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Abstract. In this paper, we investigate the weak Gorenstein global dimen-

sion. We are mainly interested in studying the problem when the left and

right weak Gorenstein global dimensions coincide. We first show, for GF-

closed rings, that the left and right weak Gorenstein global dimensions are

equal when they are finite. Then, we prove that the same equality holds for

any two-sided coherent ring. We conclude with some examples and a brief

discussion of the scope and limits of our results.
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1. Introduction

Throughout the paper, all rings are associative with identity, and all modules

are unitary. Let R be a ring and let M be an R-module. The injective (resp., flat)

dimension of M is denoted by idR(M) (resp., fdR(M)). We use M∗ to denote the

character module HomZ(M,Q/Z) of M .

A left (resp., right) R-module M is called Gorenstein flat, if there exists an exact

sequence of flat left (resp., right) R-modules

F = · · · → F1 → F0 → F 0 → F 1 → · · · ,

such that M ∼= Im(F0 → F 0) and such that the sequence I ⊗R F (resp., F ⊗R I)

remains exact whenever I is an injective right (resp., left) R-module. The sequence

F is called a complete flat resolution.

For a positive integer n, we say that M has Gorenstein flat dimension at most

n, and we write GfdR(M) ≤ n, if there is an exact sequence of R-modules

0 → Gn → · · · → G0 → M → 0,

where each Gi is Gorenstein flat (please see [8,11,13]).

The notion of Gorenstein flat modules was introduced and studied over Goren-

stein rings, by Enochs, Jenda, and Torrecillas [12], as a generalization of the notion
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of flat modules in the sense that an R-module is flat if and only if it is Gorenstein

flat with finite flat dimension. In [7], Chen and Ding generalized known char-

acterizations of Gorenstein flat modules (then of the Gorenstein flat dimension)

over Gorenstein rings to n-FC rings (coherent with finite self-FP-injective dimen-

sion). Then, in [13], Holm generalized the study of the Gorenstein flat dimension

to coherent rings. In the same direction, the study of Gorenstein flat dimension

is generalized, in [1], to a larger class of rings called GF-closed: a ring R is called

left (resp., right) GF-closed, if the class of all Gorenstein flat left (resp., right)

R-modules is closed under extensions; that is, for every short exact sequence of

left (resp., right) R-modules 0 → A → B → C → 0, the condition A and C are

Gorenstein flat implies that B is Gorenstein flat. A ring is called GF-closed, if it

is both left and right GF-closed. The class of GF-closed rings includes strictly the

one of coherent rings and also the one of rings of finite weak global dimension [1,

Example 3.6].

In this paper, we are concerned with the left and right weak Gorenstein global

dimension of rings, l.wGgldim(R) and r.wGgldim(R), which are introduced in [3]

as follows:

l.wGgldim(R) = sup{GfdR(M) |M is a left R−module} and

r.wGgldim(R) = sup{GfdR(M) |M is a right R−module}.

In the classical case we have, for any ring R, the following well-known equality

[16, Theorem 9.15]:

sup{fdR(M) |M is a right R−module} = sup{fdR(M) |M is a left R−module}.

The common value of these equal terms is called weak global dimension of R and

denoted by wgldim(R).

In [3, Corollary 1.2], we have: if wgldim(R) < ∞, then

l.wGgldim(R) = wgldim(R) = r.wGgldim(R).

This naturally leads to the following conjecture:

Conjecture 1.1. For any ring R, l.wGgldim(R) = r.wGgldim(R).

The main purpose of this paper is to prove that this conjecture holds for a large

class of rings. First, we prove that the conjecture is true for GF-closed rings which

have finite both left and right weak Gorenstein global dimensions (Theorem 2.1).

Then, we prove the conjecture is true for two-sided coherent rings (Theorem 2.8).

In Proposition 2.14, we prove that, for a ring R, l.wGgldim(R) = 0 if and only
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if r.wGgldim(R) = 0; and, in this case, R is an IF ring (i.e., R satisfies: every

injective right R-module I is flat and every injective left R-module I is flat). We

conclude with some examples and a brief discussion of the scope and limits of our

results (Remark 2.17, Proposition 2.18, and Example 2.19).

2. Main results

We begin with the first main result which says that Conjecture 1.1 is true for

GF-closed rings with finite both left and right weak Gorenstein global dimensions.

Theorem 2.1. If R is a GF-closed ring with finite both left and right weak Goren-

stein global dimensions, then l.wGgldim(R) = r.wGgldim(R).

To prove this theorem, we need the following results. The following lemma

generalizes [9, Lemma 2.19].

Lemma 2.2. Assume that R is a left (resp., right) GF-closed ring. If M is a

left (resp., right) R-module with GfdR(M) < ∞, then there exists a short exact

sequence of left (resp., right) R-modules 0 → M → M ′ → G → 0, such that

fdR(M ′) = GfdR(M) and G is Gorenstein flat.

Proof. We only prove the case of left modules, and the case of right modules is

proved similarly. Let GfdR(M) = n for some positive integer n. We prove the

result by induction on n. The case n = 0 holds by the definition of the Gorenstein

flat module. Then, suppose that n > 0 and pick a short exact sequence of left

R-modules: 0 → K → G0 → M → 0, where G0 is Gorenstein flat and GfdR(K) =

n − 1. By induction, there exists a short exact sequence of R-modules: 0 → K →
K ′ → H → 0, such that fdR(K ′) = GfdR(K) = n − 1 and H is Gorenstein flat.

Consider the pushout diagram:

0

²²

0

²²
0 // K

²²

// G0

²²Â
Â
Â

// M // 0

0 // K ′

²²

//___ D

²²

// M // 0

H

²²

H

²²
0 0
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By the middle vertical sequence and since R is left GF-closed, D is Gorenstein flat.

Then, there exists a short exact sequence of left R-modules 0 → D → F → G → 0,

where F is flat and G is Gorenstein flat. Consider the pushout diagram:

0

²²

0

²²
0 // K ′ // D

²²

// M

²²Â
Â
Â

// 0

0 // K ′ // F

²²

//___ M ′

²²

// 0

G

²²

G

²²
0 0

By the middle horizontal sequence fdR(M ′) = fdR(K ′) + 1 = n (since F is flat).

Therefore, the right vertical sequence is the desired sequence. ¤

Compare the following result to [14, Theorem 2.6 (ii)].

Corollary 2.3. Assume that R is a left (resp., right) GF-closed ring. If M is an

injective left (resp., right) R-module, then fdR(M) = GfdR(M).

Proof. It is known that GfdR(M) ≤ fdR(M) for every (left or right) R-module

and over any associative ring R. Conversely, assume that GfdR(M) is finite, then

by Lemma 2.2 there exists a short exact sequence of R-modules: 0 → M → M ′ →
G → 0 such that fdR(M ′) = GfdR(M). Since M is injective, this sequence splits

and therefore fdR(M) ≤ fdR(M ′) = GfdR(M). ¤

Lemma 2.4. If R is a left GF-closed ring with l.wGgldim(R) < ∞, then, for a

positive integer n, the following conditions are equivalent:

(1) l.wGgldim(R) ≤ n;

(2) GfdR(M) ≤ n for every finitely presented left R-module M ;

(3) GfdR(R/I) ≤ n for every finitely generated left ideal I of R;

(4) fdR(E) ≤ n for every injective right R-module E;

(5) fdR(E′) ≤ n for every right R-module E′ with finite injective dimension;



144 DRISS BENNIS

Consequently, the left weak Gorenstein global dimension of R is also determined by

the formulas:

l.wGgldim(R) = sup{GfdR(R/I) | I is a finitely generated left ideal of R}
= sup{GfdR(M) |M is a finitely presented left R−module}
= sup{fdR(E) |E is an injective right R−module}
= sup{fdR(E′) |E′ is a right R−module with idR(E) < ∞}.

Proof. The implications 1 ⇒ 2 ⇒ 3 are trivial. The implication 3 ⇒ 4 follows from

[1, Theorem 2.8 (1 ⇒ 2)]. The implication 4 ⇒ 5 is proved by induction on idR(E′)

using the flat counterpart of [5, Corollary 2, p. 135]. Finally, the implication 5 ⇒ 1

is a simple consequence of [1, Theorem 2.8 (3 ⇒ 1)]. ¤

Similarly we obtain the right version of Lemma 2.4.

Lemma 2.5. If R is a right GF-closed ring with r.wGgldim(R) < ∞, then, for a

positive integer n, the following conditions are equivalent:

(1) r.wGgldim(R) ≤ n;

(2) GfdR(M) ≤ n for every finitely presented right R-module M ;

(3) GfdR(R/I) ≤ n for every finitely generated right ideal I of R;

(4) fdR(E) ≤ n for every injective left R-module E;

(5) fdR(E′) ≤ n for every left R-module E′ with finite injective dimension;

Consequently, the right weak Gorenstein global dimension of R is also determined

by the formulas:

r.wGgldim(R) = sup{GfdR(R/I) | I is a finitely generated right ideal of R}
= sup{GfdR(M) |M is a finitely presented right R−module}
= sup{fdR(E) |E is an injective left R−module}
= sup{fdR(E′) |E′ is a left R−module with idR(E) < ∞}.

Proof of Theorem 2.1. Assume that r.wGgldim(R) = n is finite. From Corollary

2.3, fdR(E) = GfdR(E) ≤ n for every injective right R-module E. Then, from

Lemma 2.4, l.wGgldim(R) ≤ n = r.wGgldim(R).

The converse inequality is proved similarly. ¤

Under the condition of Theorem 2.1, the classical left and right finitistic flat

dimension are equal and they are also equal to the left and right weak Gorenstein
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global dimensions. Recall that the left finitistic flat dimension, l.FFD(R), of a ring

R is defined as follows:

l.FFD(R) = sup{fdR(M) |M is a left R−module with fdR(M) < ∞}.

The right finitistic dimension r.FFD(R) is defined similarly.

Proposition 2.6. If R is a GF-closed ring with finite both left and right weak

Gorenstein global dimensions, then l.FFD(R) = l.wGgldim(R) = r.wGgldim(R) =

r.FFD(R).

Proof. This follows from Theorem 2.1 and the following result. ¤

Recall that the left finitistic Gorenstein flat dimension, l.FGFD(R), of a ring R

is defined as follows:

l.FGFD(R) = sup{GfdR(M) |M is a left R−module with GfdR(M) < ∞}.

The right finitistic dimension r.FGFD(R) is defined similarly.

The following result is a generalization of [13, Theorem 3.24].

Proposition 2.7. For any ring R, we have l.FFD(R) ≤ l.FGFD(R) and r.FFD(R) ≤
r.FGFD(R).

Furthermore, if R is left (resp., right) GF-closed, then l.FFD(R) = l.FGFD(R)

(resp., r.FFD(R) = r.FGFD(R)).

Proof. The inequalities follow immediately by the fact that GfdR(M) = fdR(M)

for every R-module M with finite flat dimension [2, Theorem 2.2].

Now, assume that R is left GF-closed (the right version is proved similarly). It

remains to prove the converse inequality l.FGFD(R) ≤ l.FFD(R). For that, we

can assume that l.FFD(R) = n is finite. Let M be a left R-module with finite

Gorenstein flat dimension. By Lemma 2.2, there exists a short exact sequence of

left R-modules 0 → M → M ′ → G → 0 such that GfdR(M) = fdR(M ′) ≤ n. This

implies the desired inequality. ¤

Now we give the second main result which says that Conjecture 1.1 is true for

two-sided coherent rings. For that we use the following notions:

From [10], a ring R is called right (resp., left) IF, if every injective right (resp., left)

R-module I is flat. A ring R is called IF, if it is both left and right IF. Then, let us

call a ring R is right (resp., left) n-IF, for n ≥ 0, if fdR(E) ≤ n for every injective

right (resp., left) R-module E. And R is called n-IF, if it is both left and right

n-IF.
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Obviously, 0-IF rings are just the IF rings. And, from [11, Theorem 9.1.11], the

n-IF Noetherian rings are the same as the well-known n-Gorenstein rings.

Theorem 2.8. If R is a right and left coherent ring, then, for a positive integer

n, the following conditions are equivalent:

(1) l.wGgldim(R) ≤ n;

(2) R is n-IF;

(3) r.wGgldim(R) ≤ n.

Consequently, for any two-sided coherent ring R, l.wGgldim(R) = r.wGgldim(R).

The proof of this theorem uses the notion of a flat preenvelope of modules which

is defined as follows:

Definition 2.9 ([18]). Let R be a ring and let F be a flat R-module. For an R-

module M , a homomorphism (or F ) ϕ : M → F is called a flat preenvelope, if for

any homomorphism ϕ′ : M → F ′ with F ′ is a flat module, there is a homomorphism

f : F → F ′ such that ϕ′ = fϕ.

Note that if M embeds in a flat module, then its flat preenvelope (if it exists) is

injective.

The coherent rings is also characterized by the notion of a flat preenvelope of

modules as follows:

Lemma 2.10. [18, Theorem 2.5.1] A ring R is coherent if and only if every R-

module has a flat preenvelope.

Also we use the notion of a flat cover of modules which is defined as follows:

Definition 2.11 ([18]). Let R be a ring and let F be a flat R-module. For an R-

module M , a homomorphism (or F ) ϕ : F → M is called a flat precover, if for any

homomorphism ϕ′ : M → F ′ with F ′ is a flat module, there is a homomorphism

f : F ′ → F such that ϕ′ = ϕf .

A flat precover ϕ : F → M of M is called flat cover, if every endomorphism f of

F with ϕ = ϕf must be an automorphism.

Recall that an R-module M is called cotorsion, if Ext1R(F, M) = 0 for every flat

R-module F .

Lemma 2.12. ([4], [11, Lemma 5.3.25]) For any ring R, every R-module M has a

flat cover ϕ : F → M such that Ker(ϕ) is cotorsion.
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Note that every flat cover is surjective.

From its proof, [13, Proposition 3.22] is stated, as we need here, as follows:

Lemma 2.13. Let R be a right (resp., left) coherent ring. If T is a left (resp., right)

R-module such that TorR
1 (I, T ) = 0 (resp. TorR

1 (T, I) = 0) for every injective right

(resp., left) R-module, then Ext1R(T,K) = 0 for every cotorsion left (resp., right)

R-module K with finite flat dimension.

Proof of Theorem 2.8. We prove the implication 1 ⇒ 2. The implication 3 ⇒ 2

has a similar proof. Since every coherent ring is GF-closed, Lemmas 2.4 implies

that fdR(E) ≤ n for every injective right R-module E. Now, consider an injective

left R-module I. From Corollary 2.3, fdR(I) = GfdR(I) ≤ n. Therefore, R is n-IF.

We prove the implication 2 ⇒ 1. The implication 3 ⇒ 1 has a similar proof. Let

M be a left R-module, and consider an exact sequence of left R-modules:

(∗) 0 → G → Pn−1 → · · · → P0 → M → 0,

where each Pi is projective. We have to prove that G is Gorenstein flat.

First note that, using the above sequence (∗), we have:

TorR
k (E,G) ∼= TorR

n+k(E, M) for every k ≥ 1 and every right R module E.

If E is an injective right R-module, then fdR(E) ≤ n (since R is n-IF), and so by

the above isomorphism we get:

(∗∗) TorR
k (E,G) = 0 for every k ≥ 1 and every injective right R module E.

Then, by [13, Theorem 3.6 (i ⇔ iii)], it remains to construct a right flat resolution

of G:

F = 0 → G → F 0 → F 1 → · · · ,

such that the sequence HomR(F, F ) is exact whenever F is a flat left R-module.

Equivalently, for every positive integer i, Gi → F i is a flat preenvelope of Gi, where

G0 = G and Gi = Ker(F i → F i+1) for i ≥ 1.

Consider a short exact sequence of left R-modules 0 → G → I → L → 0, where I is

injective. From Lemma 2.12, there exists a short exact sequence of left R-modules

0 → K → F → I → 0, where F is flat and K is cotorsion. Since R is n-IF,
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fdR(I) ≤ n and so fdR(K) < ∞. Consider the pullback diagram

0

²²

0

²²
K

²²

K

²²
0 // D

²²Â
Â
Â

//___ F

²²

// L // 0

0 // G //

²²

I

²²

// L // 0

0 0

From Lemma 2.13 and (∗∗), we have Ext1R(G,K) = 0. Then, the left vertical

sequence splits, and so G embeds in the flat module F . Thus, G admits an injective

flat preenvelope G → F 0, which gives the desired first flat preenvelope.

Now, for G1 = Coker(G → F 0) we prove that Ext1R(G1,K) = 0 for every cotorsion

left R-module K with finite flat dimension. This gives, using the same argument

above, the desired second flat preenvelope G1 → F 1, and recursively we obtain the

remaining flat preenvelopes.

Let K be a cotorsion left R-module with finite flat dimension. By Lemma 2.12,

there exists a flat cover F → K of K such that we obtain a short exact sequence

of left R-modules 0 → K ′ → F → K → 0, where K ′ is cotorsion with finite flat

dimension (since fdR(K) < ∞). By [18, Proposition 3.1.2], F is cotorsion. Then,

we get the following commutative diagram

0

²²

0

²²

0

²²
0 // Hom(G1,K ′)

²²

// Hom(F 0,K ′)

²²

// Hom(G,K ′)

²²
0 // Hom(G1, F )

²²

// Hom(F 0, F )

²²

// Hom(G,F )

²²

// 0

0 // Hom(G1,K) // Hom(F 0, K)

²²

// Hom(G,K)

²²
0 0
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with exact rows and columns. Indeed, the middle vertical sequence is exact since

F → K is a flat cover of K; the right vertical sequence is exact since Ext1R(G, K ′) =

0 since K ′ is cotorsion with finite flat dimension; and the middle horizontal sequence

is exact since G → F 0 is a flat preenvelope. Then, the sequence 0 → Hom(G1,K) →
Hom(F 0,K) → Hom(G,K) → 0 is exact. This implies, using Ext1R(F 0,K) = 0,

that Ext1R(G1,K) = 0, and this completes the proof. ¤

For the case where l.wGgldim(R) = 0 or r.wGgldim(R) = 0 we have the following

generalization of [7, Theorem 6 (1 ⇔ 2)].

Proposition 2.14. For a ring R, the following conditions are equivalent:

(1) l.wGgldim(R) = 0;

(2) R is IF;

(3) r.wGgldim(R) = 0.

Proof. The implications 1 ⇒ 2 and 3 ⇒ 2 follow from Theorem 2.8.

We prove the implication 2 ⇒ 1. The implication 3 ⇒ 1 has a similar proof. We

prove that every left R-module M is Gorenstein flat. For that, we have to construct

a complete flat resolution F such that M ∼= Im(F0 → F 0). Since R is IF, we can

consider any flat resolution of M as the “left half” of F. For that “right half” of F,

consider an injective resolution I of M . Since R is IF, the sequence I is a right flat

resolution of M such that the sequence I ⊗R I is exact whenever I is an injective

(then flat) right R-module, as desired. ¤

Naturally, for a ring R which satisfies l.wGgldim(R) = r.wGgldim(R) = 0 we

denote wGgldim(R) for the common value of these equal terms and we call it

weak Gorenstein global dimension of R. As a generalization of [7, Theorem 7],

the following result gives a characterization of wGgldim(R) when R is a two sided

coherent rings using the notion of FP-injective dimension of modules, which are

defined as follows [17]: We say that an R-module M has FP-injective (or pure)

dimension at most n (for some n ≥ 0), denoted by FP-idR(M) ≤ n, if and only

if, Extn+1
R (P,M) = 0 for all finitely presented R-modules P . The modules of FP-

injective dimension 0 are called FP-injective (or absolutely pure [15]).

Recall also that a ring R is said to be n-FC, for some positive integer n, if it

is left and right coherent and it has self-FP-injective dimension at most n on both

the left and the right sides .

In the proof of Theorem 2.16, we use the following Cheatham and Stone’s char-

acterization of coherent rings.
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Lemma 2.15. ([6, Theorem 2, (1) ⇔ (2) ⇔ (4)] ) Let R be a ring. The following

conditions are equivalent:

(1) R is left (resp., right) coherent;

(2) M is an FP-injective left R-module if and only if M∗ is a flat right R-

module;

(3) M is an flat left R-module if and only if (M∗)∗ is a flat left R-module.

Theorem 2.16. Let R be a left and right coherent ring and let n be a positive

integer. The following conditions are equivalent:

(1) wGgldim(R) ≤ n;

(2) FP-idR(F ) ≤ n for every flat left R-module F and every flat right R-module

F ;

(3) R is n-FC.

Proof. The equivalence 1 ⇔ 3 follows from Theorem 2.8 and [7, Theorem 7].

We prove the equivalence 1 ⇔ 2.

(1 ⇒ 2). Let F be a flat left R-module. Then, F ∗ is an injective right R-module

(from [16, Theorem 3.52]). Since R is left coherent (then left GF-closed) with

wGgldim(R) ≤ n, we get from Lemma 2.4, fdR(F ∗) ≤ n. Therefore, using [16,

Lemma 3.51] and Lemma 2.15 (1) ⇔ (2), we get FP-idR(F ) = fdR(F ∗) ≤ n.

Similarly we get FP-idR(F ) ≤ n for every flat right R-module F .

(2 ⇒ 1). Let E be an injective left R-module, then it is FP-injective and so, by

Lemma 2.15 (1) ⇔ (2), E∗ is a flat right R-module. Then, by (2), FP-idR(E∗) ≤ n.

Now, pick an exact sequence of left R-modules:

0 → K → Fm−1 → · · · → F1 → F0 → E → 0

where each Fi is flat. Then, we have the following exact sequence of right R-

modules:

0 → (E)∗ → (F0)∗ → (F1)∗ → · · · → (Fm−1)∗ → (K)∗ → 0

where each (Fi)∗ is injective (from [16, Theorem 3.52]). And since FP-idR(E∗) ≤ n,

(K)∗ is FP-injective. Then, from Lemma 2.15 (1) ⇔ (2), ((K)∗)∗ is flat, which is

means, by Lemma 2.15 (1) ⇔ (3), that K is flat. Therefore, fdR(E) ≤ n. Similarly

we get fdR(F ) ≤ n for every injective right R-module F . Therefore, R is n-IF and

so, by Theorem 2.8, wGgldim(R) ≤ n. ¤

Remark 2.17. In [10, Example 2], Colby gave an example of a left and right coher-

ent ring R which is right IF but not left IF. Then, l.wGgldim(R) = r.wGgldim(R) =
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∞. Indeed, if l.wGgldim(R) < ∞, then, by Lemma 2.4, l.wGgldim(R) = 0, and

from Theorem 2.8, l.wGgldim(R) = r.wGgldim(R) = 0. But, this contradicts the

fact that R is not left IF (Proposition 2.14). Consequently:

1. To get the implication 4 (or 5) ⇒ 1 in Lemma 2.4, the condition “l.wGgldim(R) <

∞” can not be dropped.

2. In [13, Theorem 3.14], the condition “Gfd(M) < ∞” can not be dropped to

get the implication iii(or ii) ⇒ i. Indeed, since l.wGgldim(R) = ∞, there ex-

ists, using [13, Proposition 3.13], a left R-module with GfdR(M) = ∞. However,

TorR
i (I, M) = 0 for every i > 0 and every injective (then flat) right R-module I.

Finally, to construct examples of GF-closed rings of finite weak Gorenstein global

dimension which are neither coherent nor of finite weak global dimension, we need

the following result:

Proposition 2.18. For any family of rings {Ri}i=1,...,m, we have:

l.wGgldim(
m∏

i=1

Ri) = sup{l.wGgldim(Ri), 1 ≤ i ≤ m} and

r.wGgldim(
m∏

i=1

Ri) = sup{r.wGgldim(Ri), 1 ≤ i ≤ m}.

Proof. The result is a consequence of [1, Theorem 3.4]. ¤

Example 2.19. Consider an IF ring R1 with infinite weak global dimension, and

consider a non-coherent ring R2 with finite weak global dimension. Then, the direct

product R1×R2 is GF-closed (by [1, Proposition 3.5]) with finite weak Gorenstein

global dimension (by Proposition 2.18), but it is neither coherent nor of finite weak

global dimension.
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