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1. Introduction

Generalisations of Hopf algebras over fields have quite a long history. The main

common principle of many (but not all) such generalisations is the weakening of

some of the algebraic conditions that enter the definition of a Hopf algebra. We

mention here but a few examples. The weakening of the (co)associativity leads to

quasi-Hopf algebras [2]. If the algebra part of a Hopf algebra is not required to have

a unit, one obtains multiplier Hopf algebras [5]. If one does not require the unit to be

comultiplicative and the counit to be multiplicative, one is led to weak Hopf algebras

[1]. The most recent additions to this family of generalisations are Hopf quasigroups

and Hopf coquasigroups introduced in [3] in order to capture the quasigroup features

of the (algebraic) 7-sphere. Similarly to quasi-Hopf algebras, Hopf (co)quasigroups

are not required to be (co)associative. The lack of (co)associativity is compensated

by conditions involving the antipode.

The first aim of this note is to show that, similarly to standard Hopf algebras,

Hopf (co)quasigroups can be characterised by a Galois-type condition. More specif-

ically, that a Hopf coquasigroup satisfies the right Galois condition, i.e. that the

right Galois map (see Definition 2.3) is bijective, is already proven in [3, Lemma 6.3].

Parallel arguments yield satisfaction of the left Galois condition for Hopf coquasi-

groups and both Galois conditions for Hopf quasigroups. We provide the converse

to this statement, namely that one needs both left and right Galois maps to have

almost (co)linear inverses (see Definition 2.2) to infer the existence of an antipode
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for a Hopf (co)quasigroup. We also lay foundations for the theory of Hopf mod-

ules over Hopf (co)quasigroups, and show in particular that the categories of such

modules are equivalent to the category of vector spaces. All these results can be

understood as a Hopf (co)quasigroup version of the fundamental theorem of Hopf

algebra theory. They can also be interpreted as the general background that allows

for the development of differential structures on Hopf coquasigroups presented in

[3, Section 6].

All algebras and coalgebras are over a field k. Unadorned tensor product symbol

represents the tensor product of k-vector spaces. The identity map on a vector

space V is denoted by V . The unit of a Hopf algebra H both as an element of H

and as a map k → H is denoted by 1. The product of elements of a Hopf algebra

is denoted by juxtaposition.

2. The first fundamental theorem for Hopf (co)quasigroups

The aim of this section is to show that the definition of a Hopf (co)quasigroup

can be rephrased in terms of bijectivity of (canonical) Galois maps.

Definition 2.1. ([3]) Let H be a vector space that is a unital (not necessarily

associative) algebra with product µ : H⊗H → H and unit 1 : k → H, and a

counital (not necessarily coassociative) coalgebra with coproduct ∆ : H → H⊗H

and counit ε : H → k that are algebra homomorphisms.

H is called a Hopf quasigroup provided ∆ is coassociative and there exists a

linear map S : H → H such that

µ◦ (H⊗µ)◦ (S⊗H⊗H)◦ (∆⊗H) = ε⊗H = µ◦ (H⊗µ)◦ (H⊗S⊗H)◦ (∆⊗H) (2.1)

and

µ◦(µ⊗H)◦(H⊗H⊗S)◦(H⊗∆) = H⊗ε = µ◦(µ⊗H)◦(H⊗S⊗H)◦(H⊗∆). (2.2)

H is called a Hopf coquasigroup provided µ is associative and there exists a linear

map S : H → H such that

(µ⊗H)◦(S⊗H⊗H)◦(H⊗∆)◦∆ = 1⊗H = (µ⊗H)◦(H⊗S⊗H)◦(H⊗∆)◦∆ (2.3)

and

(H⊗µ)◦(H⊗H⊗S)◦(∆⊗H)◦∆ = H⊗1 = (H⊗µ)◦(H⊗S⊗H)◦(∆⊗H)◦∆. (2.4)

We use Sweedler notation for coproduct, that is, for all h ∈ H, ∆(h) = h(1)⊗h(2).

One should remember, however, that if ∆ is not coassociative, the standard Sweedler’s
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relabeling rules no longer apply. As for standard Hopf algebras, the map S in Defi-

nition 2.1 is called an antipode. To relieve the notation from some brackets, we write

Sh for the value of S at h. It is proven in [3] that the antipode is antimultiplica-

tive and anticomultiplicative and it immediately follows from (any of) equations

(2.1)–(2.4) that, for all h ∈ H, (Sh(1))h(2) = h(1)Sh(2) = ε(h)1, i.e. S enjoys the

standard antipode property.

Definition 2.2. Let H be a (not necessarily) associative algebra with a compatible

(not necessarily coassociative) coalgebra structure as in Definition 2.1. Consider a

k-linear map φ : H⊗H → H⊗H. We say that

(a) φ is almost left H-linear if, for all g, h ∈ H, φ(g⊗h) = (g⊗1)φ(1⊗h);

(b) φ is almost right H-linear if, for all g, h ∈ H, φ(g⊗h) = φ(g⊗1)(1⊗h);

(c) φ is almost left H-colinear if φ = (H⊗ε⊗H) ◦ (H⊗φ) ◦ (∆⊗H), that is, for

all g, h ∈ H, φ(g⊗h) = g(1)⊗(ε⊗H)(φ(g(2)⊗h));

(d) φ is almost right H-colinear if φ = (H⊗ε⊗H) ◦ (φ⊗H) ◦ (H⊗∆), that is, for

all g, h ∈ H, φ(g⊗h) = (H⊗ε)(φ(g⊗h(1)))⊗h(2).

In case (co)product of H is (co)associative, the notion of almost H-(co)linearity

coincides with that of H-(co)linearity.

Definition 2.3. Let H be a (not necessarily) associative algebra with a compatible

(not necessarily coassociative) coalgebra structure as in Definition 2.1. The k-linear

map

β : H⊗H → H⊗H, β = (µ⊗H) ◦ (H⊗∆) : g⊗h 7→ gh(1)⊗h(2), (2.5)

is called the right Galois map. The k-linear map

γ : H⊗H → H⊗H, γ = (H⊗µ) ◦ (∆⊗H) : g⊗h 7→ g(1)⊗g(2)h, (2.6)

is called the left Galois map.

Lemma 2.4. The right Galois map β is almost left H-linear and almost right H-

colinear. The left Galois map γ is almost right H-linear and almost left H-colinear.

Proof. The statements are obviously related by the left-right symmetry, hence we

prove only the first one. The fact that β is almost left H-linear follows immediately

from the observation that, for all h ∈ H, β(1⊗h) = ∆(h), and from the unitality of

µ. In view of the counitality of ∆, we obtain, for all g, h ∈ H,

(H⊗ε)(β(g⊗h(1)))⊗h(2) = gh(1)(1)⊗ε(h(1)(2))⊗h(2) = gh(1)⊗h(2) = β(g⊗h),

hence β is almost right H-colinear as required. ¤
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The main result of this section is contained in the following theorem (one direc-

tion, that β is bijective for a Hopf coquasigroup is already proven in [3, Lemma 6.3]).

Theorem 2.5. Let H be a vector space that is a unital (not necessarily associative)

algebra with product µ : H⊗H → H and unit 1 : k → H, and a counital (not

necessarily coassociative) coalgebra with coproduct ∆ : H → H⊗H and counit

ε : H → k that are algebra homomorphisms.

(1) H is a Hopf quasigroup if and only if ∆ is coassociative and the right and left

Galois maps have almost left, resp. right H-linear inverses.

(2) H is a Hopf coquasigroup if and only if µ is associative and the right and left

Galois maps have almost right, resp. left H-colinear inverses.

Proof. (1) If H is a Hopf quasigroup, then, by definition, ∆ is coassociative. Set

β−1 : H⊗H → H⊗H, g⊗h 7→ gSh(1)⊗h(2), (2.7)

and

γ−1 : H⊗H → H⊗H, g⊗h 7→ g(1)⊗(Sg(2))h. (2.8)

The map β−1 is almost left H-linear and γ−1 is almost right H-linear. Furthermore,

that β−1 is the inverse to β follows by a calculation parallel to that in the proof

of [3, Lemma 6.3], which establishes the bijectivity of β for a Hopf coquasigroup.

Explicitly, for all g, h ∈ H,

β−1 ◦ β(g⊗h) = β−1(gh(1)⊗h(2)) = (gh(1))Sh(2)⊗h(3) = g⊗h,

by the first of equations (2.2). Similarly, using the second of equations (2.2) one

computes

β ◦ β−1(g⊗h) = (gSh(1))h(2)⊗h(3) = g⊗h.

Therefore, β−1 is the inverse of β. Analogous computation that uses equations

(2.1) yields that γ−1 is the inverse of γ.

Conversely, assume that the Galois maps β and γ have the required inverses and

introduce the notation, for all h ∈ H,

h[1]⊗h[2] := β−1(1⊗h), h(1)⊗h(2) := γ−1(h⊗1).

Since β−1 and γ−1 are almost H-linear, for all g, h ∈ H,

β−1(g⊗h) = gh[1]⊗h[2], γ−1(h⊗g) = h(1)⊗h(2)g. (2.9)

Define k-linear maps S : H → H, S̄ : H → H, by

S : h 7→ h[1]ε(h[2]), S̄ : h 7→ ε(h(1))h(2), (2.10)
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that is

S = (H⊗ε) ◦ β−1 ◦ (1⊗H), S̄ = (ε⊗H) ◦ γ−1 ◦ (H⊗1). (2.11)

Since the coproduct ∆ is coassociative, the almost right colinearity of β is tanta-

mount with its colinearity, and hence also β−1 is right H-colinear. This implies

that, for all h ∈ H,

h(1)
[1]⊗h(1)

[2]⊗h(2) = h[1]⊗h[2]
(1)⊗h[2]

(2).

Applying the counit to the middle factor one concludes that

h[1]⊗h[2] = h(1)
[1]ε(h(1)

[2])⊗h(2) = Sh(1)⊗h(2).

In view of equation (2.9), the map β−1 has the same form as in (2.7). Calculations

analogous to those in the first part (i.e. the use of the fact that β−1 is the inverse

of β) produce the equalities

(gh(1))Sh(2)⊗h(3) = g⊗h = (gSh(1))h(2)⊗h(3).

Applying the counit to the second factor, one obtains equations (2.2).

Following similar chain of arguments one concludes that the map S̄ satisfies

equations (2.1). Finally, using the facts that S satisfies equations (2.2) (in the

second equality), and that S̄ satisfies equalities (2.1) (in the third step), we can

compute, for all h ∈ H,

S̄(h) = S̄h(1)ε(h(2)) = ((S̄h(1))h(2))Sh(3) = ε(h(1))Sh(2) = Sh.

Thus the maps S and S̄ coincide and they are the required antipode of the Hopf

quasigroup.

(2) Note that the definition of S and S̄ in equations (2.11) is self-dual under the

usual duality (reversing arrows, interchanging algebra with coalgebra structures),

which interchanges Hopf quasigroups with Hopf coquasigroups. Thus the similar

reasoning as in part (1) gives the proof of part (2). ¤

3. Hopf modules over Hopf (co)quasigroups

The aim of this section is to introduce Hopf modules over Hopf (co)quasigroups

and to show that, similarly to ordinary Hopf algebras, the categories of such modules

are equivalent to the category of vector spaces.
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3.1. Hopf modules over Hopf quasigroups.

Definition 3.1. Let H be a Hopf quasigroup. Let M be a coassociative and

counital right H-comodule with coaction %M and a unital right H-module with

action %M . M is said to be a right H-Hopf module if

%M ◦(%M⊗H)◦(M⊗H⊗S)◦(M⊗∆) = M⊗ε = %M ◦(%M⊗H)◦(M⊗S⊗H)◦(M⊗∆)

(3.1)

and

%M ◦ %M = (%M⊗µ) ◦ (M⊗ flip ⊗H) ◦ (%M⊗∆). (3.2)

Writing m·h for %M (m⊗h) and using the Sweedler notation for coaction %M (m) =

m(0)⊗m(1), the conditions (3.1) and (3.2) read explicitly, for all h ∈ H and m ∈ M ,

(m·h(1))·Sh(2) = mε(h) = (m·Sh(1))·h(2) and (m·h)(0)⊗(m·h)(1) = m(0)·h(1)⊗m(1)h(2).

Equation (3.2) is the usual compatibility condition for Hopf modules [4, Sec-

tion 4.1], while equation (3.1) is a substitute for the associativity of the H-action,

as it is satisfied automatically whenever right H-action is associative. Note that

H is a right H-Hopf module with the multiplication as action and coproduct as

coaction.

We begin the analysis of Hopf modules over a Hopf quasigroup with the following

simple (and completely classical)

Lemma 3.2. Let H be a Hopf quasigroup and let M be a right H-Hopf module.

Then, for all m ∈ M ,

%M (m(0) ·Sm(1)) = m(0) ·Sm(1)⊗1. (3.3)

Consequently, for all m ∈ M and h ∈ H,

%M
((

m(0) ·Sm(1)

)·h)
=

(
m(0) ·Sm(1)

)·h(1)⊗h(2). (3.4)

Proof. Equation (3.3) follows by the compatibility condition (3.2), and by the

anticomultiplicativity and the antipode property of S. Then equation (3.4) is a

simple consequence of (3.3) and (3.2) (all as in the standard Hopf algebra case). ¤

On a Hopf module over H one can induce a new H-Hopf module structure as

follows.
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Proposition 3.3. Let H be a Hopf quasigroup and let M be a right H-Hopf module

with action %M and coaction %M . Then M is a right H-Hopf module with action

%̂M = %M ◦ (%M⊗H) ◦ (M⊗S⊗µ) ◦ (%M⊗H⊗H) ◦ (%M⊗H), (3.5)

and coaction %M .

Proof. In terms of Sweedler’s notation, the map %̂M reads explicitly, for all m ∈ M

and h ∈ H, %̂M (m⊗h) =
(
m(0) ·Sm(1)

)·(m(2)h
)
. The second of equations (3.1) and

the counitality of %M immediately imply that %̂M (m⊗1) = m. Write m/h for

%̂M (m⊗h). Then, for all g, h ∈ H, m ∈ M ,

(m/g)/h =
(((

m(0) ·Sm(1)

)·(m(2)g
)
(1)

)·S (
m(2)g

)
(2)

)·((m(2)g
)
(3)h

)
,

by equation (3.4) in Lemma 3.2. Thus the first of equations (3.1) implies that

(m/g)/h =
(
m(0) ·Sm(1)

)·((m(2)g
)
h
)
. (3.6)

Therefore,

(m/Sh(1))/h(2) =
(
m(0) ·Sm(1)

)·((m(2)Sh(1)

)
h(2)

)
= (m(0)·Sm(1))·m(2)ε(h) = mε(h),

where the second equality follows by the second of equations (2.2) and the third

one by the second of equations (3.1). Similarly, the first equations in (2.2) and

(3.1) imply that (m/h(1))/Sh(2) = mε(h). Finally, combining equation (3.4) in

Lemma 3.2 with the multiplicativity of coproduct we obtain

%M (m/h) =
(
m(0) ·Sm(1)

)·(m(2)h)(1)⊗(m(2)h)(2)

=
(
m(0) ·Sm(1)

)·(m(2)h(1))⊗m(3)h(2) = m(0)/h(1)⊗m(1)h(2).

Therefore, the compatibility condition (3.2) between %̂M and %M holds, and M is

a right H-Hopf module as stated. ¤

One could attempt to iterate the induction procedure described in Proposi-

tion 3.3, i.e. apply it again to the H-Hopf module with action %̂M . The antipode

axiom and equation (3.3) in Lemma 3.2 immediately imply, however, that the iter-

ation must terminate after the first step, that is ̂̂%M = %̂M . If, on the other hand,

the action %M is associative, then the first of equations (2.1) implies that already

%̂M = %M .
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Definition 3.4. Let H be a Hopf quasigroup, and let M , N be right H-Hopf

modules. A k-linear map f : M → N is said to be H-quasilinear provided it is

H-linear with respect to the induced actions %̂M and %̂N , defined in Proposition 3.3.

That is, the following diagram

M⊗H
f⊗H //

%̂M

²²

N⊗H

%̂N

²²
M

f // N

is commutative. A map of right H-Hopf modules is a map that is both right H-

colinear and right H-quasilinear. The collection of all right H-Hopf modules with

their maps forms a category which is denoted by MH
H .

Explicitly and exploring the H-colinearity, an H-colinear map f : M → N is

H-quasilinear (i.e. a morphism of H-Hopf modules) if and only if, for all m ∈ M

and h ∈ H,

f
((

m(0) ·Sm(1)

)·(m(2)h
))

=
(
f

(
m(0)

)·Sm(1)

)·(m(2)h
)
. (3.7)

Note that, whenever the H-action is associative, the quasilinearity of a map is

tantamount with its right H-linearity. Thus, if H is a Hopf algebra, then MH
H is

the usual category of right H-Hopf modules.

Lemma 3.5. Let H be a Hopf quasigroup and let M be a right H-Hopf module.

Then M⊗H is a right H-Hopf module with coaction M⊗∆ and the diagonal action,

i.e., for all m ∈ M , g, h ∈ H,

(m⊗h)·g := m·g(1)⊗hg(2).

Furthermore, %M is a morphism of right H-Hopf modules.

Proof. First we need to prove conditions (3.1) for M⊗H. Take any m ∈ M and

g, h ∈ H, and compute

((m⊗h)·g(1))·Sg(2) = (m·g(1))·Sg(4)⊗(hg(2))Sg(3) = (m·g(1))·Sg(2)⊗h = m⊗hε(g),

where the second equality follows by the first of equations (2.2), and the third

equality is a consequence of the first of equations (3.1). This proves the first of

conditions (3.1) for M⊗H. The second one is proven in a similar way, using the

second of (2.2) and (3.1).

The compatibility condition (3.2) for M⊗H follows by the compatibility for M

and by the multiplicativity of the coproduct (as in the standard Hopf algebra case).
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By the coassociativity, the map %M is right H-colinear, so only condition (3.7)

need be checked. Equation (3.4) implies, for all m ∈ M , h ∈ H,

%M
((

m(0) ·Sm(1)

)·(m(2)h
))

=
(
m(0) ·Sm(1)

)·(m(2)h
)
(1)⊗

(
m(2)h

)
(2)

=
(
m(0) ·Sm(1)⊗1

)·(m(2)h
)
.

On the other hand, the antipode property of S yields,
(
%M

(
m(0)

)·Sm(1)

)·(m(2)h
)

=
(
m(0) ·Sm(3)⊗m(1)Sm(2)

)·(m(4)h
)

=
(
m(0) ·Sm(1)⊗1

)·(m(2)h
)
.

Therefore, the map %M is both right H-colinear and H-quasilinear as required. ¤

The category H
HM of left H-Hopf modules is defined symmetrically, and the left

H-Hopf module versions of Lemmas 3.2 and 3.5, and of Proposition 3.3 can be

similarly proven.

The following theorem contains the main result of this section.

Theorem 3.6. For any Hopf quasigroup H, the categories of left and right H-Hopf

modules are equivalent to the category of vector spaces.

Proof. We concentrate on the right H-Hopf modules, as the left H-Hopf modules

can be treated symmetrically.

Define the induction functor F : Vectk → MH
H as follows. For any vector space

V , F (V ) = V⊗H with the H-action and coaction defined by, for all g, h ∈ H and

v ∈ V ,

(v⊗h)·g = v⊗hg, v⊗h 7→ v⊗h(1)⊗h(2).

That is the right H-action is V⊗µ and the coaction is V⊗∆. Then conditions (2.2)

ensure that F (V ) obeys equations (3.1). The multiplicativity of the coproduct

yields the satisfaction of condition (3.2) for F (V ). Thus F (V ) is a right H-Hopf

module. Given a k-linear map f : V → W , define the H-colinear and H-quasilinear

map F (f) by

F (f) : V⊗H → W⊗H, v⊗h 7→ f(v)⊗h.

Define the coinvariants functor G : MH
H → Vectk as follows. For any right

H-Hopf module M ,

G(M) = M coH := {m ∈ M | %M (m) = m⊗1}.

On morphisms G treats an H-colinear and H-quasilinear map f : M → N as

the underlying linear transformation and restricts it to M coH . The image of the

restricted map is a subspace of N coH since f is H-colinear.
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Lemma 3.7. The induction functor F is left adjoint to the coinvariants functor

G.

Proof. We need to construct the unit and counit of adjunction. For any vector

space V , define

ηV : V → (V⊗H)coH , v 7→ v⊗1.

This is obviously a k-linear map and it is natural in V , thus the family of all such

ηV forms a natural transformation η : idVectk → G ◦ F .

For any right H-Hopf module define,

σM : M coH⊗H → M, m⊗h 7→ m·h.

The H-colinearity of σM follows by the compatibility condition (3.2), as, for all

m ∈ M coH and h ∈ H,

%M (σM (m⊗h)) = (m·h)(0)⊗(m·h)(1) = m·h(1)⊗h(2) = σM (m⊗h(1))⊗h(2).

Next take any g, h ∈ H and m ∈ M coH and compute

σM

(((
m⊗h(1)

)·Sh(2)

)·(h(3)g
))

= σM

(
m⊗ (

h(1)Sh(2)

) (
h(3)g

))

= σM (m⊗hg) = m·(hg),

where the definition of the antipode have been used to derive the third equality.

On the other hand,

(
σM

(
m⊗h(1)

)·Sh(2)

)·(h(3)g
)

=
((

m·h(1)

)·Sh(2)

)·(h(3)g
)

= m·(hg),

by the first of equations (3.1). Therefore, σM is also a right H-quasilinear map as

required.

Take any H-colinear and H-quasilinear map f : M → N and compute, for all

m ∈ M coH and h ∈ H,

f(σM (m⊗h)) = f(m·h) = f
((

m(0) ·Sm(1)

)·(m(2)h)
)

=
(
f

(
m(0)

)·Sm(1)

)·(m(2)h) = f(m)·h = σN (f(m)⊗h),

where the second and fourth equalities follow by the fact that %M (m) = m⊗1 and

by the unitality of actions and products, while the third equality is a consequence of

H-quasilinearity of f . This proves that σM is natural in M , hence the family of all

the σM forms a natural transformation σ : F ◦G → idMH
H

. Finally, the triangular

identities for the unit and counit of adjunction follow by the unitality of both the

H-action and product in H. ¤
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In view of Lemma 3.7 we need to prove that the unit and counit of adjunction

constructed in its proof are natural isomorphisms. For any vector space V , the

inverse of ηV is given by

η−1
V : (V⊗H)coH → V,

∑

i

vi⊗hi 7→
∑

i

viε(hi).

Clearly, the map η−1
V is natural in V , and that the composite η−1

V ◦ηV is the identity

linear transformation on V follows immediately by ε(1) = 1. To compute the other

composite, first observe that
∑

i vi⊗hi ∈ (V⊗H)coH if and only if

∑

i

vi⊗hi
(1)⊗hi

(2) =
∑

i

vi⊗hi⊗1.

Applying the counit to the middle factor we thus obtain that the elements of

(V⊗H)coH are characterised by the equation
∑

i vi⊗hi =
∑

i viε(hi)⊗1. Using

this characterisation one immediately finds that the composite ηV ◦η−1
V is the iden-

tity on (V⊗H)coH . All this is the same as in the standard Hopf algebra case.

The construction of the natural inverse of σ is slightly more involved. We claim

that, for all H-Hopf modules M , the inverse of σM is given by

σ−1
M : M → M coH⊗H, m 7→ m(0) ·Sm(1)⊗m(2).

By equation (3.3) in Lemma 3.2, the map σ−1
M (M) ⊆ M coH⊗H, hence σ−1

M is well-

defined (as a k-linear map). By the coassociativity of the coproduct, σ−1
M is a right

H-colinear map. In view of equation (3.4) in Lemma 3.2, for all h ∈ H and m ∈ M ,

σ−1
M

((
m(0) ·Sm(1)

)·(m(2)h
))

=
((

m(0) ·Sm(1)

)·(m(2)h
)
(1)

)·S (
m(2)h

)
(2)⊗

(
m(2)h

)
(3) = m(0) ·Sm(1)⊗m(2)h,

where the last equality follows by the first of equations (3.1). On the other hand,

(
σ−1

M

(
m(0)

)·Sm(1)

)·(m(2)h
)

=
((

m(0) ·Sm(1)⊗m(2)

)·Sm(3)

)·(m(4)h
)

= m(0) ·Sm(1)⊗
(
m(2)Sm(3)

) (
m(4)h

)

= m(0) ·Sm(1)⊗m(2)h,

where the antipode property was used to obtain the final equality. Therefore, σ−1
M

is also an H-quasilinear map.

Take any H-colinear and H-quasilinear map f : M → N . Since f is H-colinear,

σ−1
N ◦ f(m) = f(m)(0) ·Sf(m)(1)⊗f(m)(2) = f(m(0))·Sm(1)⊗m(2),
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for all m ∈ M . On the other hand, by the antipode property, H-quasilinearity of

f , and the antipode property again,

f
(
m(0) ·Sm(1)

)
= f

((
m(0) ·Sm(1)

)·(m(2)Sm(3)

))

=
(
f(m(0))·Sm(1)

)·(m(2)Sm(3)

)
= f(m(0))·Sm(1).

Therefore,

(f⊗H) ◦ σ−1
M (m) = f(m(0) ·Sm(1))⊗m(2) = f(m(0))·Sm(1)⊗m(2) = σ−1

N ◦ f(m),

i.e. the map σ−1
M is natural in M .

Finally we need to prove that, for every H-Hopf module M , σ−1
M is the inverse

of σM . For any m ∈ M ,

σM (σ−1
M (m)) = (m(0) ·Sm(1))·m(2) = m,

by the second of equalities (3.1) and the counitality of the coaction. For all m ∈
M coH and h ∈ H,

σ−1
M (σM (m⊗h)) = (m·h)(0) ·S(m·h)(1)⊗(m·h)(2) = (m·h(1))·Sh(2)⊗h(3) = m⊗h,

where the second equality is obtained by combining equation (3.2) with the fact

that %M (m) = m⊗1, and the third equality follows by the first of equations (3.1)

and by the counitality of the coproduct.

This completes the proof of the category equivalence MH
H ' Vectk. The equiva-

lence of vector spaces to left H-Hopf modules follows by symmetric arguments. ¤

Directly from the proof of Theorem 3.6 one draws the following

Corollary 3.8. Let H be a Hopf quasigroup, and view H⊗H as a right H-Hopf

module as in Lemma 3.5. Let F : Vectk → MH
H be the induction functor described

in the proof of Theorem 3.6. Then the right Galois map β given in Definition 2.3

is an isomorphism of H-Hopf modules F (H) → H⊗H.

Proof. Observe that (H⊗H)coH = H⊗1. Then β = σH⊗H , where σ is the counit

of the induction–coinvariants adjunction described in the proof of Theorem 3.6.

Thus β is an isomorphism of H-Hopf modules. ¤

In a symmetric way the left Galois map γ is an isomorphism of left H-Hopf

modules.
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3.2. Hopf modules over Hopf coquasigroups. Considerations regarding Hopf

modules over Hopf coquasigroups are dual to these regarding Hopf quasigroups, so

we merely outline main observations without giving detailed proofs.

Definition 3.9. Let H be a Hopf coquasigroup. Let M be a counital right H-

comodule with coaction %M and an associative unital right H-module with action

%M . M is said to be a right H-Hopf module if

(M⊗µ)◦(M⊗H⊗S)◦(%M⊗H)◦%M = M⊗1 = (M⊗µ)◦(M⊗S⊗H)◦(%M⊗H)◦%M

(3.8)

and

%M ◦ %M = (%M⊗µ) ◦ (M⊗ flip ⊗H) ◦ (%M⊗∆). (3.9)

The conditions (3.8) and (3.9) are obtained by the dualisation of conditions (3.1)

and (3.2). Note that (3.2) is self-dual hence conditions (3.2) and (3.9) coincide. By

the same dualisation procedure applied to Proposition 3.3 one obtains

Proposition 3.10. Let H be a Hopf coquasigroup, and let M be a right H-Hopf

module with action %M and coaction %M . Then M is a right H-Hopf module with

action %M and coaction

%̂M = (%M⊗H) ◦ (%M⊗H⊗H) ◦ (M⊗S⊗∆) ◦ (%M⊗H) ◦ %M .

As in the case of modules over Hopf coquasigroups, the iteration of coactions

by the procedure described in Proposition 3.10 terminates after the first step, i.e.
̂̂%M

= %̂M .

Definition 3.11. Let H be a Hopf coquasigroup, and let M , N be right H-Hopf

modules. A k-linear map f : M → N is said to be right H-quasicolinear provided

it is right H-colinear with respect to the induced coactions %̂M , %̂N ; see Propo-

sition 3.10. The collection of all right H-Hopf modules with right H-linear and

H-quasicolinear maps as morphisms forms a category which is denoted by MH
H .

The category of left H-Hopf modules is defined symmetrically. Dualising the

statements and proofs of Lemmas 3.2 and 3.5 one obtains the following

Lemma 3.12. Let H be a Hopf coquasigroup and let M be a right H-Hopf module.

(1) For all m ∈ M and h ∈ H,

(m·h)(0) ·S(m·h)(1) = m(0) ·Sm(1)ε(h).
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(2) M⊗H is a right H-Hopf module with action M⊗µ and the diagonal coaction,

i.e. for all m ∈ M , h ∈ H,

m⊗h 7→ m(0)⊗h(1)⊗m(1)h(2).

Furthermore, %M is a morphism of H-Hopf modules.

The following is the Hopf coquasigroup version of Theorem 3.6.

Theorem 3.13. For any Hopf coquasigroup H, the categories of left and right

H-Hopf modules are equivalent to the category of vector spaces.

Proof. This is dual to Theorem 3.6. In the case of right H-Hopf modules, the

equivalence is given by the induction functor F = −⊗H : Vectk → MH
H defined by

the same formulae as in the proof of Theorem 3.6. Its inverse equivalence is the

H-invariants functor G : MH
H → Vectk defined on objects as G(M) = MH , where

MH is given by the coequaliser

M ⊗H
%M //

M⊗ε
// M

πM // MH .

On morphisms f : M → N , G(f) is defined by the formula G(f)◦πM = πN ◦f (the

existence and the uniqueness of G(f) follow by the fact that f is a right H-linear

map and by the universal property of coequalisers). G is the left adjoint of F . The

unit of adjunction is defined by, for all H-Hopf modules M ,

ηM : M → MH⊗H, m 7→ πM (m(0))⊗m(1).

The counit of adjunction is, for all vector spaces V ,

σV : (V⊗H)H → V, πV⊗H(v⊗h) 7→ vε(h),

which is well-defined by the multiplicativity of the counit ε and by the universal

property of coequalisers. The inverse of σV is

σ−1
V : V → (V⊗H)H , v 7→ πV⊗H(v⊗1),

and the inverse of ηM is

η−1
M : MH⊗H → M, πM (m)⊗h 7→ m(0) ·(Sm(1))h,

which is well-defined by the antimultiplicativity of S and by its antipode property.

¤
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Dually to Corollary 3.8, one proves that the left Galois map γ given in Defini-

tion 2.3 is an isomorphism of right H-Hopf modules H⊗H → F (H), where H⊗H

is a right H-Hopf module as in Lemma 3.12(2).

Note that if H is a Hopf algebra, then the H-coinvariants and H-invariants func-

tors from the category of right H-Hopf modules to Vectk are naturally isomorphic.

For a right H-Hopf module M the isomorphism M coH → MH and its inverse are,

for all n ∈ M coH and m ∈ M ,

n 7→ π(n), π(m) 7→ m(0) ·Sm(1).

Under this isomorpism the unit (resp. counit) of adjunction constructed in the proof

of Theorem 3.13 coincides with the inverse of the counit (resp. unit) of adjunction

describd in the proof of Theorem 3.6.
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