INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA VOLUME 8 (2010) 167-176

r-COSTAR MODULES

Hongxing Liu and Shunhua Zhang

Received: 31 March 2010; Revised: 13 May 2010 Communicated by Abdullah Harmancı

ABSTRACT. We give the definition of r-costar modules as a generalization of costar modules under artin algebra situation. We also study characterizations of r-costar modules and give characterizations of r-costar modules with some special properties.

Mathematics Subject Classification (2000): 16D90, 16E30 Keywords: *r*-costar module, resolving subcategory, reflexive module

1. Introduction

The theory of equivalences and dualities between module subcategories, originating in the well-known theory of Morita theorems, had been studied extensively. Both quasi-progenerators and tilting modules over arbitrary rings induce equivalences between certain categories of modules. Menini and Orsatti introduced a generalization of these modules that have come to be called *-modules, cf. [5]. Namely, let C_A be a subcategory of Mod-A closed under submodules and containing A_A , and let \mathcal{Y}_R be a subcategory of Mod-R closed under direct sums and epimorphic images, then any equivalence between C_A and \mathcal{Y}_R is represented by a bimodule ${}_AP_R$, via the adjoint pair (T_P, H_P) . P is called *-module if we put $A = \operatorname{End}(P_R)$, $T_P = -\otimes_A P$, $H_P = \operatorname{Hom}_R(P, -)$, $K_A = \operatorname{Hom}_R(P, Q)$, where Q is a cogenerator of Mod-A, then the pair of the functors (T_P, H_P) defines an equivalence between $\operatorname{Gen}(P_R)$ and $\operatorname{Cogen}(K_A)$. In [3], Colpi gave that P is a *-module if and only if P is selfsmall and, for any exact sequence $0 \to L \to M \to N \to 0$ with M, $N \in \operatorname{Gen}(P)$, the induced sequence $0 \to H_P(L) \to H_P(M) \to H_P(N) \to 0$ is exact if and only if $L \in \operatorname{Gen}(P)$.

Wei introduced the notion of $*^s$ -modules, where s denotes static, by replacing the subcategory Gen(P) in the theory of *-module with the subcategory Stat(P)and some results on *-module are successively extended to $*^s$ -modules, cf. [7].

Supported by NSF of China (Grant No. 10771112) NSF of Shandong Province (Grant No. Y2008A05) and Young Scientist Reward Funding from Shandong Province(No.2008BS01016).

On the other side, a dual notion of quasi-progenerators called quasi-duality modules and cotilting modules dual to tilting modules have been a central topic of recent investigation in module theory. Colby and Fuller generalized these modules to costar modules which may be viewed as dual to *-modules in a sense, cf. [1].

Inspired by [7], we shall investigate r-costar modules by replacing the subcategory cogen(P) in the theory of costar modules with the subcategory $\operatorname{Ref}(P_{\Lambda})$ under artin algebra situation. Some similar results are obtained.

2. Preliminaries

Let R be an associative ring with nonzero identity, Mod-R (R-Mod) denotes the category of all right (left) R-modules, while mod-R and R-mod denote their subcategories of finitely generated modules. We shall let proj_R be the full subcategory of all projective modules in mod-R (or R-mod). Given a module P_R (or $_RP$), we denote

 $\operatorname{KerExt}_{R}^{i \geq e}(-, P) = \{ X \in \operatorname{mod-}R(\operatorname{or} R\operatorname{-mod}) \mid \operatorname{Ext}_{R}^{i}(X, P) = 0, \text{ for all } i \geq e, \\ \text{where } e \text{ is a positive integer or } 0 \}.$

If $X \in Mod-R$ (or R-Mod), let $\operatorname{Rej}_P(X) = \bigcap \{\operatorname{Ker}(f) \mid f \in \operatorname{Hom}_R(X, P)\}.$

For every *R*-module *P*, Prod*P* (prod*P*) will denote the class of the *R*-modules isomorphic to arbitrary (finite) summands of direct products of copies of *P*. Add(*P*) (add(*P*)) will denote the class of the *R*-modules isomorphic to arbitrary (finite) summands of direct sums of copies of *P*. Cogen(*P*) (cogen(*P*)) consists of the *R*modules that embed in arbitrary (finite) direct products of modules isomorphic to *P*. An *R*-module $N \in \text{Cogen}(P)$ if and only if, for every $0 \neq x \in N$, there is a morphism $f \in \text{Hom}_R(N, P)$ such that $f(x) \neq 0$. Gen(*P*) will denote the class of the *R*-modules generated by *P*. For a module *M*, if there exists an exact sequence $0 \to M \to P^X \to P^Y$, where *X*, *Y* are sets, we say *M* is copresented by *P_R*. A subcategory is resolving if it contains all projective objects and is closed under extensions and kernels of epimorphisms.

For a bimodule ${}_{A}P_{R}$, we let $\Delta_{P_{R}} = \operatorname{Hom}_{R}(-, P)$ and $\Delta_{AP} = \operatorname{Hom}_{A}(-, P)$. Both of which will, when convenient, simply be denoted by Δ_{P} or Δ . We have a pair of contravariant functors

$$\Delta_{P_R}$$
: Mod- $R \rightleftharpoons A$ -Mod : Δ_{AP} .

Associated with this adjunction are the evaluation maps

$$\delta_X: X \to \Delta^2 X$$
 with $\delta_X(x): f \mapsto f(x)$

168

for X in Mod-R or A-Mod, $x \in X$, and $f \in \Delta(X)$. This yields natural transformations

$$\delta : 1_{\operatorname{Mod}-R} \to \Delta^2 \text{ and } \delta : 1_{A-\operatorname{Mod}} \to \Delta^2.$$

A module X is (P-)reflexive if δ_X is an isomorphism, and (P-)torsionless if δ_X is a monomorphism. Note that $\operatorname{Ker} \delta_X = \operatorname{Rej}_P(X)$, so that X is P-torsionless if and only if X is cogenerated by P. We shall let $\Gamma_{P_R} = \operatorname{Ext}^1_R(-, P)$ and $\Gamma_{AP} = \operatorname{Ext}^1_A(-, P)$, both of which will usually be denoted by Γ , cf. [2].

Denoting the class of *P*-reflexive right-*R* and left-*A* modules by $\operatorname{Ref}(P_R)$ and $\operatorname{Ref}(_AP)$, respectively, it always the case that $_AP_R$ -induces a duality

$$\Delta : \operatorname{Ref}(P_R) \rightleftharpoons \operatorname{Ref}(_AP) : \Delta.$$

Let fgd-tl(P_R) denote by the class of torsionless right *R*-modules whose *P*-duals are finitely generated over *A* and fg-tl($_AP$) denote the class of finitely generated torsionless left *A*-modules. we also denote by

sf-cp
$$(P_R) = \{ M \in \text{Mod-}R | 0 \to M \to P^n \to P^A \text{ with } n \in N \}.$$

Colby and Fuller obtain the following theorem.

Theorem 2.1. ([1]) Let R be a ring, $P \in Mod$ -R and $A = End(P_R)$. The following are equivalent.

(a) $\Delta : fgd-tl(P_R) \rightleftharpoons fg-tl(_AP) : \Delta$ is a duality. That is, P_R is a costar module.

(b) $\Delta : sf\text{-}cp(P_R) \rightleftharpoons fg\text{-}tl(_AP) : \Delta \text{ is a duality and } fgd\text{-}tl(P_R) = sf\text{-}cp(P_R).$

(c) δ_M is an epimorphism if $\Delta(M) \in A$ -mod and δ_N is an epimorphism if $N \in A$ -mod.

(d) $fgd-tl(P_R) \subseteq sf-cp(P_R)$ and if $0 \to M \xrightarrow{f} P^n \to L \to 0$ is exact with $L \in Cogen(P_R)$, then $\Delta(f)$ is an epimorphism.

(e) If $0 \to M \xrightarrow{f} P^n \to L \to 0$ is exact then $L \in Cogen(P_R)$ if and only if $\Delta(f)$ is an epimorphism.

A ring Λ is an artin algebra if its center K is an artinian ring and Λ is finitely generated as a K-module. Any finitely generated module over an artin algebra is finitely generated over its endmorphism ring, which is also an artin algebra, cf. [2].

In this paper, we let Λ denote by an artin albebra and we only consider finitely generated module category. If $P \in \text{mod}-\Lambda$, for $M \in \text{mod}-\Lambda(A-\text{mod})$, then $\Delta(M) \in$ $A-\text{mod}(\text{mod}-\Lambda)$. Any exact sequence $0 \to L \to P^n \to M \to 0$ in mod- Λ (or A-mod), then $L, M \in \text{mod}-\Lambda$ (or A-mod) and $\Delta(L), \Delta(M) \in A-\text{mod}(\text{or }\Lambda-\text{mod})$, since Λ is an artin algebra. If Λ is an artin algebra and $_AP_{\Lambda}$ is a bimodule, then $\text{Cogen}(P_{\Lambda})$ $\cap \text{mod}-\Lambda=\text{cogen}(P_{\Lambda})$ and $\text{Cogen}(_AP) \cap A-\text{mod}=\text{cogen}(_AP)$, cf. [2](P115). So that from Theorem 2.1 (e), P is a costar module provided that any exact sequence $0 \to M \xrightarrow{f} P^n \to L \to 0$ remains exact after applying the functor Δ_P if and only if $L \in \operatorname{cogen}(P_{\Lambda})$.

3. Basic properties on *r*-costar modules

Firstly, we give the definition of r-costar modules.

Definition 3.1. Let $P \in \text{mod-}\Lambda$. A Λ -module P is said to be an *r*-costar module provided that any exact sequence $0 \to L \to M \to N \to 0$ with $L, M \in \text{Ref}(P_{\Lambda})$ remains exact after applying the functor $\Delta_{P_{\Lambda}}$ if and only if $N \in \text{Ref}(P_{\Lambda})$.

If P is an r-costar module and $\operatorname{cogen}(P_{\Lambda}) = \operatorname{Ref}(P_{\Lambda})$, then P is a costar module. For an r-costar module P_{Λ} , the subcategory $\operatorname{Ref}(P_{\Lambda})$ has the following properties.

Proposition 3.2. Let $P_{\Lambda} \in mod \cdot \Lambda$ be an *r*-costar module. Then the following hold. (1) The functor $\Delta_{P_{\Lambda}}$ preserves short exact sequences in $Ref(P_{\Lambda})$.

(2) For any $M \in \operatorname{Ref}(P_{\Lambda})$, there is an infinite exact sequence $0 \to M \to P_1 \to \cdots \to P_n \to \cdots$ which remains exact after applying the functor $\Delta_{P_{\Lambda}}$ where $P_i \in \operatorname{prod}P$ for each *i*.

(3) For any exact sequence $0 \to L \to M \to N \to 0$ which is also exact after applying the functor $\Delta_{P_{\Lambda}}$, if two of its terms are in $Ref(P_{\Lambda})$, then so is the third one.

Proof. (1) Follows from the definition of r-costar modules.

(2) If X is finitely generated, then $\Delta(X)$ is finitely generated as A-module. So, for any $M \in \operatorname{Ref}(P_{\Lambda})$, let $\Delta(M)$ is generated by f_1, \dots, f_n as A-module. Then we have an exact sequence $0 \to M \xrightarrow{f} P^n \to M_1 \to 0$ where $f = (f_1, \dots, f_n)$ and $P^n \in \operatorname{prod} P$. Since the sequence is clearly exact after applying the functor $\Delta_{P_{\Lambda}}$ and $P^n \in \operatorname{Ref}(P_{\Lambda})$, we obtain that $M_1 \in \operatorname{Ref}(P_{\Lambda})$. By repeating the process to M_1 , and so on, we finally obtain the desired exact sequence.

(3) If $L, M \in \operatorname{Ref}(P_{\Lambda})$, then $N \in \operatorname{Ref}(P_{\Lambda})$ by the definition of *r*-costar modules.

Now let $N \in \operatorname{Ref}(P_{\Lambda})$. By applying the functor Δ^2 to the sequence in (3), we have the following commutative diagram by assumptions.

since $N \in \operatorname{Ref}(P_{\Lambda})$, we have that δ_N is an isomorphism. It follows easily that δ_L is an isomorphism if and only if δ_M is an isomorphism. So that, $\mathbf{L} \in \operatorname{Ref}(P_{\Lambda})$ if and only if $M \in \operatorname{Ref}(P_{\Lambda})$.

The following proposition gives some properties of the subcategory $\operatorname{Ref}(_AP)$ for P an r-costar module.

Proposition 3.3. Let $P \in mod \cdot \Lambda$ be an *r*-cotar module with $A = End(P_{\Lambda})$. Then the following hold.

(1) $proj_A \subseteq Ref(_AP) \subseteq KerExt_A^{i\geq 1}(-, P)$. In particular, the functor $\Delta_{_AP}$ preserves short exact sequences in $Ref(_AP)$.

(2) Ref(AP) is a resolving subcategory.

Proof. Since $A \in \operatorname{Ref}(_AP)$, we have $\operatorname{proj}_A \subseteq \operatorname{Ref}(_AP)$. Now for any $N \in \operatorname{Ref}(_AP)$, then $\Delta(N) \in \operatorname{Ref}(P_{\Lambda})$. By proposition 3.2(2), there is an infinite exact sequence $0 \to \Delta(N) \to P_1 \to \cdots \to P_n \to \cdots$ which remains exact after applying the functor $\Delta_{P_{\Lambda}}$ to the sequence. We obtain an exact sequence $\cdots \to \Delta(P_n) (\cong A_n) \to \cdots \to$ $\Delta(P_1) (\cong A_1) \to \Delta^2(N) \to 0$ with $A_i \in \operatorname{proj}_A$. It remains exact after applying the functor Δ_{AP} . We obtain that $\operatorname{Ref}(_AP) \subseteq \operatorname{KerExt}_A^{i\geq 1}(-, P)$ by dimension shifting.

(2) From (1), we know that $\operatorname{Ref}(_AP)$ contains all projective A-modules. For any exact sequence $0 \to K \to M \to N \to 0$ with $N \in \operatorname{Ref}(_AP)$. As $\operatorname{Ref}(_AP) \subseteq$ $\operatorname{KerExt}_A^{i\geq 1}(-,P)$ by (1), we obtain the following exact commutative diagram by applying the functor Δ^2 .

Since $N \in \operatorname{Ref}({}_{A}P)$, then δ_{N} is an isomorphism. So that, δ_{K} is an isomorphism if and only if δ_{M} is an isomorphism. That is, $K \in \operatorname{Ref}({}_{A}P)$ if and only if $M \in \operatorname{Ref}({}_{A}P)$. It follows that $\operatorname{Ref}({}_{A}P)$ is closed under kernels of epimorphisms and under extensions. Thus, $\operatorname{Ref}({}_{A}P)$ is a resolving subcategory.

4. Characterizations of r-costar modules

In this section, we shall give an equivalent condition for r-costar modules.

Proposition 4.1. Let P be an right Λ -module with $A = End(P_{\Lambda})$. Assume that $Ref(_AP) \subseteq KerExt_A^{i\geq 1}(-,P)$ and $KerExt_A^{i\geq 0}(-,P) = 0$. Then P is an r-costar module.

Proof. Let $0 \to L \to M \to N \to 0$ be an exact sequence with $L, M \in \operatorname{Ref}(P_{\Lambda})$. Assume the sequence is exact after applying the functor Δ , then we have the induced exact sequence $0 \to \Delta(N) \to \Delta(M) \to \Delta(L) \to 0$. Since $\Delta(L) \in \operatorname{Ref}(_AP) \subseteq$ $\operatorname{KerExt}_A^{i\geq 1}(-, P)$, after applying the functor Δ , we obtain an exact sequence $0 \to \Delta^2(L) \to \Delta^2(M) \to \Delta^2(N) \to 0$. Note that $L, M \in \operatorname{Ref}(P_{\Lambda})$, so δ_L, δ_M are isomorphisms. It follows that δ_N is an isomorphism and $N \in \operatorname{Ref}(P_{\Lambda})$.

Now, suppose that $N \in \operatorname{Ref}(P_{\Lambda})$. By applying the functor Δ , we obtain an induced exact sequences $0 \to \Delta(N) \to \Delta(M) \to X \to 0$ and $0 \to X \xrightarrow{f} \Delta(L) \to Y \to 0$ for some $X, Y \in A$ -mod. After applying the functor Δ to the first sequence, we then have the following exact commutative diagram

Since $M, N \in \operatorname{Ref}(P_{\Lambda}), \delta_M, \delta_N$ are isomorphisms. It follows from the diagram that $\operatorname{Ext}_A^1(X, P) = 0$ and $h = \Delta(f)\delta_L$ is an isomorphism. Then $\Delta(f)$ is an isomorphism since δ_L is an isomorphism. Note that $\Delta(M), \Delta(N) \in \operatorname{Ref}(_AP) \subseteq \operatorname{KerExt}_{\Lambda}^{i\geq 1}(-, P)$, so we have $\operatorname{Ext}_A^i(X, P) = 0$ for all $i \geq 2$ by dimension shifting. Hence $X \in \operatorname{KerExt}_A^{i\geq 1}(-, P)$. On the other hand, by applying the functor Δ to the sequence $0 \to X \to \Delta(L) \to Y \to 0$, we have an induced exact sequence

$$0 \longrightarrow \Delta(Y) \longrightarrow \Delta^2(L) \xrightarrow{\Delta(f)} \Delta(X) \longrightarrow \operatorname{Ext}^1_A(Y, P) \longrightarrow 0$$

and that $Y \in \operatorname{KerExt}_{A}^{i \geq 2}(-, P)$, since $\Delta(L) \in \operatorname{Ref}(_{A}P) \subseteq \operatorname{KerExt}_{A}^{i \geq 1}(-, P)$. Hence we obtain that $\operatorname{Ext}_{A}^{1}(Y, P) = 0 = \Delta(Y)$. It follows that $Y \in \operatorname{KerExt}_{A}^{i \geq 0}(-, P)$. So that Y = 0 by assumptions and hence $X \cong \Delta(L)$ canonically. Therefore, we deduce that the functor Δ preserves the exactness of the exact sequence $0 \to L \to M \to$ $N \to 0$ in $\operatorname{Ref}(P_{\Lambda})$.

Finally, we conclude that P is an r-costar module.

Lemma 4.2. Let $P \in mod \Lambda$ and $A = End(P_{\Lambda})$. Then $\Omega^2(KerExt_A^{i\geq 1}(-,P)) \subseteq Ref(_AP)$ where Ω^2 denotes the second syzygy module.

Proof. For any $N \in \Omega^2(\operatorname{KerExt}_A^{i \ge 1}(-, P))$, we have an exact sequence $0 \to N \to A_2 \to A_1 \to M \to 0$ with $A_1, A_2 \in \operatorname{proj}_A$ and $M \in \operatorname{KerExt}_A^{i \ge 1}(-, P)$. We have an induced exact sequence

$$0 \to \Delta(M) \to \Delta(A_1) \to \Delta(A_2) \to \Delta(N) \to 0$$

by applying the functor Δ . Now after applying the functor Δ to the last sequence, we obtain an induced exact sequence

$$0 \to \Delta^2(N) \to \Delta^2(A_2) \to \Delta^2(A_1)$$

Since δ_{A_1} , δ_{A_2} are isomorphisms, we deduce that δ_N is also an isomorphism. Hence $N \in \operatorname{Ref}({}_AP)$.

Proposition 4.3. Let P_{Λ} be an r-costar module. Then $KerExt_{A}^{i\geq 0}(-,P)=0$.

Proof. For any $M \in \operatorname{KerExt}_{A}^{i \geq 0}(-, P)$, we have an exact sequence $0 \to N \to A_2 \to A_1 \to M \to 0$ with $A_1, A_2 \in \operatorname{proj}_A$ and $N \in \Omega^2(M)$. Then, by applying the functor Δ to the sequence, we obtain an induced exact sequence $0 \to \Delta(A_1) \to \Delta(A_2) \to \Delta(N) \to 0$. By Lemma 4.2, $N \in \operatorname{Ref}_A P$ and then $\Delta(N) \in \operatorname{Ref}(P_\Lambda)$. So, after applying the functor Δ , we obtain that the induced sequence

$$0 \to \Delta^2(N) \to \Delta^2(A_2) \to \Delta^2(A_1) \to 0$$

is exact by Proposition 3.2. It follows that $M = \operatorname{Coker}(A_2 \to A_1) \cong \operatorname{Coker}(\Delta^2(A_2) \to \Delta^2(A_1)) = 0.$

From Propositions 3.3, 4.1 and 4.3, we have the following characterization of r-costar modules.

Theorem 4.4. Let $P \in mod \Lambda$ and $A = End(P_{\Lambda})$. Then P is an r-costar module if and only if $proj_A \subseteq Ref(_AP) \subseteq KerExt_A^{i\geq 1}(-,P)$ and $KerExt_A^{i\geq 0}(-,P) = 0$.

From Theorem 4.4, we obtain the following result.

Theorem 4.5. Let $P \in mod-\Lambda$ and $A = End(P_{\Lambda})$. If $Ref(_AP) = KerExt_A^{i \geq 1}(-, P)$, then P is an r-costar module.

Proof. Under assumptions we clearly have that $\operatorname{proj}_A \subseteq \operatorname{Ref}(_AP)$. For any $M \in \operatorname{KerExt}_A^{i\geq 0}(-,P)$. Then $M \in \operatorname{Ref}(_AP) = \operatorname{KerExt}_A^{i\geq 1}(-,P)$. Hence $M \cong \Delta^2(M) = 0$. By Theorem 4.4, we obtain that P is an r-costar module. \Box

 P_L in condition (2) in the following proposition can be replaced by P^n . So that, from the following proposition, we know that *r*-costar modules are obtained by replacing the subcategory $\operatorname{cogen}(P_{\Lambda})$ with the subcategory $\operatorname{Ref}(P_{\Lambda})$ in costar modules theory under artin algebra situation.

Proposition 4.6. Let $P \in mod$ - Λ . The following are equivalent.

- (1) P is an r-costar module.
- (2) For any exact sequence $0 \rightarrow L \rightarrow P_L \rightarrow M \rightarrow 0$ with $P_L \in prodP$ and $L \in$

 $Ref(P_{\Lambda})$, then $M \in Ref(P_{\Lambda})$ if and only if the functor Δ preserves the exactness of the sequence.

Proof. $(1) \Rightarrow (2)$ is followed from the definition of *r*-costar module.

 $(2) \Rightarrow (1)$ As the proof in Proposition 3.2(2), for any $L \in \operatorname{Ref}(P_{\Lambda})$, we have an infinite exact sequence $0 \to L \to P_1 \to \cdots \to P_n \to \cdots$ which remains exact after applying the functor Δ , where $P_i \in \operatorname{prod} P$ for each *i*. Consequently, we have $\operatorname{proj}_A \subseteq \operatorname{Ref}(AP) \subseteq \operatorname{KerExt}_A^{i\geq 1}(-, P)$ as in the proof of Proposition 3.3(1).

At last, the same proof as in Proposition 4.3 yields that $\operatorname{KerExt}_{A}^{i\geq 0}(-, P) = 0$. Thus P is an r-costar module by Theorem 4.4.

5. r-Costar modules with special properties

In this section, we shall study r-costar modules P such that the subcategory $\operatorname{Ref}(P_{\Lambda})$ has some special properties.

Proposition 5.1. Let $P \in mod \cdot \Lambda$ with $A = End(P_{\Lambda})$. If ${}_{A}P$ is an injective cogenerator in A-mod, then P_{Λ} is an r-costar module.

Proof. Let $0 \to L \to M \to N \to 0$ be an exact sequence with $L, M \in \operatorname{Ref}(P_{\Lambda})$. Assume first that the sequence is exact after applying the functor Δ , then we have an induced exact sequence $0 \to \Delta(N) \to \Delta(M) \to \Delta(L) \to 0$. Since ${}_{A}P$ is injective, after applying the functor Δ , we obtain that the sequence $0 \to \Delta^{2}(L) \to \Delta^{2}(M) \to \Delta^{2}(N) \to 0$ is exact. Note that $L, M \in \operatorname{Ref}(P_{\Lambda})$, so, δ_{L} and δ_{M} are isomorphisms. It follows that δ_{N} is an isomorphism and $N \in \operatorname{Ref}(P_{\Lambda})$.

Now, suppose that $N \in \operatorname{Ref}(P_{\Lambda})$. After applying the functor Δ , we obtain an induced exact sequence $0 \to \Delta(N) \to \Delta(M) \to \Delta(L) \to D \to 0$ for some D. Since ${}_{A}P$ is injective, we have an exact sequence $0 \to \Delta(D) \to \Delta^{2}(L) \to \Delta^{2}(M) \to \Delta^{2}(N) \to 0$ by applying the functor Δ . Because δ_{L} , δ_{M} , δ_{N} are isomorphisms, then $\Delta(D) = 0$. As ${}_{A}P$ is a cogenerator, we then obtain that D = 0. Hence $0 \to \Delta(N) \to \Delta(M) \to \Delta(L) \to 0$ is exact. Therefore, P is an r-costar module. \Box

For an *r*-costar module *P*, we know that $\operatorname{Ref}(_AP)$ is a resolving subcategory from Proposition 3.3(2). Now we consider when $\operatorname{Ref}(P_{\Lambda})$ is a resolving subcategory. The following theorem gives some characterizations of this case.

Theorem 5.2. Let $P \in mod-\Lambda$. The following are equivalent. (1) P is an r-costar module such that $Ref(P_{\Lambda})$ is a resolving subcategory. (2) $Ref(P_{\Lambda}) = KerExt_{\Lambda}^{i\geq 1}(-, P).$

(3)
$$\operatorname{Ref}(P_{\Lambda}) \subseteq \operatorname{KerExt}_{\Lambda}^{i \geq 1}(-, P) \subseteq \operatorname{cogen}(P_{\Lambda}).$$

(4) $\operatorname{proj}_{\Lambda} \subseteq \operatorname{Ref}(P_{\Lambda}) \subseteq \operatorname{KerExt}_{\Lambda}^{i \geq 1}(-, P)$ and $\operatorname{proj}_{A} \subseteq \operatorname{Ref}(_{A}P) \subseteq \operatorname{KerExt}_{A}^{i \geq 1}(-, P).$

Proof. (1) \Rightarrow (2) Let $M \in \operatorname{Ref}(P_{\Lambda})$ and $0 \to M_1 \to \Lambda_1 \to M \to 0$ be an exact sequence with $\Lambda_1 \in \operatorname{proj}_{\Lambda}$. Since $\operatorname{Ref}(P_{\Lambda})$ is a resolving subcategory, $\operatorname{proj}_{\Lambda} \subseteq \operatorname{Ref}(P_{\Lambda})$ and $\operatorname{Ref}(P_{\Lambda})$ is closed under kernels of epimorphisms. Therefore $M_1 \in \operatorname{Ref}(P_{\Lambda})$. It follows from Proposition 3.2 that the sequence remains exact after applying the functor Δ . Then we have that $\operatorname{Ext}^1_{\Lambda}(M, P) = 0$ for any $M \in \operatorname{Ref}(P_{\Lambda})$. Hence, $\operatorname{Ref}(P_{\Lambda}) \subseteq \operatorname{KerExt}^{i\geq 1}_{\Lambda}(-, P)$, since $\operatorname{Ref}(P_{\Lambda})$ is a resolving subcategory.

On the other hand, we may consider the exact sequence $0 \to X \to \Lambda_2 \to \Lambda_1 \to M \to 0$ with Λ_1 , $\Lambda_2 \in \operatorname{proj}_{\Lambda}$ for any $M \in \operatorname{KerExt}_{\Lambda}^{i \geq 1}(-, P)$. It clearly remains exact after applying the functor Δ . Hence we have an induced exact sequence $0 \to \Delta(M) \to \Delta(\Lambda_1) \to \Delta(\Lambda_2) \to \Delta(X) \to 0$. Since $\operatorname{Ref}(P_{\Lambda})$ is a resolving subcategory, then $\operatorname{proj}_{\Lambda} \subseteq \operatorname{Ref}(P_{\Lambda})$. By applying the functor Δ to the sequence, we obtain that $X \cong \Delta^2(X)$. That is, $X \in \operatorname{Ref}(P_{\Lambda})$. Since P is an r-costar modules, then we have that $\operatorname{Im}(\Lambda_2 \to \Lambda_1) \in \operatorname{Ref}(P_{\Lambda})$ and similarly $M \in \operatorname{Ref}(P_{\Lambda})$. Hence we have $\operatorname{KerExt}_{\Lambda}^{i \geq 1}(-, P) \subseteq \operatorname{Ref}(P_{\Lambda})$.

 $(2) \Rightarrow (3)$ is clear.

(3) \Rightarrow (4) Since prod $P \subseteq \operatorname{Ref}(P_{\Lambda})$, we have that prod $P \subseteq \operatorname{KerExt}_{\Lambda}^{i\geq 1}(-, P)$. For any $M \in \operatorname{KerExt}_{\Lambda}^{i\geq 1}(-, P)$, let $\Delta(M)$ is generated by f_1, \dots, f_n as A-module. Then we have an exact sequence $0 \to M \xrightarrow{f} P^n \to M_1 \to 0$ where $f = (f_1, \dots, f_n)$. Note that the sequence clearly stays exact after applying the functor Δ and since $M, P^n \in \operatorname{KerExt}_{\Lambda}^{i\geq 1}(-, P)$, we obtain that $M_1 \in \operatorname{KerExt}_{\Lambda}^{i\geq 1}(-, P)$ too. By repeating the process to M_1 , and so on, we finally obtain an infinite exact sequence $0 \to M \to P_1 \to \dots \to P_n \to \dots$ with $P_i \in \operatorname{prod} P$ for each i, such that the sequence remains exact after applying the functor Δ . It follows that $M \in \operatorname{Ref}(P_{\Lambda})$. Hence we deduce that $\operatorname{Ref}(P_{\Lambda}) = \operatorname{KerExt}_{\Lambda}^{i\geq 1}(-, P)$, therefore $\operatorname{proj}_{\Lambda} \subseteq \operatorname{Ref}(P_{\Lambda})$. Moreover, by an argument similar to the proof of Proposition 3.3(1), we obtain that $\operatorname{proj}_A \subseteq \operatorname{Ref}(AP) \subseteq \operatorname{KerExt}_A^{i\geq 1}(-, P)$.

(4) \Rightarrow (1) Since $\operatorname{proj}_{\Lambda} \subseteq \operatorname{Ref}(P_{\Lambda}) \subseteq \operatorname{KerExt}_{\Lambda}^{i\geq 1}(-, P)$, we easily check that $\operatorname{Ref}(P_{\Lambda})$ is a resolving subcategory as the proof in Proposition 3.3(2). Now it remains to show that P is an r-costar module. By Theorem 4.4, we need only to prove that $\operatorname{KerExt}_{A}^{i\geq 0}(-, P) = 0$. Let $M \in \operatorname{KerExt}_{A}^{i\geq 0}(-, P)$ and take an exact sequence $0 \to N \to A_2 \to A_1 \to M \to 0$ with $A_2, A_1 \in \operatorname{proj}_A$. Then we have an induced exact sequence $0 \to \Delta(A_1) \to \Delta(A_2) \to \Delta(N) \to 0$ by applying the functor Δ . Note that $N \in \operatorname{Ref}(_AP)$ by Lemma 4.2, so that $\Delta(N) \in \operatorname{Ref}(P_{\Lambda}) \subseteq$ $\operatorname{KerExt}_{\Lambda}^{i\geq 1}(-, P)$. It follows that there is an induced exact sequence $0 \to \Delta^2(N) \to$ $\Delta^2(A_2) \to \Delta^2(A_1) \to 0$ by applying the functor Δ . Hence we obtain that $M = \operatorname{Coker}(A_2 \to A_1) \cong \operatorname{Coker}(\Delta^2(A_2) \to \Delta^2(A_1)) = 0.$

Proposition 5.3. Let P be an r-costar module. Then $Ref(P_{\Lambda})$ is closed under extensions if and only if $Ext^{1}_{\Lambda}(M, P) = 0$ for any $M \in Ref(P_{\Lambda})$.

Proof. \Rightarrow . Every exact sequence of the form $0 \to P \xrightarrow{f} N \to M \to 0$ where $M \in \operatorname{Ref}(P_{\Lambda})$. By hypothesis, $N \in \operatorname{Ref}(P_{\Lambda})$. Then Δ preserves the exactness of the sequence by the definition of *r*-costar modules. So that, we have $g : N \to P$ such that $gf = 1_P$. Hence the sequence splits and $\operatorname{Ext}^1_{\Lambda}(M, P) = 0$.

 \Leftarrow . Let any exact sequence $0 \to L \to M \to N \to 0$ with $L, N \in \operatorname{Ref}(P_{\Lambda})$. Then Δ preserves the exactness of the sequence by assumption. We have the following commutative diagram

Note that δ_L , δ_N are isomorphisms, since L, $N \in \operatorname{Ref}(P_\Lambda)$. Therefore, we have that δ_M is an isomorphism. That is, $M \in \operatorname{Ref}(P_\Lambda)$.

References

- [1] R. R. Colby and K. R. Fuller, Costar modules, J. Algebra, 242 (2001), 146-159.
- [2] R. R. Colby and K. R. Fuller, Equivalence and Duality for Module Categories: with tilting and cotilting for rings, Cambridge tracts in mathematics : 161, Cambridge university press, 2004.
- [3] R. Colpi, Some remarks on equivalences between categories of modules, Comm. Algebra, 18(6) (1990), 1935-1951.
- [4] R. Colpi and C. Menini, On the structure of *-modules, J. Algebra, 158 (1993), 400-419.
- [5] C. Menini and A. Orsatti, Representable equivalences between categories of modules and applications, Rend. Sem. Mat. Univ. Padova, 82 (1989), 203-231.
- [6] J. Trlifaj, Every *-module is finitely generated, J. Algebra, 169 (1994), 392-398.
- [7] J. Wei, *^s-Modules, J. Algebra, 291 (2005), 312-324.

Hongxing Liu	Shunhua Zhang
School of Mathematics Science	School of Mathematics
Shandong Normal University	Shandong University
250014 Jinan, P. R. China	250100 Jinan, P. R. China
e-mail: lhxshanda@163.com	e-mail: shzhang@sdu.edu.cn