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Abstract. We give the definition of r-costar modules as a generalization of

costar modules under artin algebra situation. We also study characterizations

of r-costar modules and give characterizations of r-costar modules with some

special properties.
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1. Introduction

The theory of equivalences and dualities between module subcategories, origi-

nating in the well-known theory of Morita theorems, had been studied extensively.

Both quasi-progenerators and tilting modules over arbitrary rings induce equiva-

lences between certain categories of modules. Menini and Orsatti introduced a gen-

eralization of these modules that have come to be called ∗-modules, cf. [5]. Namely,

let CA be a subcategory of Mod-A closed under submodules and containing AA, and

let YR be a subcategory of Mod-R closed under direct sums and epimorphic images,

then any equivalence between CA and YR is represented by a bimodule APR, via the

adjoint pair (TP ,HP ). P is called ∗-module if we put A = End(PR), TP = −⊗A P ,

HP = HomR(P,−), KA = HomR(P,Q), where Q is a cogenerator of Mod-A, then

the pair of the functors (TP ,HP ) defines an equivalence between Gen(PR) and

Cogen(KA). In [3], Colpi gave that P is a ∗-module if and only if P is selfsmall

and, for any exact sequence 0 → L → M → N → 0 with M, N ∈ Gen(P ), the

induced sequence 0 → HP (L) → HP (M) → HP (N) → 0 is exact if and only if

L ∈ Gen(P ).

Wei introduced the notion of ∗s-modules, where s denotes static, by replacing

the subcategory Gen(P ) in the theory of ∗-module with the subcategory Stat(P )

and some results on ∗-module are successively extended to ∗s-modules, cf. [7].
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On the other side, a dual notion of quasi-progenerators called quasi-duality mod-

ules and cotilting modules dual to tilting modules have been a central topic of re-

cent investigation in module theory. Colby and Fuller generalized these modules to

costar modules which may be viewed as dual to ∗-modules in a sense, cf. [1].

Inspired by [7], we shall investigate r-costar modules by replacing the subcate-

gory cogen(P) in the theory of costar modules with the subcategory Ref(PΛ) under

artin algebra situation. Some similar results are obtained.

2. Preliminaries

Let R be an associative ring with nonzero identity, Mod-R (R-Mod) denotes the

category of all right (left) R-modules, while mod-R and R-mod denote their sub-

categories of finitely generated modules. We shall let projR be the full subcategory

of all projective modules in mod-R (or R-mod). Given a module PR (or RP ), we

denote

KerExti≥e
R (−, P ) = {X ∈ mod-R(or R-mod) | Exti

R(X,P ) = 0, for all i ≥ e,

where e is a positive integer or 0}.
If X ∈ Mod-R (or R-Mod), let RejP (X) =

⋂{Ker(f) | f ∈ HomR(X, P )}.
For every R-module P , ProdP (prodP ) will denote the class of the R-modules

isomorphic to arbitrary (finite) summands of direct products of copies of P. Add(P )

(add(P )) will denote the class of the R-modules isomorphic to arbitrary (finite)

summands of direct sums of copies of P. Cogen(P ) (cogen(P )) consists of the R-

modules that embed in arbitrary (finite) direct products of modules isomorphic to

P. An R-module N ∈ Cogen(P ) if and only if, for every 0 6= x ∈ N, there is a

morphism f ∈ HomR(N,P ) such that f(x) 6= 0. Gen(P ) will denote the class of

the R-modules generated by P. For a module M, if there exists an exact sequence

0 → M → PX → PY , where X, Y are sets, we say M is copresented by PR. A

subcategory is resolving if it contains all projective objects and is closed under

extensions and kernels of epimorphisms.

For a bimodule APR, we let ∆PR
= HomR(−, P ) and ∆

AP = HomA(−, P ). Both

of which will, when convenient, simply be denoted by ∆P or ∆. We have a pair of

contravariant functors

∆PR : Mod-R ­ A-Mod : ∆AP .

Associated with this adjunction are the evaluation maps

δX : X → ∆2X with δX(x) : f 7→ f(x)
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for X in Mod-R or A-Mod, x ∈ X, and f ∈ ∆(X). This yields natural transforma-

tions

δ : 1Mod-R → ∆2 and δ : 1A-Mod → ∆2.

A module X is (P -)reflexive if δX is an isomorphism, and (P -)torsionless if δX is a

monomorphism. Note that KerδX = RejP (X), so that X is P -torsionless if and only

if X is cogenerated by P. We shall let ΓPR
= Ext1R(−, P ) and Γ

AP = Ext1A(−, P ),

both of which will usually be denoted by Γ, cf. [2].

Denoting the class of P -reflexive right-R and left-A modules by Ref(PR) and

Ref(AP ), respectively, it always the case that APR-induces a duality

∆ : Ref(PR) ­ Ref(AP ) : ∆.

Let fgd-tl(PR) denote by the class of torsionless right R-modules whose P -duals

are finitely generated over A and fg-tl(AP ) denote the class of finitely generated

torsionless left A-modules. we also denote by

sf-cp(PR) = {M ∈ Mod-R| 0 → M → Pn → PA with n ∈ N}.

Colby and Fuller obtain the following theorem.

Theorem 2.1. ([1]) Let R be a ring, P ∈ Mod-R and A = End(PR). The following

are equivalent.

(a) ∆ : fgd-tl(PR) ­ fg-tl(AP ) : ∆ is a duality. That is, PR is a costar module.

(b) ∆ : sf-cp(PR) ­ fg-tl(AP ) : ∆ is a duality and fgd-tl(PR) = sf-cp(PR).

(c) δM is an epimorphism if ∆(M) ∈ A-mod and δN is an epimorphism if

N ∈ A-mod.

(d) fgd-tl(PR) ⊆ sf-cp(PR) and if 0 → M
f→ Pn → L → 0 is exact with L ∈

Cogen(PR), then ∆(f) is an epimorphism.

(e) If 0 → M
f→ Pn → L → 0 is exact then L ∈ Cogen(PR) if and only if ∆(f)

is an epimorphism.

A ring Λ is an artin algebra if its center K is an artinian ring and Λ is finitely

generated as a K-module. Any finitely generated module over an artin algebra is

finitely generated over its endmorphism ring, which is also an artin algebra, cf. [2].

In this paper, we let Λ denote by an artin albebra and we only consider finitely

generated module category. If P ∈ mod-Λ, for M ∈ mod-Λ(A-mod), then ∆(M) ∈
A-mod(mod-Λ). Any exact sequence 0 → L → Pn → M → 0 in mod-Λ(or A-mod),

then L, M ∈ mod-Λ(or A-mod) and ∆(L), ∆(M) ∈ A-mod(or Λ-mod), since Λ is

an artin algebra. If Λ is an artin algebra and APΛ is a bimodule, then Cogen(PΛ)

∩ mod-Λ=cogen(PΛ) and Cogen(AP ) ∩ A-mod=cogen(AP ), cf. [2](P115). So that
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from Theorem 2.1 (e), P is a costar module provided that any exact sequence

0 → M
f→ Pn → L → 0 remains exact after applying the functor ∆P if and only if

L ∈ cogen(PΛ).

3. Basic properties on r-costar modules

Firstly, we give the definition of r-costar modules.

Definition 3.1. Let P ∈ mod-Λ. A Λ-module P is said to be an r-costar module

provided that any exact sequence 0 → L → M → N → 0 with L, M ∈ Ref(PΛ)

remains exact after applying the functor ∆PΛ if and only if N ∈ Ref(PΛ).

If P is an r-costar module and cogen(PΛ) = Ref(PΛ), then P is a costar module.

For an r-costar module PΛ, the subcategory Ref(PΛ) has the following properties.

Proposition 3.2. Let PΛ ∈ mod-Λ be an r-costar module. Then the following hold.

(1) The functor ∆PΛ preserves short exact sequences in Ref(PΛ).

(2) For any M ∈ Ref(PΛ), there is an infinite exact sequence 0 → M → P1 →
··· → Pn → ··· which remains exact after applying the functor ∆PΛ where Pi ∈ prodP

for each i.

(3) For any exact sequence 0 → L → M → N → 0 which is also exact after

applying the functor ∆PΛ , if two of its terms are in Ref(PΛ), then so is the third

one.

Proof. (1) Follows from the definition of r-costar modules.

(2) If X is finitely generated, then ∆(X) is finitely generated as A-module. So,

for any M ∈ Ref(PΛ), let ∆(M) is generated by f1, · · ·, fn as A-module. Then we

have an exact sequence 0 → M
f→ Pn → M1 → 0 where f = (f1, · · ·, fn) and

Pn ∈ prodP. Since the sequence is clearly exact after applying the functor ∆PΛ and

Pn ∈ Ref(PΛ), we obtain that M1 ∈ Ref(PΛ). By repeating the process to M1, and

so on, we finally obtain the desired exact sequence.

(3) If L,M ∈ Ref(PΛ), then N ∈ Ref(PΛ) by the definition of r-costar modules.

Now let N ∈ Ref(PΛ). By applying the functor ∆2 to the sequence in (3), we

have the following commutative diagram by assumptions.

0 → L → M → N → 0

↓δL ↓δM ↓δN

0 → ∆2(L) → ∆2(M) → ∆2(N)
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since N ∈ Ref(PΛ), we have that δN is an isomorphism. It follows easily that δL is

an isomorphism if and only if δM is an isomorphism. So that, ÃL ∈ Ref(PΛ) if and

only if M ∈ Ref(PΛ). ¤

The following proposition gives some properties of the subcategory Ref(AP ) for

P an r-costar module.

Proposition 3.3. Let P ∈ mod-Λ be an r-cotar module with A = End(PΛ). Then

the following hold.

(1) projA ⊆ Ref(AP ) ⊆ KerExti≥1
A (−, P ). In particular, the functor ∆

AP pre-

serves short exact sequences in Ref(AP ).

(2) Ref(AP ) is a resolving subcategory.

Proof. Since A ∈ Ref(AP ), we have projA ⊆ Ref(AP ). Now for any N ∈ Ref(AP ),

then ∆(N) ∈ Ref(PΛ). By proposition 3.2(2), there is an infinite exact sequence

0 → ∆(N) → P1 → · · · → Pn → · · · which remains exact after applying the functor

∆PΛ to the sequence. We obtain an exact sequence · · · → ∆(Pn)(∼= An) → · · · →
∆(P1)(∼= A1) → ∆2(N) → 0 with Ai ∈ projA. It remains exact after applying the

functor ∆AP . We obtain that Ref(AP ) ⊆ KerExti≥1
A (−, P ) by dimension shifting.

(2) From (1), we know that Ref(AP ) contains all projective A-modules. For

any exact sequence 0 → K → M → N → 0 with N ∈ Ref(AP ). As Ref(AP ) ⊆
KerExti≥1

A (−, P ) by (1), we obtain the following exact commutative diagram by

applying the functor ∆2.

0 → K → M → N → 0

↓δK ↓δM ↓δN

0 → ∆2(K) → ∆2(M) → ∆2(N) .

Since N ∈ Ref(AP ), then δN is an isomorphism. So that, δK is an isomorphism

if and only if δM is an isomorphism. That is, K ∈ Ref(AP ) if and only if M ∈
Ref(AP ). It follows that Ref(AP ) is closed under kernels of epimorphisms and under

extensions. Thus, Ref(AP ) is a resolving subcategory. ¤

4. Characterizations of r-costar modules

In this section, we shall give an equivalent condition for r-costar modules.

Proposition 4.1. Let P be an right Λ-module with A = End(PΛ). Assume that

Ref(AP ) ⊆ KerExti≥1
A (−, P ) and KerExti≥0

A (−, P ) = 0. Then P is an r-costar

module.
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Proof. Let 0 → L → M → N → 0 be an exact sequence with L, M ∈ Ref(PΛ).

Assume the sequence is exact after applying the functor ∆, then we have the induced

exact sequence 0 → ∆(N) → ∆(M) → ∆(L) → 0. Since ∆(L) ∈ Ref(AP ) ⊆
KerExti≥1

A (−, P ), after applying the functor ∆, we obtain an exact sequence 0 →
∆2(L) → ∆2(M) → ∆2(N) → 0. Note that L, M ∈ Ref(PΛ), so δL, δM are

isomorphisms. It follows that δN is an isomorphism and N ∈ Ref(PΛ).

Now, suppose that N ∈ Ref(PΛ). By applying the functor ∆, we obtain an

induced exact sequences 0 → ∆(N) → ∆(M) → X → 0 and 0 → X
f→ ∆(L) →

Y → 0 for some X, Y ∈ A-mod. After applying the functor ∆ to the first sequence,

we then have the following exact commutative diagram

0 → L → M → N → 0

↓h ↓δM ↓δN ↓
0 → ∆(X) → ∆2(M) → ∆2(N) → Ext1A(X, P ) → 0.

Since M, N ∈ Ref(PΛ), δM , δN are isomorphisms. It follows from the diagram

that Ext1A(X, P ) = 0 and h = ∆(f)δL is an isomorphism. Then ∆(f) is an iso-

morphism since δL is an isomorphism. Note that ∆(M), ∆(N) ∈ Ref(AP ) ⊆
KerExti≥1

Λ (−, P ), so we have Exti
A(X, P ) = 0 for all i ≥ 2 by dimension shifting.

Hence X ∈ KerExti≥1
A (−, P ). On the other hand, by applying the functor ∆ to the

sequence 0 → X → ∆(L) → Y → 0, we have an induced exact sequence

0 −→ ∆(Y ) −→ ∆2(L)
∆(f)−→ ∆(X) −→ Ext1A(Y, P ) −→ 0

and that Y ∈ KerExti≥2
A (−, P ), since ∆(L) ∈ Ref(AP ) ⊆ KerExti≥1

A (−, P ). Hence

we obtain that Ext1A(Y, P ) = 0 = ∆(Y ). It follows that Y ∈ KerExti≥0
A (−, P ). So

that Y = 0 by assumptions and hence X ∼= ∆(L) canonically. Therefore, we deduce

that the functor ∆ preserves the exactness of the exact sequence 0 → L → M →
N → 0 in Ref(PΛ).

Finally, we conclude that P is an r-costar module. ¤

Lemma 4.2. Let P ∈ mod-Λ and A = End(PΛ). Then Ω2(KerExti≥1
A (−, P )) ⊆

Ref(AP ) where Ω2 denotes the second syzygy module.

Proof. For any N ∈ Ω2(KerExti≥1
A (−, P )), we have an exact sequence 0 → N →

A2 → A1 → M → 0 with A1, A2 ∈ projA and M ∈ KerExti≥1
A (−, P ). We have an

induced exact sequence

0 → ∆(M) → ∆(A1) → ∆(A2) → ∆(N) → 0
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by applying the functor ∆. Now after applying the functor ∆ to the last sequence,

we obtain an induced exact sequence

0 → ∆2(N) → ∆2(A2) → ∆2(A1).

Since δA1 , δA2 are isomorphisms, we deduce that δN is also an isomorphism. Hence

N ∈ Ref(AP ). ¤

Proposition 4.3. Let PΛ be an r-costar module. Then KerExti≥0
A (−, P ) = 0.

Proof. For any M ∈ KerExti≥0
A (−, P ), we have an exact sequence 0 → N → A2 →

A1 → M → 0 with A1, A2 ∈ projA and N ∈ Ω2(M). Then, by applying the

functor ∆ to the sequence, we obtain an induced exact sequence 0 → ∆(A1) →
∆(A2) → ∆(N) → 0. By Lemma 4.2, N ∈ Ref(AP ) and then ∆(N) ∈ Ref(PΛ). So,

after applying the functor ∆, we obtain that the induced sequence

0 → ∆2(N) → ∆2(A2) → ∆2(A1) → 0

is exact by Proposition 3.2. It follows that M = Coker(A2 → A1) ∼= Coker(∆2(A2) →
∆2(A1)) = 0. ¤

From Propositions 3.3, 4.1 and 4.3, we have the following characterization of

r-costar modules.

Theorem 4.4. Let P ∈ mod-Λ and A = End(PΛ). Then P is an r-costar module

if and only if projA⊆ Ref(AP ) ⊆ KerExti≥1
A (−, P ) and KerExti≥0

A (−, P ) = 0.

From Theorem 4.4, we obtain the following result.

Theorem 4.5. Let P ∈ mod-Λ and A = End(PΛ). If Ref(AP ) = KerExti≥1
A (−, P ),

then P is an r-costar module.

Proof. Under assumptions we clearly have that projA ⊆ Ref(AP ). For any M ∈
KerExti≥0

A (−, P ). Then M ∈ Ref(AP ) = KerExti≥1
A (−, P ). Hence M ∼= ∆2(M) =

0. By Theorem 4.4, we obtain that P is an r-costar module. ¤

PL in condition (2) in the following proposition can be replaced by Pn. So

that, from the following proposition, we know that r-costar modules are obtained

by replacing the subcategory cogen(PΛ) with the subcategory Ref(PΛ) in costar

modules theory under artin algebra situation.

Proposition 4.6. Let P ∈ mod-Λ. The following are equivalent.

(1) P is an r-costar module.

(2) For any exact sequence 0 → L → PL → M → 0 with PL ∈ prodP and L ∈
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Ref(PΛ), then M ∈ Ref(PΛ) if and only if the functor ∆ preserves the exactness of

the sequence.

Proof. (1) ⇒ (2) is followed from the definition of r-costar module.

(2) ⇒ (1) As the proof in Proposition 3.2(2), for any L ∈ Ref(PΛ), we have

an infinite exact sequence 0 → L → P1 → · · · → Pn → · · · which remains exact

after applying the functor ∆, where Pi ∈ prodP for each i. Consequently, we have

projA⊆ Ref(AP ) ⊆ KerExti≥1
A (−, P ) as in the proof of Proposition 3.3(1).

At last, the same proof as in Proposition 4.3 yields that KerExti≥0
A (−, P ) = 0.

Thus P is an r-costar module by Theorem 4.4. ¤

5. r-Costar modules with special properties

In this section, we shall study r-costar modules P such that the subcategory

Ref(PΛ) has some special properties.

Proposition 5.1. Let P ∈ mod-Λ with A = End(PΛ). If AP is an injective cogen-

erator in A-mod, then PΛ is an r-costar module.

Proof. Let 0 → L → M → N → 0 be an exact sequence with L, M ∈ Ref(PΛ).

Assume first that the sequence is exact after applying the functor ∆, then we have

an induced exact sequence 0 → ∆(N) → ∆(M) → ∆(L) → 0. Since AP is injective,

after applying the functor ∆, we obtain that the sequence 0 → ∆2(L) → ∆2(M) →
∆2(N) → 0 is exact. Note that L, M ∈ Ref(PΛ), so, δL and δM are isomorphisms.

It follows that δN is an isomorphism and N ∈ Ref(PΛ).

Now, suppose that N ∈ Ref(PΛ). After applying the functor ∆, we obtain an

induced exact sequence 0 → ∆(N) → ∆(M) → ∆(L) → D → 0 for some D. Since

AP is injective, we have an exact sequence 0 → ∆(D) → ∆2(L) → ∆2(M) →
∆2(N) → 0 by applying the functor ∆. Because δL, δM , δN are isomorphisms,

then ∆(D) = 0. As AP is a cogenerator, we then obtain that D = 0. Hence

0 → ∆(N) → ∆(M) → ∆(L) → 0 is exact. Therefore, P is an r-costar module. ¤

For an r-costar module P, we know that Ref(AP ) is a resolving subcategory from

Proposition 3.3(2). Now we consider when Ref(PΛ) is a resolving subcategory. The

following theorem gives some characterizations of this case.

Theorem 5.2. Let P ∈ mod-Λ. The following are equivalent.

(1) P is an r-costar module such that Ref(PΛ) is a resolving subcategory.

(2) Ref(PΛ) = KerExti≥1
Λ (−, P ).
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(3) Ref(PΛ) ⊆ KerExti≥1
Λ (−, P ) ⊆ cogen(PΛ).

(4) projΛ ⊆ Ref(PΛ) ⊆ KerExti≥1
Λ (−, P ) and projA⊆ Ref(AP ) ⊆ KerExti≥1

A (−, P ).

Proof. (1) ⇒ (2) Let M ∈ Ref(PΛ) and 0 → M1 → Λ1 → M → 0 be an exact se-

quence with Λ1 ∈ projΛ. Since Ref(PΛ) is a resolving subcategory, projΛ ⊆ Ref(PΛ)

and Ref(PΛ) is closed under kernels of epimorphisms. Therefore M1 ∈ Ref(PΛ).

It follows from Proposition 3.2 that the sequence remains exact after applying the

functor ∆. Then we have that Ext1Λ(M, P ) = 0 for any M ∈ Ref(PΛ). Hence,

Ref(PΛ) ⊆ KerExti≥1
Λ (−, P ), since Ref(PΛ) is a resolving subcategory.

On the other hand, we may consider the exact sequence 0 → X → Λ2 → Λ1 →
M → 0 with Λ1, Λ2 ∈ projΛ for any M ∈ KerExti≥1

Λ (−, P ). It clearly remains

exact after applying the functor ∆. Hence we have an induced exact sequence 0 →
∆(M) → ∆(Λ1) → ∆(Λ2) → ∆(X) → 0. Since Ref(PΛ) is a resolving subcategory,

then projΛ ⊆ Ref(PΛ). By applying the functor ∆ to the sequence, we obtain that

X ∼= ∆2(X). That is, X ∈ Ref(PΛ). Since P is an r-costar modules, then we

have that Im(Λ2 → Λ1) ∈ Ref(PΛ) and similarly M ∈ Ref(PΛ). Hence we have

KerExti≥1
Λ (−, P ) ⊆ Ref(PΛ).

(2) ⇒ (3) is clear.

(3) ⇒ (4) Since prodP ⊆ Ref(PΛ), we have that prodP ⊆ KerExti≥1
Λ (−, P ).

For any M ∈ KerExti≥1
Λ (−, P ), let ∆(M) is generated by f1, · · ·, fn as A-module.

Then we have an exact sequence 0 → M
f→ Pn → M1 → 0 where f = (f1, · ·

·, fn). Note that the sequence clearly stays exact after applying the functor ∆ and

since M, Pn ∈ KerExti≥1
Λ (−, P ), we obtain that M1 ∈ KerExti≥1

Λ (−, P ) too. By

repeating the process to M1, and so on, we finally obtain an infinite exact sequence

0 → M → P1 → · · · → Pn → · · · with Pi ∈ prodP for each i, such that the

sequence remains exact after applying the functor ∆. It follows that M ∈ Ref(PΛ).

Hence we deduce that Ref(PΛ) = KerExti≥1
Λ (−, P ), therefore projΛ ⊆ Ref(PΛ).

Moreover, by an argument similar to the proof of Proposition 3.3(1), we obtain

that projA ⊆ Ref(AP ) ⊆ KerExti≥1
A (−, P ).

(4) ⇒ (1) Since projΛ ⊆ Ref(PΛ) ⊆ KerExti≥1
Λ (−, P ), we easily check that

Ref(PΛ) is a resolving subcategory as the proof in Proposition 3.3(2). Now it

remains to show that P is an r-costar module. By Theorem 4.4, we need only

to prove that KerExti≥0
A (−, P ) = 0. Let M ∈ KerExti≥0

A (−, P ) and take an exact

sequence 0 → N → A2 → A1 → M → 0 with A2, A1 ∈ projA. Then we have

an induced exact sequence 0 → ∆(A1) → ∆(A2) → ∆(N) → 0 by applying the

functor ∆. Note that N ∈ Ref(AP ) by Lemma 4.2, so that ∆(N) ∈ Ref(PΛ) ⊆
KerExti≥1

Λ (−, P ). It follows that there is an induced exact sequence 0 → ∆2(N) →
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∆2(A2) → ∆2(A1) → 0 by applying the functor ∆. Hence we obtain that M =

Coker(A2 → A1) ∼= Coker(∆2(A2) → ∆2(A1)) = 0. ¤

Proposition 5.3. Let P be an r-costar module. Then Ref(PΛ) is closed under

extensions if and only if Ext1Λ(M, P ) = 0 for any M ∈ Ref(PΛ).

Proof. ⇒ . Every exact sequence of the form 0 → P
f→ N → M → 0 where

M ∈ Ref(PΛ). By hypothesis, N ∈ Ref(PΛ). Then ∆ preserves the exactness of the

sequence by the definition of r-costar modules. So that, we have g : N → P such

that gf = 1P . Hence the sequence splits and Ext1Λ(M, P ) = 0.

⇐ . Let any exact sequence 0 → L → M → N → 0 with L, N ∈ Ref(PΛ). Then

∆ preserves the exactness of the sequence by assumption. We have the following

commutative diagram

0 → L → M → N → 0

↓δL ↓δM ↓δN ↓
0 → ∆2(L) → ∆2(M) → ∆2(N) → X → 0.

Note that δL, δN are isomorphisms, since L, N ∈ Ref(PΛ). Therefore, we have that

δM is an isomorphism. That is, M ∈ Ref(PΛ). ¤
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