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1. Introduction

For graph theory terminology in general we follow [6]. Specifically, let G = (V, E)

be a graph with vertex set V of order n and edge set E. We denote the degree of a

vertex v in G by dG(v), which is the number of edges incident to v. A graph G is

complete if there is an edge between every pair of the vertices. A subset X of the

vertices of a graph G is called independent if there is no edge with two endpoints in

X. A graph G is called bipartite if its vertex set can be partitioned into two subsets

X and Y such that every edge of G has one endpoint in X and other endpoint in

Y . A complete bipartite graph is a bipartite graph in which any vertex of a partite

set is adjacent to all vertices in another partite set. A graph G is said to be star if

G contains one vertex in which all other vertices are joined to this vertex and G has

no other edges. The complement G of G is the graph with vertex set V (G) = V (G),

and E(G) = {uv : uv 6∈ E(G)}. The complement of a complete graph is the null

graph.

Let F = {Si : i ∈ I} be an arbitrary family of sets. The intersection graph G(F )

is the one-dimensional skeleton of the nerve of F , i.e., G(F ) is the graph whose

vertices are Si, i ∈ I and in which the vertices Si and Sj (i, j ∈ I) are adjacent

if and only if Si 6= Sj and Si ∩ Sj 6= ∅. It is shown that every simple graph is an

intersection graph, ([5]).

It is interesting to study the intersection graphs G(F ) when the members of F

have an algebraic structure. Bosak [2] in 1964 studied graphs of semigroups. Then

Cskny and Pollk [4] in 1969 studied the intersection graphs of subgroups of a finite
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group. Zelinka [7] in 1975 continued the work on intersection graphs of nontrivial

subgroups of finite abelian groups.

Chakrabarty et al. [3] studied intersection graphs of ideals of rings. The inter-

section graph of ideals of a ring R, denoted Γ(R), is the undirected simple graph

(without loops and multiple edges) whose vertices are in a one-to-one correspon-

dence with all nontrivial left ideals of R and two distinct vertices are joined by an

edge if and only if the corresponding left ideals of R have a nontrivial (nonzero)

intersection. Clearly the set of vertices is empty for left simple rings. In this case

we refer Γ(R) as the empty graph.

Chakrabarty et al. [3] studied planarity of intersection graphs of the ring Zn. In

this paper we will characterize all commutative rings with 1 which Γ(R) is planar.

Throughout this paper for an ideal I in a ring R, the vertex in Γ(R) corresponded

to I is also denoted by I. All rings we handle are commutative with 1.

We denote by Kn the complete graph on n vertices, and by Km,n the complete

bipartite graph which one partite set is of cardinality m and another partite set is

of cardinality n.

2. Results

We will repeatedly use Kuratowski,s theorem, which states that a graph is planar

if and only if it does not contain a subdivision of K5 or K3,3 (see [6, Theorem 6.2.2]).

Let R be a commutative ring with 1. We begin with the following lemma.

Lemma 2.1. If Γ(R) is planar, then any chain of ideals of R has length at most

five.

Proof. Let I1 ⊂ I2 ⊂ ... ⊂ I5 be a chain of nontrivial proper ideals of R. Then

I1, I2, ..., I5 induce a K5 as an induced subgraph in Γ(R). This completes the

proof. ¤

Corollary 2.2. If Γ(R) is planar, then R is both Noetherian and Artinian.

Lemma 2.3. If Γ(R) is null and R contains at least two proper nontrivial distinct

ideals, then R ∼= R1 ×R2, where R1, R2 are fields.

Proposition 2.4. Γ(R1×R2) is planar if and only if one of Γ(R1), Γ(R2) is empty,

and another is empty or null with at most two vertices.

Proof. (=⇒) Let I1, I2 be two nontrivial ideals of R2 with I1 ⊆ I2. Then 0×I1, 0×
I2, 0×R2, R1× I1, R1× I2 form a K5, a contradiction. So Γ(R1), Γ(R2) are null or

empty. We show that Γ(R1) or Γ(R2) is empty. Suppose that both Γ(R1) and Γ(R2)
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are null. Let I C R1, J C R2, (nontrivial). Then 0×R2, 0× J, I ×R2, I × J,R1 × J

form a K5, a contradiction. Assume that Γ(R1) is empty. Suppose that Γ(R2) is

null. By Lemma 2.3, Γ(R2) has at most two vertices.

(⇐=) Is straightforward. ¤

Corollary 2.5. Γ(R1×R2×R3) is planar if and only if Ri is a field for i = 1, 2, 3.

Proof. Notice that if R3 is not a field and I ≤ R3, then R2 × 0, R2 × I is an edge

in Γ(R2 ×R3), and by Proposition 2.4, Γ(R1 ×R2 ×R3) is not planar. ¤

Let Max(R) be the set of all maximal ideals of R.

Lemma 2.6. If Γ(R) is planar, then |Max(R)| ≤ 3.

Proof. Let Γ(R) is planar. Suppose that |Max(R)| ≥ 4. Let M1,M2,M3 be three

distinct maximal ideals of R. Let I = M1 ∩ M2 ∩ M3. Since |Max(R)| ≥ 4, we

have I 6= 0. Then M1,M2,M3,M1 ∩M2,M1 ∩M3, and M2 ∩M3 form a K6, as an

induced subgraph, a contradiction. ¤

We divide the rest of the paper into two subsection according to |Max(R)|.

2.1. |Max(R)| 6= 1. Let J(R) be the Jacobson radical of R. We first consider the

case |Max(R)| = 3.

Corollary 2.7. If |Max(R)| = 3 and Γ(R) is planar, then J(R) = 0.

Corollary 2.8. If |Max(R)| = 3 and Γ(R) is planar, then R = R1 ×R2.

Proof. Let Max(R) = {M1,M2,M3}. By Corollary 2.7, M1 ∩ (M2 ∩M3) = 0. On

the other hand M1 + (M2 ∩M3) = R. So the result follows. ¤

Theorem 2.9. If |Max(R)| = 3, then Γ(R) is planar if and only if R = R1×R2×
R3, where Ri is a field for i = 1, 2, 3.

Proof. Follows from Corollary 2.8, Lemma 2.3 and Proposition 2.4. ¤

We next assume that |Max(R)| = 2.

Lemma 2.10. (Nakayama, [1]) Let M be a finitely generated R-module. If J(R)M =

M , then M = 0.

Lemma 2.11. If Max(R) = {M1,M2} and Γ(R) is planar, then R ∼= M3
1 ×M3

2 .
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Proof. We first show that M3
1 ∩ M3

2 = 0. Suppose that M3
1 ∩ M3

2 6= 0. By

Corollary 2.2, M1,M2 are finitely generated R-modules. By Nakayama’s lemma

M1,M2, (M1 ∩M2), (M1 ∩M2)2, and (M1 ∩M2)3 are all mutually distinct. Then

M1,M2, (M1 ∩M2), (M1 ∩M2)2, (M1 ∩M2)3 form a K5 as an induced subgraph, a

contradiction. So M3
1 ∩M3

2 = 0. On the other hand M3
1 +M3

2 = R. This completes

the result. ¤

Theorem 2.12. If |Max(R)| = 2, then Γ(R) is planar if and only if one of

Γ(R1), Γ(R2) is empty, and another is empty or null with one vertex.

Proof. Notice that by Lemma 2.11, R ∼= R1 × R2. Now the result follows by

Proposition 2.4. ¤

2.2. |Max(R)| = 1. In this subsection R is a local ring. Let M be the unique

maximal ideal of R. The following lemmas are easily verified.

Lemma 2.13. If Γ(R) is planar, then M5 = 0.

Lemma 2.14. Let IER. Then I
IM is a vector space over R

M . Further, any subspace

of I
IM is in the form J

IM , where J E R and IM ⊆ J ⊆ I.

Lemma 2.15. Let I E R. If dim( I
IM ) ≥ 3, then Γ(R) is not planar.

Proof. Let u1, u2, u3 be three linear independent vectors in I
IM . Let W = 〈u1, u2, u3〉.

Since dim( W
〈u1〉 ) = 2, W

〈u1〉 contains exactly | R
M |+ 1 subspaces of dimension 1. This

implies that W contains at least 3 subspaces W1,W2,W3 of dimension 2 containing

u1. On the other hand W4 = 〈u2, u3〉 is another subspace of W of dimension 2. We

obtain that W1,W2, W3,W4 are for subspaces of dimension 2 such that Wi∩Wj 6= 0

for i, j ∈ {1, 2, 3, 4}. Suppose that Wi = Ji

IM for i = 1, 2, 3, 4. Now J1, J2, J3, J4,M

form a K5. ¤

Corollary 2.16. Let M2 = 0. Then Γ(R) is planar if and only if dim(M) = 1 or

2 as a vector space over R
M .

Proof. Follows by Lemma 2.15 with putting I = M . ¤

Corollary 2.17. Let M2 = 0. Then Γ(R) is planar if and only if Γ(R) is either

an star or K1.

Lemma 2.18. Let M2 6= 0. If Γ(R) is planar, then dim( M
M2 ) = 1 and M

M2
∼= M2

M3

as an isomorphism of R-modules.



PLANARITY OF INTERSECTION GRAPHS OF IDEALS OF RINGS 165

Proof. By Lemma 2.15, dim( M
M2 ) ≤ 2. Suppose that dim( M

M2 ) = 2. It follows that
M
M2 contains at least three subspaces W1,W2,W3 of dimension 1. Let Wi = Ji

M2 for

i = 1, 2, 3. Then J1, J2, J3,M,M2 form a K5, a contradiction. Thus dim( M
M2 ) = 1.

As a consequent M = 〈a〉 for some a ∈ R. We define the map φ : M
M2 −→ M2

M3 by

φ(ra + M2) = ra2 + M3. Since M
M2 is a simple R-module, it is straightforward to

see that φ is an R-isomorphism. ¤

Corollary 2.19. Let M2 6= 0 and M3 = 0. Then Γ(R) is planar if and only if

Γ(R) = K2.

Proof. Let Γ(R) be planar. By Lemma 2.18, M = Ra where a ∈ R. Let I be

a minimal ideal of R. We show that I = M2. Since I is a simple R-module, we

obtain I ∼= R
M . Then I = 〈x〉, where x ∈ R. If x ∈ M \M2, then x = ra, where

r ∈ R \M . So r is invertiable and 〈x〉 = 〈a〉 = M , a contradiction. We deduce that

x ∈ M2, and so I ⊆ M2. Since M2 is simple, we obtain I = M2. Thus M2 is the

unique minimal ideal of R, and Γ(R) = K2. The converse is obvious. ¤

Lemma 2.20. Let M3 6= 0 and M4 = 0. If Γ(R) is planar, then dim( M
M2 ) = 1 and

M
M2

∼= M2

M3
∼= M3

M4 .

Corollary 2.21. Let M3 6= 0 and M4 = 0. Then Γ(R) is planar if and only if

Γ(R) is K3 or K4.

Proof. By Lemma 2.20, M = Ra where a ∈ R. Let I be a minimal ideal of R.

We show that I = M3. Since I is a simple R-module, we obtain I ∼= R
M . Then

I = 〈x〉, where x ∈ R. If x ∈ M \ M2, then x = ra, where r ∈ R \ M . So r is

invertiable and 〈x〉 = 〈a〉 = M , a contradiction. If x ∈ M2 \ M3, then x = ra2,

where r ∈ R \ M . As before we can see that 〈x〉 = 〈a2〉 = M2, a contradiction.

We deduce that x ∈ M3, and so I ⊆ M3. Since M3 is simple, we obtain I = M3.

Thus M3 is the unique minimal ideal of R, and Γ(R) is complete. Now the result

follows. ¤

Lemma 2.22. Let M4 6= 0 and M5 = 0. If Γ(R) is planar, then dim( M
M2 ) = 1 and

M
M2

∼= M2

M3
∼= M3

M4
∼= M4

M5 .

Corollary 2.23. Let M4 6= 0 and M5 = 0. Then Γ(R) is planar if and only if

Γ(R) = K4.

Proof. By Lemma 2.22, M = Ra where a ∈ R. Let I be a minimal ideal of R.

Similar to the proof of Corollary 2.21, we obtain I = M4. Thus M4 is the unique

minimal ideal of R, and Γ(R) is complete. Now the result follows. ¤
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As a consequent of Corollaries 2.17, 2.19, 2.21 and 2.23 we obtain the following.

Theorem 2.24. If |Max(R)| = 1, then Γ(R) is planar if and only if Γ(R) is an

star, K1, K3, or K4.
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