rings. We give a version for divided rings.

Proposition 6.8. Let (R, M) be a divided integral domain, I ∈ I(R) and n > 0

an integer.

(a)
√

I ⊆ (In+1)λ ⊆ (In)λ ⊆ Iλ and Ass(In+1) ⊆ Ass(In) ⊆ Ass(I).

(b) If R/
√

I is a g-ideal domain, the sequence {(Ik)λ}k>0 is stationary and so is

{Ass(Ik)}k>0.

Therefore, if R is a divided g-ideal ring, {(In)λ}n>0 and {Ass(In)}n>0 are sta-

tionary for each I ∈ I(R).

Proof. (a) From U(In) ⊆ U(In+1) and λ = ], we deduce that
√

I ⊆ (In+1)λ ⊆
(In)λ ⊆ Iλ. In view of Theorem 4.7, Ass(In+1) ⊆ Ass(In) ⊆ Ass(I).
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(b) If R/
√

I is a g-ideal domain, the flat topology on Spec(R/
√

I) is Noetherian

[44, Proposition 4]. As an irreducible closed subset of the flat topology is of the form

Q↓ for some Q ∈ Spec(R/
√

I) ([44]), {(Ik)λ} is stationary and so is {Ass(Ik)}. ¤

Note that the g-ideal domain condition is not necessary for the sequence {Ass(In)}
to be stationary. This occurs if I ∈ If (R), because Iλ = M , if I is idempotent and

also if R is a valuation domain, because (IJ)] = I] ∩ J] [29, Lemma 4.6].

If we set Iµ := ∩k>0 (Ik)λ, then ∩k>0 Ass(Ik) = V(I) ∩ (Iµ)↓ and SβI
= R \ Iµ.

References

[1] A. Badawi, On divided commutative rings, Comm. Algebra, 27(3) (1999),

1465–1474.

[2] A. Badawi and D. E. Dobbs, Some examples of locally divided rings, 73–83,

Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001.

[3] A. Badawi and E. Houston, Powerful ideals, strongly primary ideals, almost

pseudo-valuation domains, and conducive domains, Comm. Algebra, 30(4)

(2002), 1591–1606.
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[46] G. Picavet, Pureté, rigidité et morphismes entiers, Trans. Amer. Math. Soc.,

323 (1991), 283–313.

[47] G. Picavet, Geometric subsets of a spectrum, 387–417, Lecture Notes in Pure

and Appl. Math., 231, Dekker, New York, 2003.

[48] G. Picavet, Treed domains, Int. Electron. J. Algebra, 3 (2008), 1–14.



IDEALS AND OVERRINGS OF DIVIDED DOMAINS 113

[49] R. G. Swan, On seminormality, J. Algebra, 67 (1980), 210–229.

[50] S. Singh and P. Manchand, On complete integral closure of G-domains, Indian

J. Pure Appl. Math., 20 (1989), 884–886.

Gabriel Picavet

Laboratoire de Mathématiques

Université Blaise Pascal

63177 Aubiere Cedex

e-mail: Gabriel.Picavet@math.univ-bpclermont.fr


