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ABSTRACT. Let R C S be an extension of integral domains with identity
such that R is not a field and R is integrally closed in S. We determine
necessary and sufficient conditions so that the set of intermediate rings
[R,S] between R and S is a finite boolean algebra. Several cases are
treated, specially when S is the quotient field of R or when R is a Krull

domain.
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1. Introduction

Throughout this paper, R C S is supposed to be an extension of integral domains
with identity such that R is not a field and R is integrally closed in S. We denote
by ¢f(R) the quotient field of R, by Spec(R) the set of all prime ideals of R and
by Maxz(R) = {M; : i € I} the set of all maximal ideals of R. We also denote by
[R, S] the set of all intermediate rings between R and S, and by Supp(S/R) the set
of all prime ideals @ of R such that QS = S.

If I\, Ts,...,T, € [R,S], we denote by [[T; the smallest intermediate ring
i=1

?

n n
between R and S containing J 7;. It is obvious that every element of [] 7; can
i=1 i=1
be expressed as a finite sum of the form Y t1to - - - ¢, where t; € T;.

Finally, if I' = {T; : ¢ € I} is a non-empty set of intermediate rings between R

and S, and each T' € [R, S] can be written as [[ T; for some finite subset J of I, we
ieJ
say that [R, S] is generated by T'. By convention, we may suppose that R = [] T;.
ico
Let us recall some needed definitions:
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A pair of rings (R, S) is said to be a normal pair provided that each T € [R, 5]
is integrally closed in S. These pairs where first defined and studied by E. D. Davis
[3]. He proved that if R is local, then (R,S) is a normal pair if and only if there
exists a divided prime ideal P of R (i.e, PRp = P) such that S = Rp and R/P is
a valuation ring [3, Theorem 1]. Several other characterizations of such pairs are
settled in [2]:

Proposition 1.1. [2, Theorems 2.5, 2.10, Lemma 2.9] If R is integrally closed in

S, then the following conditions are equivalent:
(i)

(ii) For each T € [R,S], Spec(T) = {PT : PT C T, P € Spec(R)}.

(iii) For each T € [R, S|, Spec(T) — Spec(R) is injective.

(iv) For each T € [R,S], and for each Q € Spec(T); set P = Q N R, then
Rp =1Tpg.

(v) For each T € [R,S], T = ﬂpespec(R)’PTcT Rp.

In particular, if R is local, the above conditions are equivalent to the

(R, S) is a normal pair.

following:
(vi) Foralls€ S,s€ Rors ! eR.

A boolean algebra B is a bounded distributive lattice (B, A, Y) with unary op-
eration ’ : B — B such that a A @’ = 1 and a Y @’ = 0, where 0 is the least
element and 1 is the greatest element. Boolean algebras arise in variety of areas of
mathematics and computer science.

Our main purpose is to investigate under which conditions ([R, S],.,N) is a finite
boolean algebra. Among other equivalent assertions, we find that ([R,S],.,N) is
a boolean algebra with cardinality 2" if and only if (R,S) is a normal pair and
Supp(S/R) consists of n maximal ideals; or equivalently, there is a maximal chain
Ry=RCR; CRy C...CR, =S5 oflength n and every prime ideal of Supp(S/R)
is maximal (Theorem 3.2). If S is the quotient field of R, we find that ([R, S],.,N) is
a boolean algebra with cardinality 2" if and only if R is a 1-dimensional semi-local
Priifer ring with n maximal ideals (Corollary 3.4). If R is a Krull domain and [R, S]
is finite, we establish that ([R,S],.,N) is a boolean algebra of cardinality 2", where
n is the number of low maximal ideals of R such that MS = S (Corollary 3.6).

The proofs are mostly based on the notion of Kaplansky ideal transforms. Recall
that the Kaplansky ideal transform Qg(I) of an ideal I of R is an overring of R
defined by

Qr(I) ={z € ¢f(R) :Vy € I,xy™ € R for some integer n > 1}.
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We frequently write (1) instead of Qr(I), when no confusion is possible. Note

that Qg(I) can be simply expressed in terms of localizations of R by

Qr(I) = {Rp: P € Spec(R),P  I}.

Further properties of such transform can be found in details in [4].

2. Preliminary results

We say that R C S is a minimal extension if [R,S]| contains only R and S.
Because R is not a field and R is assumed to be integrally closed in S, then (R, S)
is obviously a normal pair. The following useful characterization due to A. Jaballah
precises the relationship between these two concepts. We label it as Lemma 2.1 for

the sake of reference.

Lemma 2.1. [5, Lemma 3.2] The following conditions are equivalent:

(i) RC S is a minimal extension.

(ii) (R,S) is a normal pair and Supp(S/R) consists of a mazimal ideal of R.

It is clear that, if R C S is a minimal extension, then [R,S] is generated by
I' = {S}. In this section, we will generalize Lemma 2.1 by considering the case
where [R, S] is generated by a non-empty set I' = {7T; : i € I} of incomparable

intermediate rings. We start by two preparatory Lemmas.

Lemma 2.2. If [R, S] is generated by a non-empty set I' = {T; : i € I} of incom-
parable intermediate rings, then
(i) Each T; is a minimal overring of R.
(ii) S is an overring of R.
(iii) I s finite.

Proof. (i) If there is a proper intermediate ring T between R and T, then T =
[I 7} for some non-empty finite subset J of I. Then T; C T; for each j € J, but
jeJ
this is false since by assumption, the rings in I' are incomparable. Thus R C T; is
a minimal extension.

(ii) According to Lemma 2.1, (R, T;) is a normal pair and Supp(R/T;) consists
of one maximal ideal M;. By application of Proposition 1.1, T; can be expressed as

L= (] Re= (] HBo= [)] Re=00M)
QT;CT; Q& Supp(T;/R) R#AM;

Moreover, Rys, C (T;)p; is a minimal extension [1, Proposition 2.2]. Since (Raz,, (Ti) ;)

is a normal pair, there is a prime ideal P; of R such that P; C M; and (T;)n, =
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(R]\/[i)piRMi = Rp, [3, Theorem 1]. Now, we have S = ][] T; for some non-empty
ieK
finite subset K of I, so we can present S as

s=[[eancu[[M)= () Ro
i€K i€K Q#M;icK

In particular, we deduce that S is an overring of R.

(i) If K # I, we can consider an intermediate ring 7; = Q(M;) for some
lel—-—K. As S C RM“ it follows that RM; C (Tl)Ml = Rpl - SML - RM“ a
contradiction. Thus I = K is a finite set. O

We will denote I = {1,2,...,n}. It follows that, if [R,S] is generated by a
set I' = {T; : 1 < i < n} of incomparable intermediate rings, then each T; is the
Kaplansky ideal transform T; = Q(M;) of a unique maximal ideal M; of R such
that M;T; = T;. We will use frequently this fact along this line.

Lemma 2.3. Let (R, S) be a normal pair and My, Ms, ..., My mazimal ideals in
k

Supp(S/R). Set T; = Q(M;) and T = [] T3, then
i=1

(i) T; is a minimal overring of S.

(i) T = Q(ll~C M;) and Supp(T/R) = {M; : 1 <i<k}.

3

Proof. (i) Let H be an intermediate ring between R and T; = ()| Rg. For

every prime ideal @ # M; of R, we have Rg C Hg C Rgq, thus Rq = Hg and
QH C H. Therefore, either Supp(H/R) = @, so H = R; or Supp(H/R) = {M,},

soH= () Rg= () Ro=T.
QHCH Q#M;
(ii) Because of M;T; = T; for each i € {1,2,...,k}, then M;T = T. Tt follows

that {M; : 1 <i <k} C Supp(T/R). To show the reverse containment, notice that

k k
T = HQ(MZ-) coM)= () Rq

i=1 Q#M;,1<i<k
Therefore, if @ is a prime ideal of R which does not belong to {M; : 1 < i < k},
then T'C Rg. Thus QT C T and Q ¢ Supp(T/R).
Hence Supp(T/R) = {M; : 1 <i <k} and

T= () Re= () Re= [] BRe=]M).

QTCT Q¢ Supp(T/R) Q#M; 1<i<k i=1

We are able to provide the generalization of Lemma 2.1:
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Theorem 2.4. The following conditions are equivalent:

(i) [R,S] is generated by a finite non-empty set T' = {T; : 1 < i < n} of
incomparable intermediate rings.

(ii) (R,S) is a normal pair and Supp(S/R) consists of n mazximal ideals of R.

Proof. (i) = (i7) Since [R, S] is generated by I' = {7} : 1 < i < n}, then S can be

n

written as S = [] T;. In light of [3, Introduction], to prove that (R,.S) is a normal
i=1

pair, it suffices to show that (R, Sar) is a normal pair for each maximal ideal M
of R. For each i, we have Ry; = (T;)p or Ry C (7)) is a minimal extension.
But, according to [1, Theorem 1.2], we know that Rjs has at most one minimal
overring, then two cases may occur:

- If Ry = (Ty)p for each @ € {1,2,...,n}, then Sy = ]n_[(TZ)M = Ry, sO
(R, Sar) is clearly a normal pair. o

- If Ry C (T))m is a minimal extension for a unique j € {1,2,...,n}, then
Sy = ﬁ (T3)m = (T5)m, so Ryr C Sir is a minimal extension. As Ry is integrally
closed 7li;llkS'M, then (Raz, Spr) is a normal pair.

Since each T; is a minimal overring of R, then T; = Q(M;) for a maximal ideal
M; of R such that M;T; = T; and M;S = S for each i € {1,2,...,n}. Thus,
according to Lemma 2.3, we have Supp(S/R) = {M;, Ms, ..., M,}.

(#4) = (i) Suppose that (R,S) is a normal pair such that Supp(S/R) consists
of n maximal ideals My, Ms,..., M,. Set T; = Q(M;) and ' = {T; : 1 < i < n}.
Since each T; is a minimal overring of R, Lemma 2.3, then the elements of I' are
incomparable. It remains to show that I' generates [R,S]. Let T € [R,S]. Then
Supp(T/R) C Supp(S/R). Therefore, if Supp(T/R) = {M; : i € J} for some
subset J of {1,2,...,n}, then

T= () Ro= (1 RBe= () Re=]M).
QTCT Q¢Supp(T/R) Q#M; ie] icJ
Again from Lemma 2.3, we get

T= Q(HMi) = HQ(Mi) = HTz

ieJ e e

3. Boolean algebra

Lemma 3.1. Suppose that [R,S] is generated by a finite set T = {T; : 1 <i < n}
of incomparable intermediate rings. Let ¢ be the function from the power set P(I)
of I ={1,2,...,n} to [R,S] that maps & to R and any non-empty subset J of I
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to [ Ti. Then ¢ is bijective, and satisfies the following properties for every two
=
subsets J and Kof I:

(i) J C K if and only if o(J) C o(K).

(i) @(JUK) = p()p(K).
(it}) o(J N K) = (J) N o(K).

Proof. In view of Theorem 2.4, Supp(S/R) consists of n maximal ideals of R,
namely My, Ms, ..., M,.

(i) Set H = ¢(J) and L = ¢(K). It is clear that J C K implies H C L.
Conversely, if H C L, then Supp(H/R) C Supp(L/R). But, by Lemma 2.3, we
have Supp(H/R) = {M; :i € J} while Supp(L/R) = {M, :i € K}. Hence J C K.
In particular, this shows that ¢ is injective. As ¢ is also onto by hypothesis on
[R, S], then ¢ is bijective.

(ii) Since (T;)? = T; for every i € {1,2,...,n}, we have

p(JUK) = H T = (HTi)(H T;) = ¢(J).0(K)
i€ JUK ieJ i€k

(iii) This assertion is obvious if there is a containment between J and K. Suppose
that J ¢ K and K ¢ J. Let L = J N K (eventually, we may have L = &). Since

the maximal ideals (M;)1<i<n are comaximal ideals, then [][ M; and [][ M;

ieJ\K ieK\J
are also comaximal ideals. It results that
e()neE) = ([T (] 7
ieJ ieK
= o] m)ne]] M) by Lemma 2.3
ie ieK
= Q(H M; + H M;) [4, Lemma 3.1]
icJ €K
= Q[ M [ M+ [ M)
i€L ieJ\K i€eK\J
= o] m)
i€L
= [Jeon) by Lemma 2.3
ieL
= J[7i=¢@)
i€l

We are ready to provide the main theorem of this paper.
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Theorem 3.2. The following conditions are equivalent for an integer n > 1:

(i) ([R,S],.,N) is a boolean algebra with cardinality 2™.
(ii)  [R,S] is generated by a set T' = {T; : 1 <1i < n} of incomparable inter-
mediate rings.
(iii) (R, S) is a normal pair and Supp(S/R) consists of n mazimal ideals.
(iv)  Supp(S/R) C Maz(R) and |[R, S]| = 2™.
(v)  Supp(S/R) C Max(R), and there is a mazimal chain Ry = R C Ry C
Ry C ... C R, =S of length n.

Proof. (i) = (ii) It is known that, if ([R, S],.,N) is a finite boolean algebra with
cardinality 2™, then it is isomorphic to a boolean algebra of type (P(I),U,N), where
P(I) is the power set of a finite set I with cardinality n. Let W:P(I) — [R, S| be
such an isomorphism, and set T; = ¥({¢}) for every i € I. As the sets ({i});cs are
incomparable, then the T;’s, for i € I are incomparable. Moreover, if T' € [R, 5],
T # R, then T = ¥(J) for some non-empty subset J of I. Thus

T=v( ) =[]edp =]
ieJ i€J i€J
(ii)= (i) By virtue of Lemma 3.1, we deduce that ([R,S],.,N) is a distributive

lattice with least element R and greatest element S. In addition, this lattice is
complemented. Indeed, if T = [[ T; € [R,S], where J C {1,2,...,n}, then TV =

icJ
11 T: € [R, S] is the complement of T, since
igJ
TnT =p()Ne —J)=p(JN(I -J)=p@) =R,
and

T.T" = o(J).o(I = J) = p(JU (I = J)) = p(I) = S.

Thus ([R, S],.,N) is a boolean algebra with cardinality 2.

(ii) < (iii) results from Theorem 2.4.

(i) = (iv) and (v) Since (ii) and (iii) hold, we can say that Supp(S/R) consists
of n maximal ideals My, Ma, ..., M,, and [R, S| is generated by I = {1}, = Q(M;) :
1<i<n} Now,if Rj = [] T;, then

1<i<;

Ry=RCRiCRyC..CR,=8

is a maximal chain of length n. Indeed, if T = [] 7; is an intermediate ring
i€J
between R; and R;i; and different from R; and R;i1, where J C {1,2,...,n},

then {1,2,...,j} ¢ J C{1,2,...,4,7 + 1} by Lemma 3.1, a contradiction.
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(v) = (iii) Assume that Supp(S/R) C Max(R), and there is a maximal chain
Ry=RCR; CRyC..CR,=S of length n.

First, we will prove that (R, S) is a normal pair. According to [3, Introduction],
it suffices to show that (Ras, Sar) is a normal pair for every maximal ideal M of R.
Let M be a maximal ideal of R. Then

Ry = (Ro)m € (Ri)m €--- C (Ru)m =S

is a chain between Rj; and Sps such that either (R;)y = (Rit1)m or (Ri)m C
(Ri+1)Mm is a minimal extension. By refining this last chain, we obtain a finite
maximal chain between Rj; and Sj;. Without loss of generality, we may suppose
that R is local with maximal ideal M. Tt is clear that (R, R;) is a normal pair, since
by assumption R is supposed to be integrally closed in S (so in R;) and R C Ry
is a minimal extension. Therefore, there is a prime ideal P of R such that P C M
and R; = Rp [3, Theorem 1]. Thus R; is also local. In the other way, Ry = Rp is
integrally closed in Sp (so in Rp) and R; C Ry is a minimal extension. It results
that (Rp, R2) is a normal pair and Ry is local. Likewise, we can establish that
(R;, R;41) is a normal pair and R, is local for each 0 < ¢ < n — 1. Consequently,
if z€ S=R,, then 2 € R,,_; or 27! € R,,_1 (Proposition 1.1 (vi)). Progressively,
we find that z € R; or z=! € R; for each 0 < i < n, and again Proposition 1(vi)
ensures that (R, S) is a normal pair.

Now, we will prove that Supp(S/R) consists of n maximal ideals. Since (R;, R;11)
is a minimal extension, then Supp(R;1+1/R;) consists of a unique prime ideal @; of
R; (Lemma 2.1). By virtue of Proposition 1.1 (ii), we have Q; = H;R; for some
prime ideal H; of R. We claim that

Supp(S/R) = {H()le, .. ';Hn71}~

Indeed, if @ € Supp(S/R), then QRy = @ and QR, = R,. Let i be the
first index ¢ > 1 such that QR; = R;. We necessarily have QR;_1 C R;_; and
QR;—1 € Supp(R;/R;—1). Thus QR;—1 = Q;—1 = H;_1R;_1. By contraction on R,
we obtain Q = H;_; (Proposition 1.1 (iii)). So Supp(S/R) C {Hy, H1,...,Hp_1}.
To see the reverse inclusion, it suffices to note that Q;R;+1 = R;y1, so H;S =
(H;R;)S = Q;S = (QiRi+1)S = R;11S = S for each i € {0,1,...,n — 1}.

Furthermore, the H;’s are distinct. If H; = H; for 0 <7 < j < n—1, then Q;R; =
Q;, and this leads to the contradiction Q; = Q;R; = Q:R; = (Q;Ri+1)R; =
Ri1R; = R;.

As by assumption Supp(S/R) C Max(R), then Supp(S/R) consists of n maximal

ideals.
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(iv)= (v) Suppose that Supp(S/R) C Maz(R) and |[R,S]| = 2". Since [R, S|

is finite, we can consider a finite maximal chain
Ry=RCRiCRy;,C..CR,=S5

of length m from R to S. Since the conditions (i) and (v) are actually equivalent

for the integer m, we obtain |[R, S]| = 2. Henceforth, m = n. O

As consequences of Theorem 3.2, we recover the following corollaries. Our first
application concerns the case where R is a Priifer ring and S is an overring of R.

In this case, it is known that (R,.S) is a normal pair.

Corollary 3.3. If R is a Priifer ring and S is an overring of R, then the following
conditions are equivalent for an integer n > 1:

(i) ([R,S],.,N) is a boolean algebra with cardinality 2™.

(ii) Supp(S/R) consists of n mazimal ideals.

Now, if R is an integrally closed domain with quotient field K, then
Supp(K/R) = Spec(R) — {0}.
We can derive the following nice result:

Corollary 3.4. If R is integrally closed with quotient field K, then the following

conditions are equivalent for an integer n > 1:

(i) ([R, K],.,N) is a boolean algebra with cardinality 2™.
(i) [R, K] is generated by a set {T; : 1 < i < n} of incomparable proper over-
rings of R.
(iii) R is a 1—dimensional semi-local Priifer ring with n mazimal ideals.
(iv) dimR =1 and |[R,K]| = 2".
(v) dimR =1, and there is a mazimal chain Ry =RC Ry C...C R, = K of
length n.

The following result provides a method for building more examples of extensions

R C S such that [R, S] is a finite boolean algebra.

Corollary 3.5. Let S be an integral domain, M a mazximal ideal of S, D a subring
of the residue field L = S/M and R = ¢~ 1(D) the inverse image of D by the
canonical epimorphism ¢ : S — L. If D is integrally closed in L, then ([R,S],.,N)
is a boolean algebra with cardinality 2™ if and only if D is a 1-dimensional semi-local

Priifer ring with n mazimal ideals and quotient field L.
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Proof. R is the pullback illustrated by the following square:

R — D

! !
S — L=5/M

Note that R is integrally closed in S. Therefore, this result is a direct consequence
of Corollary 3.4 and the fact that [R,S] is generated by a set {T; : 1 < i < n} of
intermediate rings between R and S if and only if [D, L] is generated by the set
{o(T;) : 1 <i < n} of intermediate rings between D and L. O

Our last application is a significant result concerning Krull rings.

Corollary 3.6. If R is a Krull domain and [R,S] is finite, then ([R,S],.,N) is
a boolean algebra of cardinality 2™, where n is the number of height-one maximal
ideals of R such that MS = S.

Proof. Since [R,S] is finite, we can consider a finite maximal chain between R
and S. To apply Theorem 3.2(v), it remains to show that every prime ideal of
Supp(S/R) is maximal. Let @ € Supp(S/R). Then Q # (0) and @ is contained in a
maximal ideal M € Supp(S/R). In view of Lemma 2.3, Q(M) is a minimal overring
of R. Finally, according to [1, Theorem 5.7], we necessarily have htg(M) = 1 and
Q=M. 0
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