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A Comparison of Multi-Layer Perceptron and Inverse Kinematic 

for RRR Robotic Arm 

Highlights 

❖ A Comparison of Multi-Layer Perceptron that is a neural network approach and Inverse Kinematic. 

❖ The simulation of RRR type robotic arm with MLP model. 

❖ Detailed explanation of inverse kinematic for robotic arms. 

Graphical Abstract 

Kinematic calculations were made for the designed robot arm. Inverse kinematic analysis and MLP were used as 

two different approaches for the coordinate-joint calculations of the robot arm. The obtained results were compared 

with the three-dimensional simulation performed in Matlab environment. The general flow diagram of this study is 

given in the following figure. 

 

Figure. Flow chart of the study 

Aim 

The main purpose of this study is; to compare the inverse kinematics method in the kinematic analysis of robot arms 

and MLP, which is a common machine learning method, in a simulation environment in detail. Thus, it is aimed to 

bring a study that engineering students can access on an important subject such as inverse kinematic analysis to the 

literature. 

Design & Methodology 

The inverse kinematic analysis of a robot arm with three degrees of freedom RRR design has been made. As an 

alternative to inverse kinematics, the kinematic analysis of the robot arm was performed using the MLP machine 

learning algorithm. 

Originality 

Detailed explanation of geometric-analytic hybrid approach for inverse kinematic is performed. Also, an alternative 

algorithm for position control of robotic arms is proposed by using MLP with high accuracy.  

Findings 

Mean Relative Error (MRE) values for helix, star and daisy shapes were calculated as 0.0007, 0.0033 and 0.0011, 

respectively, in the tests performed.  

Conclusion 

Simulation results confirms that the proposed MLP model can operate this system at the desired stability. 
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ABSTRACT 

In this study, the position control simulation of a 3 Degree of Freedom (3DOF) robot arm was compared with machine learning 

and inverse kinematic analysis separately. The considered robot arm is designed in RRR pattern. In the inverse kinematic analysis 

of the robot arm, the geometric approach and the analytical approach are used together. Multi-Layer Perceptron (MLP) was used 

as a machine learning method. Some of the coordinate data that the robot arm can reach in the working space are selected and the 

MLP model is trained with these data. When training was done with MLP machine learning method, the correlation coefficient 

(R2) was obtained as 1. Coordinates of 3 different geometric models (helix, star and daisy) that can be included in the working 

space are used as test data of the MLP model. These tests are simulated in 3D in MATLAB environment. The simulation results 

were compared with the inverse kinematics analysis data. As a result, Mean Relative Error (MRE) values for helix, star and daisy 

shapes were calculated as 0.0007, 0.0033 and 0.0011, respectively, in the tests performed. Mean Squared Error (MSE) values were 

obtained as 0.0034, 0.0065 and 0.0040, respectively. This confirms that the proposed MLP model can operate this system at the 

desired stability. 

Keywords: Inverse kinematics, multi-layer perceptron (MLP), robotic arm. 

RRR Robotik Kol için Çok Katmanlı Algılayıcı ve 

Ters Kinematik Karşılaştırması 

ÖZ 

Bu çalışmada 3 DOF bir robot kolunun pozisyon kontrol simülasyonu makine öğrenmesi ve ters kinematik analiz ile ayrı ayrı 

yapılarak karşılaştırılmıştır. Ele alınan robot kol, RRR düzeninde tasarlanmıştır. Robot kolun ters kinematik analizinde geometrik 

yaklaşım ve analitik yaklaşım birlikte kullanılmıştır. Makine öğrenmesi yöntemi olarak Multi-Layer Perceptron(MLP) 

kullanılmıştır. Robot kolun çalışma uzayında ulaşabileceği koordinat verilerinin bir kısmı seçilerek, bu verilerle MLP modeli 

eğitilmiştir. MLP makine öğrenmesi yöntemiyle eğitim yapıldığında korelasyon katsayısı(R2) 1 olarak elde edilmiştir.  Çalışma 

uzayı içerisinde yer alabilecek olan 3 farklı geometrik modelin (helix, star ve daisy) koordinatları MLP modelinin test verisi olarak 

kullanılmıştır. Bu testler MATLAB ortamında 3d olarak simule edilmiştir. Simülasyon sonuçları test kinematik analiz verileri ile 

karşılaştırılmıştır. Sonuç olarak gerçekleştirilen testlerde helix, star ve daisy şekilleri için Mean Relative Error (MRE) değerleri 

sırasıyla 0.0007, 0.0033 ve 0.0011 olarak hesaplanmıştır. Mean Squared Error (MSE) değerleri ise sırasıyla 0.0034, 0.0065 ve 

0.0040 olarak elde edilmiştir. Bu da önerilen MLP modelinin bu sistemi istenilen kararlılıkta çalıştırabileceğini doğrulamaktadır. 

Anahtar Kelimeler: Ters kinematik, çok katmanlı algılayıcı, robot kol.

1. INTRODUCTION 

Robot arms are a type of robot used in industry for 

various industrial processes. Accordingly, the 

importance of robot arms in various industrial branches 

and medical applications is increasing day by day. Thus, 

by reducing the human factor in the studies carried out, 

more stable, faster and more sensitive processes can be 

performed [1]. In addition to the rapid development of 

semiconductor materials, developme nts in the 

production of micro and nano-sized machines also are 

increased the importance of studies in the field of 

robotics. Besides, the focus on robotics studies has 

increased cause of the increasing applications with high 

precision assembly [2,3]. 

A robot arm must be able to go directly to a specified 

coordinate location. This process can be done manually 

or automatically, and robot arms can be used statically or 

mobile [4]. One of the most important problems in the 

programming of robots is the inverse kinematics 

problem, which finds the values of the joint angles θ1:θn, 

which allows the robot arm to reach the desired X, Y, Z 

coordinates with a certain orientation. This method 

converts the target coordinates into the angular motion of 

each robot joint. Various approaches such as Denavit-

Hartenberg (D-H) [5], Screw Theory and Iterative 

Methods [6] are used to solve the inverse kinematics 

problem. In addition, instead of solving inverse 
*Sorumlu Yazar  (Corresponding Author)  
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kinematics equations, statistical approaches called soft 

computation methods in the literature can be used [7,8]. 

Basically, some of these methods are used to find the best 

solution for calculating joint angles based on target 

coordinates. Many theoretical simulation studies have 

been carried out on inverse kinematics applications of 

robot arms with different degrees of freedom [9-13]. On 

the other hand, some researchers have developed a low-

cost and small-scale prototype robot arm and applied 

inverse kinematics results [14-25]. However, in other 

studies, with the emergence of Internet of Things (IoT) 

technology, research that allows the robot to work 

through internet connection has begun to be discussed. 

Especially considering the development of IoT 

technology in the industrial sector, there is a great need 

for robot arm control algorithms that can act adaptively 

in accordance with this system [26-29]. 

The application of machine learning techniques to obtain 

the inverse kinematics solution of a given system has 

been widely discussed by researchers over the past two 

decades. Karlik et al tried to find the best Artificial 

Neural Network (ANN) configuration to solve the 

inverse kinematics problem of the 6-DOF robotic arm 

[30]. On the other hand, Chiddarwar and Babu compared 

the Radial Basis Function network (RBF) and Multi-

layer Percepteron Network (MLP) in the inverse 

kinematics solution of the 6-DOF robot arm in 2010 [31]. 

In the study was performed by Köker, a neural network 

architecture combined with evolutionary techniques was 

used to solve the inverse kinematics problem of the 6-

DOF Stanford robot manipulator [32]. Planar 

manipulators have been discussed in most of the studies 

in the literature [33]. In addition, Csiszar et al studied the 

inverse kinematics problem of spatial 3-DOF robot 

structure [34]. Toshani and Farrokhi presented an 

adaptive approach based on the online working 

Lyapunov Stability Theorem for the inverse kinematics 

problem of multi-joint manipulators as an alternative to 

offline machine learning techniques [35]. Ren and Ben-

Tzv, unlike previous studies, developed a neural network 

to solve the inverse kinematics and dynamics of robots 

using real-world experimental data. The proposed neural 

network technique was applied to two different robot 

arms, 4 DOF and 8 DOF. As a result, it has been seen that 

the proposed method can solve inverse kinematics and 

dynamics problems with the desired accuracy [36]. 

In recent years, metaheuristic optimization algorithms, as 

well as machine learning algorithms, have been 

considered as an alternative for solving the inverse 

kinematics problem. Lopez and Franco in 2018 compared 

to solve the inverse kinematics problem of different 

robotic manipulators some metaheuristic algorithms such 

as Differential Evolution (DE), Artificial Bee Colony 

(ABC), Bat Algorithm (BA), Genetic Algorithm (GA) 

Covariance Matrix Adaptation Evolution Strategy 

(CMA-ES), Cuckoo Search (CS), Differential Search 

(DS), and Particle Swarm Optimization (PSO) [7,37-44]. 

Shi et al proposed the Hybrid Mutation Fruit Fly 

Optimization Algorithm (HMFOA) to solve the inverse 

kinematics of a multi-degrees-of-freedom robot 

manipulator. An odour search based on multiple mutation 

strategies and a visual search based on dynamic real-time 

updates is adopted in HMFOA. The inverse kinematics 

problem of a 7-DOF manipulator with HMFOA has been 

solved and compared with various metaheuristic 

algorithms. The results revealed that HMFOA can be 

used to effectively solve the inverse kinematics problem 

[45]. Dereli and Köker were used a Quantum-based PSO 

for the inverse kinematics solution of a 7 DOF serial 

manipulator and the results were compared with other 

swarm techniques such as Firefly Algorithm (FA), PSO, 

and ABC. Firstly, the DH parameters of the robot 

manipulator were created and the transformation 

matrices were revealed. According to the results 

obtained; It has been shown that more efficient results are 

provided with quantum-based PSO than standard PSO, 

ABC, and FA [46]. 

Zhao et al 2020 presented a new approach to teaching 

robot kinematics to engineering students. The proposed 

teaching approach consists of the creation of the inverse 

kinematics algorithm, the implementation of the 

algorithm in the virtual experimental environment, and 

the implementation of the algorithm on the 

microcontroller, respectively. The sample application of 

the proposed approach has shown that the new teaching 

method has a significant effect on improving the robotic 

learning effect of students [47]. In their study, Al-

Tahtawi et al performed the inverse kinematic analysis of 

a small-scale robotic arm designed as 3-DOF. Inverse 

kinematics calculations were performed using the 

geometric approach. Using the analysis results, it was 

observed that the real-time control of the robot arm was 

performed via Arduino and the error rate was obtained 

3% [48]. When the literature studies are examined, it is 

seen that the kinematic analysis of the robot arm with 

many different degrees of freedom has been emphasized 

with various approaches and the studies in this field are 

currently continuing. However, it is known that the 

methods used in the majority of the studies are not 

explained in detail. Although this situation does not 

affect the academic value of the articles, there is an 

important deficiency in terms of education. Therefore, 

the main purpose of this study is; to compare the inverse 

kinematics method in the kinematic analysis of robot 

arms and MLP, which is a common machine learning 

method, in a simulation environment in detail. Thus, it is 

aimed to bring a study that engineering students can 

access on an important subject such as inverse kinematic 

analysis to the literature. Accordingly, an inverse 

kinematic analysis of a robot arm with three degrees of 

freedom RRR design has been made. As an alternative to 

inverse kinematics, the kinematic analysis of the robot 

arm was performed using the MLP machine learning 

algorithm. Coordinate information obtained from inverse 

kinematics and machine learning methods were 

compared in three dimensions in the Matlab 

environment. As a result, the correlation coefficient (R2) 

was obtained as 1 when training was done with the MLP 
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machine learning method. In addition, as a result of the 

test studies performed with MLP, the Mean Relative 

Error (MRE) value was 1.7 ‰ and the Mean Squared 

Error (MSE) was 4.6 ‰. This confirmed that the 

proposed machine learning model works with the desired 

stability. 

 

2. METHODOLOGY 

The solid model of the robot arm, designed in RRR type, 

was drawn in a CAD program. Kinematic calculations 

were made for the designed robot arm. Inverse kinematic 

analysis and MLP were used as two different approaches 

for the coordinate-joint calculations of the robot arm. The 

obtained results were compared with the three-

dimensional simulation performed in Matlab 

environment. The general flow diagram of this study is 

given in figure 1. As seen from figure 1, firstly, forward 

kinematic equations are calculated and position 

coordinates are obtained as a function of joint angles. The 

position data were calculated in response to the angle 

data obtained by increasing the joint angles at 10-degree 

intervals. These data were normalized and divided into 

80% training, 15% validation and 5% test data. The 

position and angle data of the data allocated to the 

training was used as the input and output, respectively. 

The artificial neural network was trained by this data. 

With the help of the obtained trained model, the joint 

angles were obtained for 3 different shapes. The same 

process is applied with mathematically calculated inverse 

kinematic equations. These two data sets were simulated 

by applying them to the robot arm and the results were 

compared. 

 

Figure 1. Flow Chart of the study 

 

2.1 Kinematic Analysis 

Robot kinematics are explained under two main headings 

as forward and backward kinematics. These topics are 

forward and inverse kinematic analysis. The forward 

kinematic equations are created easily with homogeneous 

transformation matrices. Several different approaches are 

used to solve the inverse kinematics problem. These are 

geometric, analytical, numerical and soft-computing 

approaches [49,50].  

2.1.1 Forward Kinematic Analysis 

Forward kinematic equations describe the position 

relationship between the base of the manipulator and the 

joints. The variables in these equations vary according to 

the joint state. If the joint used is radial, the equation 

variable is considered as angle, and if it is prismatic, the 

equation variable is considered as length. For the 

equations used in the transformations of the positions 

between the joints, D-H proposed a method that can be 

solved only with the x and z axes. Today, this method is 

known as the D-H method [51]. In this method, 

operations are performed with four parameters. These are 

the z-axis rotation angle (θ), the x-axis rotation angle (α), 

the z-axis translation (d), and the x-axis translation (a) 

parameters. These parameters are shown schematically in 

figure 2. 

 

 

Figure 2. D-H parameters 

 

The matrices obtained from the four parameters given 

above represent the position change between two 

neighbor joints. Eq. 1 provides the conversion between 

(n-1) and n axes. In this equation, “Rotational” and 

“Translational” expressions are showed as rot and trans, 

respectively. 

𝑇𝑛
𝑛−1 = 𝑅𝑜𝑡𝑥𝑛−1

(𝛼𝑛−1). 𝑇𝑟𝑎𝑛𝑠𝑥𝑛−1
(𝑎𝑛−1). 𝑅𝑜𝑡𝑧𝑛

(𝜃𝑛). 𝑇𝑟𝑎𝑛𝑠𝑧𝑛
(𝑑𝑛) (1) 

By analyzing Eq. 1, the matrix that defined the 

relationship between two joints and called the 

homogeneous transformation matrix, is calculated. The 

homogeneous transformation matrix is given in Eq. 2. 

The designed RRR type robot manipulator has 3 degrees 

of freedom. The parameters required for the D-H method, 

such as the main position, axes, and joint lengths of the 

robot arm, are given in figure 3. 

𝑇𝑛
𝑛−1 = [

cos 𝜃𝑛 −sin 𝜃𝑛 cos 𝛼𝑛 sin 𝜃𝑛 sin 𝛼𝑛 𝑎𝑛 cos 𝜃𝑛

sin 𝜃𝑛 cos 𝜃𝑛 cos 𝛼𝑛 − cos 𝜃𝑛 sin 𝛼𝑛 𝑎𝑛sin 𝜃𝑛

0 sin 𝛼𝑛 cos 𝛼𝑛 𝑑𝑛

0 0 0 1

] (2) 
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Figure 1. The physical parameters of the robot arm 

The four D-H parameters and the angle limits of the joints 

are given in table 1. Here, s=21.15mm, b=13mm, 

L1=80.73mm, L2=104.4mm, and L3=201.39mm. 

 

Table 1. D-H parameters 

Link θi ai di αi Limits 

(degree) 

0-1 θ1 s b+L1 π/2  

1-2 θ2 L2 0 0  

2-3 θ3 L3 0 0  

 

The D-H parameters in Table 1 are used in Eq. 2 to 

calculate the position correlation between the joints. 

Thus, the position relations between the neighbor joints 

were calculated as in Eq. 3. 

 

𝐴1
0 = [

cos 𝜃1 0 sin 𝜃1 𝑠 cos 𝜃1

sin 𝜃1 0 −cos 𝜃1 s sin 𝜃1

0 1 0 𝑏 + 𝐿1

0 0 0 1

] 

(3) 

𝐴2
1 = [

cos 𝜃2 −sin 𝜃2 0 𝐿2 cos 𝜃2

sin 𝜃2 cos 𝜃2 0 𝐿2sin 𝜃2

0 0 1 0
0 0 0 1

] 

𝐴3
2 = [

cos 𝜃3 −sin 𝜃3 0 𝐿3 cos 𝜃3

sin 𝜃3 cos 𝜃3 0 𝐿3sin 𝜃3

0 0 1 0
0 0 0 1

] 

Here, cosine and sine are abbreviated as C and S, 

respectively. The total transformation between the robot's 

base axis and the gripper was calculated as in Eq. 4. 

 

𝑇3
0 = 𝐴1

0 . 𝐴2
1 . 𝐴3

2  (4) 

If the inter-joint position matrices in Eq. 3 are substituted 

in Eq. 4, the total transformation matrix given in Eq. 5 is 

obtained. 

 

𝑇3
0 = 𝐴1

0 . 𝐴2
1 . 𝐴3

2 = [

𝑟11 𝑟12 𝑟13 𝑝𝑥

𝑟21 𝑟22 𝑟23 𝑝𝑦

𝑟31 𝑟32 𝑟33 𝑝𝑧

0 0 0 1

] 
(5) 

Here, the 3x3 size r denotes the rotation of the matrix 

from the base axis to the gripper. The 3x1 matrix p 

represents the translation between two axes. In Eq. 6, the 

values of r and p matrices are given. Thus, the forward 

kinematic analysis of the robot arm was calculated. 

 

𝑟11 = C 𝜃1 . C 𝜃2 . C 𝜃3 − C 𝜃1 . S 𝜃2 . S 𝜃3 

(6) 

𝑟21 = C 𝜃2 . C 𝜃3 . S 𝜃1 − S 𝜃1 . S 𝜃2 . S 𝜃3 

𝑟31 = C 𝜃2 . S 𝜃3 + C 𝜃3 . S 𝜃2 

𝑟12 = −C 𝜃1 . C 𝜃2 . S 𝜃3 − C 𝜃1 . C 𝜃3 . S 𝜃2 

𝑟22 = −C 𝜃2 . S 𝜃1 . S 𝜃3 − C 𝜃3 . S 𝜃1 . S 𝜃2 

𝑟32 = C 𝜃2 . C 𝜃3 − S 𝜃2 . S 𝜃3 

𝑟13 = S 𝜃1 

𝑟23 = −C 𝜃1 

𝑟33 = 0 

𝑝𝑥 = 𝑠. C 𝜃1 +  𝐿2. C 𝜃1 . C 𝜃2 +   𝐿3. C 𝜃1 . C 𝜃2 . C 𝜃3

−  𝐿3. C 𝜃1 . S 𝜃2 . S 𝜃3 

 

𝑝𝑦 = 𝑠. 𝑆𝜃1  +  𝐿2. S 𝜃1 . C 𝜃2 +  𝐿3. S 𝜃1 . C 𝜃2 . C 𝜃3

−  𝐿3. S 𝜃1 . S 𝜃2 . S 𝜃3 

 

𝑝𝑧 = 𝐿1  +  𝑏 +  𝐿2. S 𝜃2  +  𝐿3. C 𝜃2 . S 𝜃3  +  𝐿3. S 𝜃2 . C 𝜃3  

2.1.2 Inverse Kinematic Analysis 

The desired result in a robot system is to place the robot 

gripper at a known point in the robot cartesian space. This 

result which is called inverse kinematic analysis is a 

mathematical process to calculate variable joint 

parameters. Well-known approaches for inverse 

kinematic analysis are geometric, analytical, and 

numerical approaches [49]. In this study, geometric and 

analytical approaches were used together. 

 

Figure 4.  The parameters for the geometric approximation; a: 

side view, b: top view 

 

While performing inverse kinematic analysis for the 

RRR type robot arm, the main position of the system was 

determined as in Figure 3. The final position is formed 

when the axes move by θ1, θ2 and θ3 angles from the 
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home position. The side view and the top view of the final 

position are given in Figures 4-a and 4-b, respectively. 

For the inverse kinematics problem, the input is the 

position of the gripper and the outputs are the angle 

values of the joints. In figure 4b, a triangle with one angle 

θ1 is formed. This triangle has two legs, x and y. The 

hypotenuse is calculated as √𝑥2 + 𝑦2 according to the 

Pythagorean equation. Thus, the value of θ1 is obtained 

by taking into account the following relations in Eq 7 

 

x≥0 & y≥0 𝑡𝑎𝑛(𝜃1) =
𝑦

𝑥
 

(7) 

x<0 & y>0 𝑡𝑎𝑛(𝜋 − 𝜃1) = −
𝑦

𝑥
 

x>0 & y<0 𝑡𝑎𝑛(2𝜋 − 𝜃1) = −
𝑦

𝑥
 

x<0 & y<0 𝑡𝑎𝑛(𝜃1 − 𝜋) =
𝑦

𝑥
 

Triangles related to angles θ2 and θ3 are seen, when is 

examined the side view in Figure 4-a. Equation 8 is 

obtained when the Pythagorean relation is written for 

right triangle had angle of β+θ2. Thus, the unknown final 

length value (r) is calculated. The cosine relation can be 

written for the angle θ3 given in Figure 4-a, since the L2, 

L3, and r values are known. This relation is given in Eq. 

9. If the cosine relation is rewritten for the β angle in the 

same triangle, the cos(β) value is obtained in Eq. 10. 

Thus, the β+θ2 value was calculated in Eq. 11. 

𝑟 = √(𝑠 + √𝑥2 + 𝑦2)
2

+ (𝑧 − 𝐿1 − 𝑏)2 (8) 

cos ( 𝜃3) =
𝑟2 − 𝐿3

2 − 𝐿2
2

2 ∙ 𝐿2 ∙ 𝐿3
 (9) 

cos (𝛽) =
𝑟2 − 𝐿3

2 + 𝐿2
2

2 ∙ 𝐿2 ∙ 𝑟
 (10) 

tan(𝜃2 + 𝛽) =
𝑧 − 𝐿1 − 𝑏

√𝑥2 + 𝑦2 + 𝑠
 

(11) 

As a result of these processes, the joint angles, which are 

described as the solution of the inverse kinematics 

problem, are obtained in terms of the gripper's position.  

 

2.2 Multi-Layer Perceptron (MLP) 

In this study, the MATLAB interface was used to create 

an MLP model for the estimation of the joint angles of 

the robot arm. MLP is inspired by the biological nervous 

system in the human brain. These models consist of 3 

layers: input, hidden and output layers. Layers contain a 

processing unit called a neuron. In these neurons, the 

addition process, and the activation function process are 

applied to the information from the previous layer. In 

Figure 5, the neural network model for a single neuron is 

given schematically. Here, the input values are x1, x2, …, 

xn. The weight coefficients of model are defined as w1, 

w2, …, wn. The Vk value is calculated by equation 12. Yk 

is the value obtained as a result of subjecting the Vk value 

to the activation function. When modeling a neural 

network, this process is performed on all neurons 

separately [52]. 

 

𝑉𝑘 = ∑(𝑤𝑖𝑥𝑖) 

𝑛

𝑖=1

                                                                                                        (12) 

 

Figure 2. Single Neuron Architecture of MLP 

Incoming data from the input layer is transferred to the 

fast layers to perform certain operations on the neurons. 

The number of hidden layers varies according to the 

problem, at least one. The output of each layer is the input 

of the next layer. Thus, the output layer is reached. An 

error value will occur if the result in the output layer is 

different from the target result. With back propagation, 

this error value is spread over the weights and the forward 

propagation process is performed again. The continuous 

f function in Figure 5 represents the differentiable 

activation function [52- 54]. Any mathematical functions 

are used as activation function in the model. Among 

them, the most preferred functions are sigmoid, tang, 

linear and threshold functions [55-57]. Figure 6 shows 

the MLP model created for estimating the joint angles of 

the robot arm. 

 

Figure 6. Problem-specific MLP model 

In figure 6 above, the MLP model used for the estimation 

process is given. The weights are updated while the 

training process is carried out with the MLP model. With 

the test process, the performance of the MLP model is 
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tested. The training process is repeated by changing the 

hyperparameters until the appropriate performance result 

is reached. In the proposed MLP model there is an input 

layer consisting of 3 different input data (x, y and z 

positions). In general, the sigmoid function is used as the 

activation function in numerical estimation studies 

[58,59]. So, two hidden layers with 7 and 5 neurons using 

the sigmoid function (Eq.13) as the activation function 

are used in the model.  Thus, the prediction data of joint 

angles (θ1, θ2 and θ3) are taken from the output layer in 

the developed model. 

𝑉(𝑥) =
1

1 + 𝑒−𝑥                                                                                                      (13) 

 

 

3. RESULTS AND DISCUSSIONS 

The x, y, and z coordinates are determined for the helix, 

star and daisy shapes. The joint angles were calculated 

using both inverse kinematic equations and the MLP 

algorithm for these coordinates. Obtained results were 

compared in Matlab environment. The data of helix, star 

and daisy shapes as a result of this comparison are shown 

in two and three dimensions in Figures 7a, 7b and 7c, 

respectively. 

It is seen that the estimation results made by MLP in all 

three shapes completely overlap with the inverse 

kinematics results in the x-y coordinates when Figure 7 

is examined. However, it can be stated that there is a very 

small error between MLP estimation results and the 

actual results when the MLP estimation results are 

evaluated in three dimensions. When Tables 2, 3 and 4 

are examined, the actual values of x, y and z coordinates, 

estimation values made with MLP and relative error 

values are presented for Helix, star and daisy shapes, 

respectively. 

 
Figure 7. MLP Estimation Results of RRR robot arm’s drawings, a:helix, b:star, c:daisy 
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Table 2. Relative errors of Helix shape according to MLP 

estimation results 

Helix 

Points Real 

x(mm) 

MLP 

x(mm) 

Relative 

Error 

1 57.3000 57.4473 0.0026 

2 57.3500 57.4966 0.0026 

3 57.4000 57.5458 0.0025 

4 57.4500 57.5951 0.0025 

5 57.5000 57.6444 0.0025 

… … … … 

8821 50.1000 50.0766 0.0005 

8822 50.0500 50.0294 0.0004 

8823 50.0000 49.9829 0.0003 

8824 50.0000 49.9904 0.0002 

Points Real 

y(mm) 

MLP 

y(mm) 

Relative 

Error 

1 126.0137 126.0336 0.0002 

2 126.0955 126.1148 0.0002 

3 126.1771 126.1956 0.0001 

4 126.2583 126.2762 0.0001 

5 126.3391 126.3563 0.0001 

… … … … 

8821 96.1299 96.1664 0.0004 

8822 96.8393 96.8787 0.0004 

8823 97.7645 97.8072 0.0004 

8824 100.0000 100.0477 0.0005 

Points Real 

z(mm) 

MLP 

z(mm) 

Relative 

Error 

1 1.6659 1.5961 0.0419 

2 1.6772 1.6067 0.0421 

3 1.6886 1.6173 0.0422 

4 1.6999 1.6279 0.0424 

5 1.7112 1.6385 0.0425 

… … … … 

8821 99.9547 99.8721 0.0008 

8822 99.9660 99.8836 0.0008 

8823 99.9773 99.8950 0.0008 

8824 99.9887 99.9063 0.0008 

 

The robot arm must pass through 8824 different points in 

order to form the helix shape in the working space when 

Table 2 is examined. It is seen from both Table 2 and 

Figure 7a that the success rate is high when the actual and 

MLP estimation results of these points are compared. 

However, when the relative error values were examined, 

the highest error was obtained from the data on the "z" 

axis. On the other hand, millimeter (mm) is used as the 

unit of length in the coordinate system. Therefore, the 

error occurring at point 5 on the "z" axis, where the 

highest relative error value is observed, is calculated as 

0.0727 mm. From the point of view of the helix shape, 

this reveals that the MLP prediction model developed for 

processes with a process precision of 73 micrometer 

(µm) and more is usable. 

 

The data obtained for the Star shape that the robot arm 

will draw using the MLP prediction model is presented 

in Table 3. The robot arm must pass through 110 different 

points in order to create a star shape in the workspace. It 

is seen that the proposed machine learning approach has 

smaller relative error values for the Star shape compared 

to the Helix shape when Figure 7b and Table 3 are 

examined together. In addition, when each axis is 

considered separately, it has been determined that the 

highest error occurs at the starting points in the "z" axis, 

similar to the Helix shape. In the scaled examination, the 

highest error value can be obtained as 0.1269 mm (127 

µm) at the first point of the “z” axis. In other words, the 

proposed machine learning approach for studies with a 

sensitivity value of less than 127 µm can be an alternative 

to inverse kinematic analysis. When the coordinate 

values of Helix and Star shapes are examined, apart from 

the first points of the "z" axis, it can be stated that higher 

precision values such as 30-50 µm can be obtained. 

Therefore, for work that requires higher precision, 

reducing the distance between the gripper's starting point 

and the zero position or the speed of the robot arm may 

increase the sensitivity. 

 
Table 3. Relative errors of star shape according to MLP 

estimation results 

Star 

Points Real 

x(mm) 

MLP 

x(mm) 

Relative 

Error 

1 116.1803 116.0862 0.0008 

2 119.5623 119.4602 0.0009 

3 122.9443 122.8354 0.0009 

4 126.3262 126.2123 0.0009 

5 129.7082 129.5912 0.0009 

… … … … 

107 108.9615 108.9208 0.0004 

108 111.1246 111.0828 0.0004 

109 113.2877 113.2476 0.0004 

110 115.4508 115.4156 0.0003 

Points Real 

y(mm) 

MLP 

y(mm) 

Relative 

Error 

1 111.7557 111.6478 0.0010 

2 110.5801 110.4726 0.0010 

3 109.4046 109.2979 0.0010 

4 108.2290 108.1234 0.0010 

5 107.0534 106.9489 0.0010 

… … … … 

107 61.00668 61.0071 0.00001 

108 58.15351 58.1622 0.0002 

109 55.30034 55.3166 0.0003 

110 52.44717 52.4698 0.0004 

Points Real z(mm) MLP 

z(mm) 

Relative 

Error 

1 10.0000 9.8731 0.01269 

2 10.0000 9.8798 0.0121 

3 10.0000 9.8855 0.0115 

4 10.0000 9.8900 0.0110 

5 10.0000 9.8931 0.0107 

… … … … 

107 10.0000 9.9936 0.0006 

108 10.0000 10.0058 0.0006 

109 10.0000 10.0175 0.0018 

110 10.0000 10.0288 0.0029 

 

It is seen that the gripper needs to go to 1000 different 

coordinate points in order to create the daisy shape using 

the MLP prediction model of the robot arm when Table 

4 is examined. Considering these points, the daisy shape 

drawn by the robot arm with the machine learning 

approach was obtained as seen in Figure 7c. Considering 
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Table 4 and Figure 7c together, it can be stated that the 

daisy shape has a higher success rate than the other two 

shapes in terms of relative error. The reason for this is 

that there are no linear sharp turns between points on the 

figure. However, when the relative error values are 

examined, it is seen that the highest error is obtained from 

the data in the "z" axis and the relative error is lower in 

the "z" axis compared to the other two figures. Similar to 

the previous two figures, when the "z" axis values with 

the highest relative error are considered on a scale, the 

highest error was calculated as 0.0326 mm (32.6 µm). 

Unlike the Helix and Star shapes, it is seen that the 

relative error values are close to each other at all points 

in the "z" axis, where the highest error is obtained. 

 
Table 4. Relative errors of Daisy shape according to MLP 

estimation results 

Daisy 

Points Real x(mm) MLP 

x(mm) 

Relative 

Error 

1 143.0000 142.9283 0.0005 

2 143.7537 143.6833 0.0005 

3 144.5047 144.4358 0.0005 

4 145.2523 145.1848 0.0005 

5 145.9958 145.9297 0.0004 

… … … … 

997 140.7306 140.655 0.0005 

998 141.4877 141.4134 0.0005 

999 142.2444 142.1714 0.0005 

1000 143.0000 142.9283 0.0005 

Points Real y(mm) MLP 

y(mm) 

Relative 

Error 

1 119.0000 118.9819 0.0002 

2 119.2900 119.2725 0.0002 

3 119.5563 119.5394 0.0001 

4 119.7989 119.7825 0.0001 

5 120.0178 120.0018 0.0001 

… … … … 

997 117.9876 117.9676 0.0002 

998 118.3488 118.3294 0.0002 

999 118.6862 118.6675 0.0002 

1000 119.0000 118.9819 0.0002 

Points Real z(mm) MLP 

z(mm) 

Relative 

Error 

1 20.0000 19.9731 0.0014 

2 20.0000 19.9718 0.0014 

3 20.0000 19.9705 0.0015 

4 20.0000 19.9690 0.0015 

5 20.0000 19.9674 0.0016 

… … … … 

997 20.0000 19.9761 0.0012 

998 20.0000 19.9752 0.0012 

999 20.0000 19.9742 0.0013 

1000 20.0000 19.9731 0.0014 

 

In this part of the study, the simulation results for 

different shapes were compared with the error analysis 

techniques accepted in the literature. The error occurred 

here was determined by the MRE and MSE performance 

criteria, which are widely used for statistical analysis 

methods. Equations of the specified error analysis 

techniques are given in equations 14 and 15. 

 

𝑀𝑅𝐸 =
∑

|𝑅𝑟𝑒𝑎𝑙−𝑅𝑀𝐿𝑃|

𝑅𝑟𝑒𝑎𝑙
𝑛

𝑛
 

(14) 

𝑀𝑆𝐸 =
∑ (𝑅𝑟𝑒𝑎𝑙 − 𝑅𝑀𝐿𝑃)2

𝑛

𝑛
 (15) 

 

MRE results for helix, star and daisy shapes are seen 

separately in x, y and z coordinates when Table 5 is 

examined. Accordingly, it was determined that the 

highest error values occurred in the z-axis in all three 

ways. MRE values for helix, star and daisy shapes in the 

working space were obtained as 0.0007, 0.0033 and 

0.0011, respectively. 

 
Table 5. MRE Results of MLP 

 MRE x MRE y MRE z MRE xyz 

Helix 0.0005 0.0005 0.0010 0.0007 

Star 0.0006 0.0006 0.0088 0.0033 

Daisy 0.0009 0.0006 0.0019 0.0011 

Mean 0.0007 0.0006 0.0039 0.0017 

 

MSE values, another important performance criterion, 

are presented in Table 6. MSE values for helix, star and 

daisy shapes in the working space were obtained as 

0.0034, 0.0065 and 0.0040, respectively. All of these 

values show that the proposed MLP prediction model 

provides reliable results. 

 
Table 6. MSE Results of MLP 

 MSE x MSE y MSE z MSE xyz 

Helix 0.0029 0.0027 0.0047 0.0034 

Star 0.0050 0.0052 0.0094 0.0065 

Daisy 0.0068 0.0031 0.0022 0.0040 

Mean 0.0049 0.0037 0.0054 0.0046 

 

It is seen that the shape in which the derivative value is a 

piecewise function or has sharp turns is difficult to draw. 

The function of Helix, daisy and star are given in eq. 16, 

17, and 18, respectively. When these equations are 

examined, it is observed that difficulties of derivatives of 

equations may sort hard to easy as 18, 17 and 16. 

 
𝑥 = 𝑎 ∗ (sin(4𝑡) + 2) 

(16) 
𝑦 = 𝑎 ∗ (cos(4𝑡) + 2) 

𝑧 =
𝑎

𝜋
∗ (t −

3𝜋

8
) 

 
𝑥 = 𝑎 ∗ (0.5 ∗ cos(5𝑡) + sin (𝑡) + 2) 

(17) 𝑦 = 𝑎 ∗ (0.5 ∗ sin(5𝑡) + cos (𝑡) + 2) 

𝑧 = 20 

 

𝑥 =
2

3
∗ (𝑦 + 20) 70 < y < 100 and 118 < y < 148 

(18) 

𝑥 = 116 52 < y < 88 and 112 < y < 148 

𝑥 = 155 −
3𝑦

4
 52 < y < 82 and 100 < y < 130 

𝑥 = 450 − 3𝑦 100 < y < 112 and 118 < y < 130 
𝑥 = 3𝑦 − 150 70 < y < 82 and 88 < y < 100 

𝑧 = 10 

 

The results of error analysis also support this 

approximation. Therefore, it is seen that the shape with 

the sharpest turns is the star shape when the simulated 

shapes are examined. For this reason, the error results of 

the star shape are higher than the others. Considering the 
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derivative curves of other shapes, the higher the change 

in unit time, the more difficult it is to draw the shape. 

That is, the drawing difficulty levels of all simulated 

shapes are understood as star> daisy> helix. 

 

4. CONCLUSION 

In this study, the inverse kinematics method in the 

kinematic analysis of robot arms and its comparison with 

machine learning are presented. A three-degree-of-

freedom manipulator with RRR design is considered as a 

robot arm. First of all, the joint angles required for the 

robot arm gripper tip to move to any desired position in 

the robot workspace are analytically modelled by inverse 

kinematic analysis. Inverse kinematics analysis was 

performed using a hybrid of geometric and algebraic 

approaches. Thus, the mathematical model of the joint 

angles (θ1, θ2, and θ3) that enables the robot to reach any 

position has been determined. Then, the linear kinematics 

calculation that gives the positions corresponding to the 

joint angles within the boundaries of the gripper joints in 

the working space of the robot was made analytically. 

The data obtained as a result of the forward kinematic 

analysis are used as input and output in the MLP 

algorithm, which is one of the widespread machine 

learning methods. In the trained MLP model, gripper 

positions (x, y, and z) are considered as input data, and 

joint angles are considered as output data. Thus, as an 

alternative to inverse kinematic analysis, a soft-

computing estimation approach is proposed for the 

manipulator's joint angles. Coordinates of the helix, star, 

and daisy shapes were used as test data in order to 

determine the success rate of the developed MLP model. 

In order to compare the MLP model with the real results, 

the required joint angles for helix, star, and daisy shapes 

were calculated by using the mathematical models 

obtained as a result of inverse kinematic analysis. The 

performance of the machine learning model is revealed 

by comparing the prediction results obtained from the 

MLP model with the analytical calculation results. 

Accordingly, MRE and MSE values were considered as 

performance criteria. As a result, considering the 

operation of the robot arm in three-dimensional space, 

the MRE values for helix, star, and daisy shapes were 

calculated as 0.0007, 0.0033, and 0.0011, respectively. 

MSE values were obtained as 0.0034, 0.0065, and 

0.0040, respectively. 

As a result of this study, it has been revealed that machine 

learning approaches as a soft computing method can be 

used as an alternative to inverse kinematic analysis. In 

further studies, it is aimed to realize the positional control 

of robot arms with higher degrees of freedom and/or 

more complex articulated structures in the working space 

with the MLP method. In addition, it is foreseen that a 

similar approach will be made in future studies by using 

different machine learning methods. 
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